1
|
Lang S. Understanding the HIV-CA protein and the ligands that bind at the N-terminal domain (NTD) - C-terminal domain (CTD) interface. RSC Med Chem 2025:d5md00111k. [PMID: 40291137 PMCID: PMC12018806 DOI: 10.1039/d5md00111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Treatment and prevention of HIV/AIDS infections represents a significant global challenge, with this being the cause of a substantial number of deaths each year. HIV-CA, the protein responsible for protecting the viral RNA and facilitating reverse transcription, has emerged as an important target in drug discovery. This review applies various computer drug discovery tools for the analysis and understanding of not only the HIV-CA protein, but also the ligands reported to bind to the site at the NTD-CTD interface between two capsid monomer units. Combining this evaluation with reported experimental data, highlights the effects that changes to the ligands make to the binding affinity. This analysis, including identifying areas of the ligand that have not been adequately explored, allows for the generation of guidelines that can be applied to the design of novel ligands that bind to HIV-CA.
Collapse
Affiliation(s)
- Stuart Lang
- New Cambridge House Bassingbourn Road, Litlington Cambridgeshire SG8 0SS UK
| |
Collapse
|
2
|
Lang S, Fletcher DA, Petit AP, Luise N, Fyfe P, Zuccotto F, Porter D, Hope A, Bellany F, Kerr C, Mackenzie CJ, Wyatt PG, Gray DW. Application of an NMR/Crystallography Fragment Screening Platform for the Assessment and Rapid Discovery of New HIV-CA Binding Fragments. ChemMedChem 2024; 19:e202400025. [PMID: 38581280 DOI: 10.1002/cmdc.202400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Identification and assessment of novel targets is essential to combat drug resistance in the treatment of HIV/AIDS. HIV Capsid (HIV-CA), the protein playing a major role in both the early and late stages of the viral life cycle, has emerged as an important target. We have applied an NMR fragment screening platform and identified molecules that bind to the N-terminal domain (NTD) of HIV-CA at a site close to the interface with the C-terminal domain (CTD). Using X-ray crystallography, we have been able to obtain crystal structures to identify the binding mode of these compounds. This allowed for rapid progression of the initial, weak binding, fragment starting points to compounds 37 and 38, which have 19F-pKi values of 5.3 and 5.4 respectively.
Collapse
Affiliation(s)
- Stuart Lang
- Cresset Discovery, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire, SG80SSS
| | - Daniel A Fletcher
- BioAscent Discovery Ltd, Bo'Ness Road, Newhouse, Lanarkshire, ML1 5UH
| | | | - Nicola Luise
- Alira Health, Av. De Josep Tarradellas, 123, 7th Floor, 08029, Barcelona, Spain
| | - Paul Fyfe
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Fabio Zuccotto
- Vertex Pharmaceuticals (Europe) Ltd, 86-88, Jubilee Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4RW
| | - David Porter
- Evotec (UK) Ltd, Dorothy Crowfoot Hodgkin Campus, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ
| | - Anthony Hope
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Fiona Bellany
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Catrina Kerr
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | | | - Paul G Wyatt
- Sitala Bio Ltd, Unit D6, Grain House Mill Court, Great Shelford, Cambridge, CB22 5LD
| | - David W Gray
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| |
Collapse
|
3
|
Akther T, McFadden WM, Zhang H, Kirby KA, Sarafianos SG, Wang Z. Design and Synthesis of New GS-6207 Subtypes for Targeting HIV-1 Capsid Protein. Int J Mol Sci 2024; 25:3734. [PMID: 38612545 PMCID: PMC11012105 DOI: 10.3390/ijms25073734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
HIV-1 capsid protein (CA) is the molecular target of the recently FDA-approved long acting injectable (LAI) drug lenacapavir (GS-6207). The quick emergence of CA mutations resistant to GS-6207 necessitates the design and synthesis of novel sub-chemotypes. We have conducted the structure-based design of two new sub-chemotypes combining the scaffold of GS-6207 and the N-terminal cap of PF74 analogs, the other important CA-targeting chemotype. The design was validated via induced-fit molecular docking. More importantly, we have worked out a general synthetic route to allow the modular synthesis of novel GS-6207 subtypes. Significantly, the desired stereochemistry of the skeleton C2 was confirmed via an X-ray crystal structure of the key synthetic intermediate 22a. Although the newly synthesized analogs did not show significant potency, our efforts herein will facilitate the future design and synthesis of novel subtypes with improved potency.
Collapse
Affiliation(s)
- Thamina Akther
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Huanchun Zhang
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Karen A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (W.M.M.); (H.Z.)
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Jiang X, Sharma PP, Rathi B, Ji X, Hu L, Gao Z, Kang D, Wang Z, Xie M, Xu S, Zhang X, De Clercq E, Cocklin S, Pannecouque C, Dick A, Liu X, Zhan P. Discovery of novel 1,2,4-triazole phenylalanine derivatives targeting an unexplored region within the interprotomer pocket of the HIV capsid protein. J Med Virol 2022; 94:5975-5986. [PMID: 35949003 PMCID: PMC10790228 DOI: 10.1002/jmv.28064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 01/06/2023]
Abstract
Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC50 values of 0.59 and 2.69 µM, respectively. Additionally, we show via surface plasmon resonance (SPR) spectrometry that d19 preferentially interacts with the hexameric form of CA, with a significantly improved hexamer/monomer specificity ratio (ratio = 59) than PF-74 (ratio = 21). Moreover, we show via SPR that d19 competes with CPSF-6 for binding to CA hexamers with IC50 value of 33.4 nM. Like PF-74, d19 inhibits the replication of HIV-1 NL4.3 pseudo typed virus in both early and late stages. In addition, molecular docking and molecular dynamics simulations provide binding mode information of d19 to HIV-1 CA and rationale for improved affinity and potency over PF-74. Overall, the lead compound d19 displays a distinct chemotype form PF-74, improved CA affinity, and anti-HIV potency.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| |
Collapse
|
5
|
Ji X, Li J, Sharma PP, Jiang X, Rathi B, Gao Z, Hu L, Kang D, De Clercq E, Cocklin S, Liu C, Pannecouque C, Dick A, Liu X, Zhan P. Design, Synthesis and Structure-Activity Relationships of Phenylalanine-Containing Peptidomimetics as Novel HIV-1 Capsid Binders Based on Ugi Four-Component Reaction. Molecules 2022; 27:molecules27185995. [PMID: 36144727 PMCID: PMC9502897 DOI: 10.3390/molecules27185995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV. Among them, compound I-19 exhibited the best anti-HIV-1 activity (EC50 = 2.53 ± 0.84 μM, CC50 = 107.61 ± 27.43 μM). In addition, I-14 displayed excellent HIV-2 inhibitory activity (EC50 = 2.30 ± 0.11 μM, CC50 > 189.32 μM) with relatively low cytotoxicity, being more potent than that of the approved drug nevirapine (EC50 > 15.02 μM, CC50 > 15.2 μM). Additionally, surface plasmon resonance (SPR) binding assays demonstrated direct binding to the HIV CA protein. Moreover, molecular docking and molecular dynamics simulations provided additional information on the binding mode of I-19 to HIV-1 CA. In summary, we further explored the structure—activity relationships (SARs) and selectivity of anti-HIV-1/HIV-2 of PF-74 derivatives, which is conducive to discovering efficient anti-HIV drugs.
Collapse
Affiliation(s)
- Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jing Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapym, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapym, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| |
Collapse
|
6
|
Fabitha K, Chandrakanth M, Pramod RN, Arya CG, Li Y, Banothu J. Recent Developments in the Synthesis of Indole‐Pyrazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. Fabitha
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Munugala Chandrakanth
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Rakendu N. Pramod
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - C. G. Arya
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Yupeng Li
- Masonic Cancer Center and Department of Medicinal Chemistry University of Minnesota Minneapolis Minnesota 55455 United States
| | - Janardhan Banothu
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| |
Collapse
|
7
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
8
|
Louis B, Agrawal VK. Quantitative Structure Activity Relationship Analysis of Antiviral Activity of PF74 Type HIV-1 Capsid Protein Inhibitors by Simplex Representation of Molecular Structure. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2038215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bruno Louis
- QSAR and Computer Chemical Laboratories, A.P.S. University, Rewa, India
| | - Vijay K. Agrawal
- QSAR and Computer Chemical Laboratories, A.P.S. University, Rewa, India
| |
Collapse
|
9
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Zhang X, Sun L, Meuser ME, Zalloum WA, Xu S, Huang T, Cherukupalli S, Jiang X, Ding X, Tao Y, Kang D, De Clercq E, Pannecouque C, Dick A, Cocklin S, Liu X, Zhan P. Design, synthesis, and mechanism study of dimerized phenylalanine derivatives as novel HIV-1 capsid inhibitors. Eur J Med Chem 2021; 226:113848. [PMID: 34592608 DOI: 10.1016/j.ejmech.2021.113848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
HIV-1 capsid (CA) plays indispensable and multiple roles in the life cycle of HIV-1, become an attractive target in antiviral therapy. Herein, we report the design, synthesis, and mechanism study of a novel series of dimerized phenylalanine derivatives as HIV-1 capsid inhibitors using 2-piperazineone or 2,5-piperazinedione as a linker. The structure-activity relationship (SAR) indicated that dimerized phenylalanines were more potent than monomers of the same chemotype. Further, the inclusion of fluorine substituted phenylalanine and methoxyl substituted aniline was found to be beneficial for antiviral activity. From the synthesized series, Q-c4 was found to be the most potent compound with an EC50 value of 0.57 μM, comparable to PF74. Interestingly, Q-c4 demonstrated a slightly higher affinity to the CA monomer than the CA hexamer, commensurate with its more significant effect in the late-stage of the HIV-1 lifecycle. Competitive SPR experiments with peptides from CPSF6 and NUP153 revealed that Q-c4 binds to the interprotomer pocket of hexameric CA as designed. Single-round infection assays showed that Q-c4 interferes with the HIV-1 life cycle in a dual-stage manner, affecting both pre-and post-integration. Stability assays in human plasma and human liver microsomes indicated that although Q-c4 has improved stability over PF74, this kind of inhibitor still requires further optimization. And the results of the online molinspiration software predicted that Q-c4 has desirable physicochemical properties but some properties still have some violation from the Lipinski rule of five. Overall, the dimerized phenylalanines are promising novel platforms for developing future HIV-1 CA inhibitors with considerable potential for optimization.
Collapse
Affiliation(s)
- Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
11
|
Sahani RL, Akther T, Cilento ME, Castaner AE, Zhang H, Kirby KA, Xie J, Sarafianos SG, Wang Z. Potency and metabolic stability: a molecular hybrid case in the design of novel PF74-like small molecules targeting HIV-1 capsid protein. RSC Med Chem 2021; 12:2031-2044. [PMID: 35028563 DOI: 10.1039/d1md00292a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
PF74 (1) is a potent and well-characterized prototypical small molecule targeting human immunodeficiency virus type 1 (HIV-1) capsid protein (CA), but not a viable antiviral lead due to the lack of metabolic stability. We report herein our molecular hybridization-based medicinal chemistry efforts toward potent and metabolically stable PF74-like small molecules. The design of the new sub-chemotype 4 rationally combines binding features of two recently reported PF74-like compounds 2 and 3. The subsequent confirmation and structure-activity relationship (SAR) of hit 4a entailed the chemical synthesis of 37 novel analogs, most of which showed modest but meaningful thermal shift, and low μM antiviral activity. The most potent analogs (4a, 4d, 4o, and 4r) all exhibited noticeably improved metabolic stability over PF74. Molecular modeling suggests that these new analogs bind to the PF74 binding site. Overall, our work demonstrated that the molecular hybridization approach is suitable for designing compounds with balanced potency and metabolic stability.
Collapse
Affiliation(s)
- Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Thamina Akther
- Center for Drug Design, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine Atlanta GA 30322 USA
| | - Andres Emanuelli Castaner
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine Atlanta GA 30322 USA
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine Atlanta GA 30322 USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine Atlanta GA 30322 USA.,Children's Healthcare of Atlanta Atlanta GA 30322 USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine Atlanta GA 30322 USA.,Children's Healthcare of Atlanta Atlanta GA 30322 USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
12
|
Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, Lan S, Slack RL, Kirby KA, Bassit L, Amblard F, Kim B, AbuBakar S, Sarafianos SG, Schinazi RF. Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms 2021; 9:microorganisms9050893. [PMID: 33921971 PMCID: PMC8143456 DOI: 10.3390/microorganisms9050893] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/18/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a deadly emerging infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Because SARS-CoV-2 is easily transmitted through the air and has a relatively long incubation time, COVID-19 has rapidly developed into a global pandemic. As there are no antiviral agents for the prevention and treatment of this severe pathogen except for remdesivir, development of antiviral therapies to treat infected individuals remains highly urgent. Here, we showed that baicalein and baicalin exhibited significant antiviral activity against SARS-CoV-2, the causative agent of COVID-19 through in vitro studies. Our data through cell-based and biochemical studies showed that both compounds act as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors directly and inhibit the activity of the SARS-CoV-2 RdRp, but baicalein was more potent. We also showed specific binding of baicalein to the SARS-CoV-2 RdRp, making it a potential candidate for further studies towards therapeutic development for COVID-19 as a selective non-nucleoside polymerase inhibitor.
Collapse
Affiliation(s)
- Keivan Zandi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
- Correspondence: ; Tel.: +1-404-727-1575
| | - Katie Musall
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Adrian Oo
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (B.L.)
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (B.L.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (P.H.); (S.A.)
| | - Shuiyun Lan
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Ryan L. Slack
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Karen A. Kirby
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Baek Kim
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (P.H.); (S.A.)
| | - Stefan G. Sarafianos
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| |
Collapse
|
13
|
Meuser ME, Reddy PAN, Dick A, Maurancy JM, Salvino JM, Cocklin S. Rapid Optimization of the Metabolic Stability of a Human Immunodeficiency Virus Type-1 Capsid Inhibitor Using a Multistep Computational Workflow. J Med Chem 2021; 64:3747-3766. [PMID: 33750123 DOI: 10.1021/acs.jmedchem.0c01810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poor metabolic stability of the human immunodeficiency virus type-1 (HIV-1) capsid (CA) inhibitor PF-74 is a major concern in its development toward clinical use. To improve on the metabolic stability, we employed a novel multistep computationally driven workflow, which facilitated the rapid design of improved PF-74 analogs in an efficient manner. Using this workflow, we designed three compounds that interact specifically with the CA interprotomer pocket, inhibit HIV-1 infection, and demonstrate enantiomeric preference. Moreover, using this workflow, we were able to increase the metabolic stability 204-fold in comparison to PF-74 in only three analog steps. These results demonstrate our ability to rapidly design CA compounds using a novel computational workflow that has improved metabolic stability over the parental compound. This workflow can be further applied to the redesign of PF-74 and other promising inhibitors with a stability shortfall.
Collapse
Affiliation(s)
- Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Poli Adi Narayana Reddy
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Jean Marc Maurancy
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Joseph M Salvino
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
14
|
Sahani RL, Diana-Rivero R, Vernekar SKV, Wang L, Du H, Zhang H, Castaner AE, Casey MC, Kirby KA, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Design, Synthesis and Characterization of HIV-1 CA-Targeting Small Molecules: Conformational Restriction of PF74. Viruses 2021; 13:v13030479. [PMID: 33804121 PMCID: PMC8000227 DOI: 10.3390/v13030479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Small molecules targeting the PF74 binding site of the HIV-1 capsid protein (CA) confer potent and mechanistically unique antiviral activities. Structural modifications of PF74 could further the understanding of ligand binding modes, diversify ligand chemical classes, and allow identification of new variants with balanced antiviral activity and metabolic stability. In the current work, we designed and synthesized three series of PF74-like analogs featuring conformational constraints at the aniline terminus or the phenylalanine carboxamide moiety, and characterized them using a biophysical thermal shift assay (TSA), cell-based antiviral and cytotoxicity assays, and in vitro metabolic stability assays in human and mouse liver microsomes. These studies showed that the two series with the phenylalanine carboxamide moiety replaced by a pyridine or imidazole ring can provide viable hits. Subsequent SAR identified an improved analog 15 which effectively inhibited HIV-1 (EC50 = 0.31 μM), strongly stabilized CA hexamer (ΔTm = 8.7 °C), and exhibited substantially enhanced metabolic stability (t1/2 = 27 min for 15 vs. 0.7 min for PF74). Metabolic profiles from the microsomal stability assay also indicate that blocking the C5 position of the indole ring could lead to increased resistance to oxidative metabolism.
Collapse
Affiliation(s)
- Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
| | - Raquel Diana-Rivero
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
| | - Sanjeev Kumar V. Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
| | - Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andres Emanuelli Castaner
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary C. Casey
- Department of Molecular Microbiology and Immunology, School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Karen A. Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (H.D.); (H.Z.); (A.E.C.); (K.A.K.); (P.R.T.); (S.G.S.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (R.L.S.); (R.D.-R.); (S.K.V.V.); (L.W.); (J.X.)
- Correspondence: ; Tel.: +1-612-626-7025
| |
Collapse
|
15
|
Novel PF74-like small molecules targeting the HIV-1 capsid protein: Balance of potency and metabolic stability. Acta Pharm Sin B 2021; 11:810-822. [PMID: 33777683 PMCID: PMC7982424 DOI: 10.1016/j.apsb.2020.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Of all known small molecules targeting human immunodeficiency virus (HIV) capsid protein (CA), PF74 represents by far the best characterized chemotype, due to its ability to confer antiviral phenotypes in both early and late phases of viral replication. However, the prohibitively low metabolic stability renders PF74 a poor antiviral lead. We report herein our medicinal chemistry efforts toward identifying novel and metabolically stable small molecules targeting the PF74 binding site. Specifically, we replaced the inter-domain-interacting, electron-rich indole ring of PF74 with less electron-rich isosteres, including imidazolidine-2,4-dione, pyrimidine-2,4-dione, and benzamide, and identified four potent antiviral compounds (10, 19, 20 and 26) with markedly improved metabolic stability. Compared to PF74, analog 20 exhibited similar submicromolar potency, and much longer (51-fold) half-life in human liver microsomes (HLMs). Molecular docking corroborated that 20 binds to the PF74 binding site, and revealed distinct binding interactions conferred by the benzamide moiety. Collectively, our data support compound 20 as a promising antiviral lead.
Collapse
Key Words
- ART, antiretroviral therapy
- CA, capsid protein
- CACTD, CA C-terminal domain
- CANTD, CA N-terminal domain
- Capsid protein
- HBA, H-bond acceptor
- HBD, H-bond donor
- HIV, human immunodeficiency virus
- HIV-1
- HLM, human liver microsome
- MLM, mouse liver microsome
- Microsomal stability
- PF74
- PK, pharmacokinetic
- SAR, structure‒activity relationship
- TSA, thermal shift assay
Collapse
|
16
|
Wilbourne M, Zhang P. Visualizing HIV-1 Capsid and Its Interactions with Antivirals and Host Factors. Viruses 2021; 13:246. [PMID: 33557422 PMCID: PMC7914784 DOI: 10.3390/v13020246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding of the construction and function of the HIV capsid has advanced considerably in the last decade. This is due in large part to the development of more sophisticated structural techniques, particularly cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET). The capsid is known to be a pleomorphic fullerene cone comprised of capsid protein monomers arranged into 200-250 hexamers and 12 pentamers. The latter of these induce high curvature necessary to close the cone at both ends. CryoEM/cryoET, NMR, and X-ray crystallography have collectively described these interactions to atomic or near-atomic resolutions. Further, these techniques have helped to clarify the role the HIV capsid plays in several parts of the viral life cycle, from reverse transcription to nuclear entry and integration into the host chromosome. This includes visualizing the capsid bound to host factors. Multiple proteins have been shown to interact with the capsid. Cyclophilin A, nucleoporins, and CPSF6 promote viral infectivity, while MxB and Trim5α diminish the viral infectivity. Finally, structural insights into the intra- and intermolecular interactions that govern capsid function have enabled development of small molecules, peptides, and truncated proteins to disrupt or stabilize the capsid to inhibit HIV replication. The most promising of these, GS6207, is now in clinical trial.
Collapse
Affiliation(s)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
17
|
Structure, Function, and Interactions of the HIV-1 Capsid Protein. Life (Basel) 2021; 11:life11020100. [PMID: 33572761 PMCID: PMC7910843 DOI: 10.3390/life11020100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.
Collapse
|
18
|
Wang L, Casey MC, Vernekar SKV, Sahani RL, Kankanala J, Kirby KA, Du H, Hachiya A, Zhang H, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. Eur J Med Chem 2020; 204:112626. [PMID: 32814250 DOI: 10.1016/j.ejmech.2020.112626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
The PF74 binding site in HIV-1 capsid protein (CA) is a compelling antiviral drug target. Although PF74 confers mechanistically distinct antiviral phenotypes by competing against host factors for CA binding, it suffers from prohibitively low metabolic stability. Therefore, there has been increasing interest in designing novel sub-chemotypes of PF74 with similar binding mode and improved metabolic stability. We report herein our efforts to explore the inter-domain interacting indole moiety for designing novel CA-targeting small molecules. Our design includes simple substitution on the indole ring, and more importantly, novel sub-chemotypes with the indole moiety replaced with a few less electron-rich rings. All 56 novel analogs were synthesized and evaluated for antiviral activity, cytotoxicity, and impact on CA hexamer stability. Selected analogs were tested for metabolic stability in liver microsomes. Molecular modeling was performed to verify compound binding to the PF74 site. In the end, 5-hydroxyindole analogs (8,9 and 12) showed improved potency (up to 20-fold) over PF74. Of the novel sub-chemotypes, α- and β-naphthyl analogs (33 and 27) exhibited sub micromolar antiviral potencies comparable to that of PF74. Interestingly, although only moderately inhibiting HIV-1 (single-digit micromolar EC50s), analogs of the 2-indolone sub-chemotype consistently lowered the melting point (Tm) of CA hexamers, some with improved metabolic stability over PF74.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Sanjeev Kumar V Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Atsuko Hachiya
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, 460-0001, Japan
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Gütschow M, Vanden Eynde JJ, Jampilek J, Kang C, Mangoni AA, Fossa P, Karaman R, Trabocchi A, Scott PJH, Reynisson J, Rapposelli S, Galdiero S, Winum JY, Brullo C, Prokai-Tatrai K, Sharma AK, Schapira M, Azuma YT, Cerchia L, Spetea M, Torri G, Collina S, Geronikaki A, García-Sosa AT, Vasconcelos MH, Sousa ME, Kosalec I, Tuccinardi T, Duarte IF, Salvador JAR, Bertinaria M, Pellecchia M, Amato J, Rastelli G, Gomes PAC, Guedes RC, Sabatier JM, Estévez-Braun A, Pagano B, Mangani S, Ragno R, Kokotos G, Brindisi M, González FV, Borges F, Miloso M, Rautio J, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-7. Molecules 2020; 25:2968. [PMID: 32605268 PMCID: PMC7412072 DOI: 10.3390/molecules25132968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Breakthroughs in Medicinal Chemistry [...].
Collapse
Affiliation(s)
- Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - CongBao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, Chromos, 05-01, Singapore 138670, Singapore;
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia;
- Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany
| | - Paola Fossa
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy;
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
- Department of Sciences, University of Basilicata, Viadell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy;
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, UK;
| | - Simona Rapposelli
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; (S.G.); (J.A.); (B.P.); (M.B.)
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, CEDEX 05, 34296 Montpellier, France;
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, V.le Benedetto XV 3, I-16132 Genova, Italy;
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, MaRS Centre, South Tower, 101 College St., Suite 700, Toronto, ON M5G 1L7, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan;
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Giangiacomo Torri
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, via Giuseppe Colombo 81, 20133 Milano, Italy;
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - M. Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia;
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; (S.G.); (J.A.); (B.P.); (M.B.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy;
| | - Paula A. C. Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
| | - Rita C. Guedes
- iMed.Ulisboa and Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, CEDEX 15, 13344-Marseille, France;
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica (CIBICAN), Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; (S.G.); (J.A.); (B.P.); (M.B.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy;
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece;
| | - Margherita Brindisi
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; (S.G.); (J.A.); (B.P.); (M.B.)
| | - Florenci V. González
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain;
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre 1021/1055, 4169-007 Porto, Portugal;
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy;
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| |
Collapse
|