1
|
Hussain F, Tahir A, Rehman HM, Wu Y, Shah M, Rashid U. Promising thiazolidinedione-thiazole based multi-target and neuroprotective hybrids for Alzheimer's disease: Design, synthesis, in-vitro, in-vivo and in-silico studies. Eur J Med Chem 2025; 287:117327. [PMID: 39914143 DOI: 10.1016/j.ejmech.2025.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD) is marked by low neurotransmitter levels, inflammation, increased oxidative stress, and the aggregation of amyloid-β and tau proteins. The development of hybrid compounds acting as multi-target-directed ligands (MTDLs) is a novel and contemporary approach in Alzheimer's disease therapeutics. The objective of our current research focuses on identifying compounds with balanced, even moderate inhibition potential against multiple targets associated with cholinergic deficit and neuroinflammation. Inspired by our previous study, the thiazolidinedione-thiazole-based framework has been employed to design and synthesize a series of new hybrids. The inhibitory effects of the synthesized compounds on selected enzymes were investigated by employing in-vitro methods. The synergistic inhibition of acetylcholinesterase (AChE), monoamine oxidase-B (MAO-B), β-secretase (BACE-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) by compound 49 is believed to have a more potent effect in treating Alzheimer's disease. Enzyme kinetic studies and their effect on substrate-enzyme interactions of the compounds with significant inhibitory potency for AChE and MAO-B were also investigated. Central nervous system (CNS) penetration was determined using in-vitro PAMPA assay. A neurotoxicity test on neuroblastoma cell lines (SH-SY5Y) showed that the compounds were non-toxic. Compound 49 showed an excellent neuroprotective effect by significantly reducing H2O2-induced oxidative stress. Antioxidant enzymes were studied in an in-vivo experiment in the brains of male BALB/c mice. Compound 49 showed its ability to reduce the oxidative stress. Furthermore, molecular docking studies and 100 ns MD simulations performed on the AChE, MAO-B, and COX-2 ligand-protein complexes revealed stable conformations of the ligand-protein interactions throughout the simulations.
Collapse
Affiliation(s)
- Fahad Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Ayesha Tahir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Yurong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
2
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
3
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
4
|
Ogos M, Stary D, Bajda M. Recent Advances in the Search for Effective Anti-Alzheimer's Drugs. Int J Mol Sci 2024; 26:157. [PMID: 39796014 PMCID: PMC11720639 DOI: 10.3390/ijms26010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression. Moreover, these drugs typically target a single pathogenic mechanism, leaving other contributing factors unaddressed. Recent advancements in drug design have led to the development of multi-target-directed ligands (MTDLs), which have gained popularity for their ability to simultaneously target multiple pathogenic mechanisms. This paper focuses on analyzing the activity, mechanism of action, and binding properties of the anti-Alzheimer's MTDLs developed between 2020 and 2024.
Collapse
Affiliation(s)
| | | | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (M.O.); (D.S.)
| |
Collapse
|
5
|
Zeng X, Cheng S, Li H, Yu H, Cui Y, Fang Y, Yang S, Feng Y. Design, synthesis, and activity evaluation of novel multitargeted l-tryptophan derivatives with powerful antioxidant activity against Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2300603. [PMID: 38290060 DOI: 10.1002/ardp.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 μM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent β-amyloid (Aβ) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aβ self-aggregation.
Collapse
Affiliation(s)
- Xianghao Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaobing Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huilan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haiyang Yu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yushun Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Fan Y, Wang J, Jian J, Wen Y, Li J, Tian H, Crommen J, Bi W, Zhang T, Jiang Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm Sin B 2024; 14:1772-1786. [PMID: 38572096 PMCID: PMC10985270 DOI: 10.1016/j.apsb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 μmol/L) and neocnidilide (EC50 = 1.161 μmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 μmol/L) and safinamide (EC50 = 1.079 μmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.
Collapse
Affiliation(s)
- Yu Fan
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
- KU Leuven-University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven 3000, Belgium
| | - Yalei Wen
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiahao Li
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Wei Bi
- Department of Neurology, the First Affiliated Hospital of Jinan University/Clinical Neuroscience Institute, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Long J, Qin F, Luo J, Zhong G, Huang S, Jing L, Yi T, Liu J, Jiang N. Design, synthesis, and biological evaluation of novel capsaicin-tacrine hybrids as multi-target agents for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:107026. [PMID: 38103330 DOI: 10.1016/j.bioorg.2023.107026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against β-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.
Collapse
Affiliation(s)
- Juanyue Long
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Fengxue Qin
- Blood Transfusion Department, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China
| | - Guohui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
8
|
Huang ST, Luo JC, Zhong GH, Teng LP, Yang CY, Tang CL, Jing L, Zhou ZB, Liu J, Jiang N. In vitro and in vivo Biological Evaluation of Newly Tacrine-Selegiline Hybrids as Multi-Target Inhibitors of Cholinesterases and Monoamine Oxidases for Alzheimer's Disease. Drug Des Devel Ther 2024; 18:133-159. [PMID: 38283137 PMCID: PMC10822116 DOI: 10.2147/dddt.s432170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 μM, hBuChE: IC50 = 0.43 μM) and MAOs (hMAO-A: IC50 = 2.30 μM, hMAO-B: IC50 = 4.75 μM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.
Collapse
Affiliation(s)
- Shu-Tong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jin-Chong Luo
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Guo-Hui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Li-Ping Teng
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Cai-Yan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chun-Li Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
9
|
Zhu X, Lv Y, Fan M, Guo J, Zhang Y, Gao B, Zhang C, Xie Y. Exploration of the novel phthalimide-hydroxypyridinone derivatives as multifunctional drug candidates against Alzheimer's disease. Bioorg Chem 2023; 141:106817. [PMID: 37690318 DOI: 10.1016/j.bioorg.2023.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 μM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 μM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.
Collapse
Affiliation(s)
- Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
10
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Liu P, Cheng M, Guo J, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer's disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg Med Chem 2023; 78:117146. [PMID: 36580744 DOI: 10.1016/j.bmc.2022.117146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Here, we have designed and synthesized a series of melatonin-alkylbenzylamine hybrids as multitarget agents for the treatment of Alzheimer's disease (AD). Most of them exhibited a potent multifunctional profile involving cholinesterase inhibition and antioxidant effects. Among these compounds, compound 5 was most the potent antioxidant (ORAC = 5.13) and also an excellent selective inhibitor of BuChE (huBuChE IC50 = 1.20 μM, huAChE IC50 = 177.49 μM, SI = 147.91). Moreover, kinetic study indicated compound 5 was a mixed-type inhibitor for huBuChE. Furthermore, it could induce expression of the Nrf2 as well as its downstream markers at the protein level in cells. More importantly, compound 5 display no acute toxicity in mice at doses up to 2500 mg/kg. And we found compound 5 could improve memory function of scopolamine-induced amnesia mice. These results highlighted compound 5 as a possible hit molecule for further investigation of new anti-AD drugs.
Collapse
Affiliation(s)
- Peng Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Maojun Cheng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Duanyuan Cao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yang Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
12
|
Zhong G, Guo J, Pang C, Su D, Tang C, Jing L, Zhang F, He P, Yan Y, Chen Z, Liu J, Jiang N. Novel AP2238-clorgiline hybrids as multi-target agents for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 130:106224. [DOI: 10.1016/j.bioorg.2022.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
13
|
Guo J, Xu A, Cheng M, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, Synthesis and Biological Evaluation of New 3,4-Dihydro-2(1H)-Quinolinone-Dithiocarbamate Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Drug Des Devel Ther 2022; 16:1495-1514. [PMID: 35611357 PMCID: PMC9124477 DOI: 10.2147/dddt.s354879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Alzheimer’s disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports. Purpose To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate. Methods All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo. Results Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.). Conclusion This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.
Collapse
Affiliation(s)
- Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Airen Xu
- Clinical Pharmacology Research Center, The Second Hospital of Yinzhou, Ningbo, Zhejiang, People’s Republic of China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Sai-Sai Xie, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
- Jing Liu, School of Pharmacy, Jiangxi University of Chinese Medicine, No. 56, Yangming Road, Donghu District, Nanchang City, Jiangxi Province, 330006, People’s Republic of China, Email
| |
Collapse
|
14
|
Zhang Z, Cheng M, Guo J, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, synthesis and biological evaluation of novel pyrazolone derivatives as selective butyrylcholinesterase inhibitors with antioxidant activity against Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
16
|
Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Med Chem 2021; 13:1301-1309. [PMID: 34137271 DOI: 10.4155/fmc-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the most prevalent neurodegenerative diseases and the leading causes of dementia worldwide. The etiology of these multifactorial pathologies is not completely known. The available therapeutic approaches can cause temporary relief of symptoms but cannot slow down their progression or cure them. Life-changing therapeutic solutions are urgently needed, as the number of people suffering from these pathologies has been increasing quickly over the last few decades. Several targets are being studied, and innovative approaches are being pursued to find new therapeutic options. This overview is focused on the most recent information regarding the paradigm of using multitarget compounds to treat both Alzheimer's and Parkinson's disease.
Collapse
|
17
|
Zhang Z, Guo J, Cheng M, Zhou W, Wan Y, Wang R, Fang Y, Jin Y, Liu J, Xie SS. Design, synthesis, and biological evaluation of novel xanthone-alkylbenzylamine hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 213:113154. [PMID: 33476932 DOI: 10.1016/j.ejmech.2021.113154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
In this study, a series of multifunctional hybrids against Alzheimer's disease were designed and obtained by conjugating the pharmacophores of xanthone and alkylbenzylamine through the alkyl linker. Biological activity results demonstrated that compound 4j was the most potent and balanced dual ChEs inhibitor with IC50 values 0.85 μM and 0.59 μM for eeAChE and eqBuChE, respectively. Kinetic analysis and docking study indicated that compound 4j was a mixed-type inhibitor for both AChE and BuChE. Additionally, it exhibited good abilities to penetrate BBB, scavenge free radicals (4.6 trolox equivalent) and selectively chelate with Cu2+ and Al3+ at a 1:1.4 ligand/metal molar ratio. Importantly, after assessments of cytotoxic and acute toxicity, we found compound 4j could improve memory function of scopolamine-induced amnesia mice. Hence, the compound 4j can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Zhipeng Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Weixin Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China.
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China.
| |
Collapse
|