1
|
Chandal N, Kalia R, Dey A, Tambat R, Mahey N, Jachak S, Nandanwar H. Synthetic indole derivatives as an antibacterial agent inhibiting respiratory metabolism of multidrug-resistant gram-positive bacteria. Commun Biol 2024; 7:1489. [PMID: 39533040 PMCID: PMC11557839 DOI: 10.1038/s42003-024-06996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The survival of modern medicine depends heavily on the effective prevention and treatment of bacterial infections, are threatened by antibacterial resistance. The increasing use of antibiotics and lack of stewardship have led to an increase in antibiotic-resistant pathogens, so the growing issue of resistance can be resolved by emphasizing chemically synthesized antibiotics. This study discovered SMJ-2, a synthetic indole derivative, is effective against all multidrug-resistant gram-positive bacteria. SMJ-2 has multiple targets of action, but the primary mechanism inhibits respiratory metabolism and membrane potential disruption. SMJ-2 was discovered to interfere with the mevalonate pathway, ultimately preventing the synthesis of farnesyl diphosphate, a precursor to the antioxidant staphyloxanthin, eventually releasing reactive oxygen species, and leading phagocytic cells to destroy pathogens. Additionally, no discernible biochemical and histopathological alterations were found in the mouse acute toxicity model. This study emphasizes mechanistic insights into SMJ-2 as a potential antibacterial with an unusual method of action.
Collapse
Affiliation(s)
- Nishtha Chandal
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu Kalia
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Akash Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Rushikesh Tambat
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Nisha Mahey
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sanjay Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Lu G, Zou Z, Xin M, Meng Y, Cheng Z, Du Z, Gu J, Zhang X, Zou Y. Carbamoylation at C-8 position of natural 3-arylcoumarin scaffold for the discovery of novel PARP-1 inhibitors with potent anticancer activity. Eur J Med Chem 2024; 277:116726. [PMID: 39116535 DOI: 10.1016/j.ejmech.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 μM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.
Collapse
Affiliation(s)
- Guoqing Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhiru Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixiu Xin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingfen Meng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhuo Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhibo Du
- Zhongshan Wanhan Pharmaceuticals Co., Ltd., Zhongshan, 528451, PR China
| | - Jiayi Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuejing Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yong Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Pakeeraiah K, Swain PP, Sahoo A, Panda PK, Mahapatra M, Mal S, Sahoo RK, Sahu PK, Paidesetty SK. Multimodal antibacterial potency of newly designed and synthesized Schiff's/Mannich based coumarin derivatives: potential inhibitors of bacterial DNA gyrase and biofilm production. RSC Adv 2024; 14:31633-31647. [PMID: 39376521 PMCID: PMC11457008 DOI: 10.1039/d4ra05756b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The briskened urge to develop potential antibacterial candidates against multidrug-resistant pathogens has motivated the present research study. Herein, newly synthesized coumarin derivatives with azomethine and amino-methylated as the functional groups have been focused on their antibacterial efficacy. The study proposed two distinct series: 3-acetyl substituted coumarin derivatives, followed by the Schiff base approach (5a-5i), and formaldehyde-secondary cyclic amine-based derivatives (7a-7g), using the Mannich base approach, further the compounds have been confirmed through various spectral studies. Further, target-specific binding affinity has been affirmed via in silico study. In vitro antibacterial study suggested compounds 5d and 5f to be most effective against S. aureus and multidrug-resistant K. pneumoniae, with MIC values of 8 and 16 μg mL-1. Among them, the compounds 5d and 5f showed excellent binding scores against different bacterial gyrase compared to the standard novobiocin. Based on RMRS, RMSF, Rg, and H-bond plots, MD simulation study at 100 ns also suggested better stability of 5d inside gyraseB of E. coli than the complex of E. coli-GyrB-novobiocin. The toxicity and pharmacokinetic profiles showed favorable drug-likeness. Overall, systematic in vitro and in silico assessment suggested that multimodal antibacterial derivatives 5d and 5f strongly inhibit both bacterial DNA gyrase and biofilm formation of drug-resistant pathogens, suggesting their potency in mainstream antibacterial therapy.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pragyan Paramita Swain
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Alaka Sahoo
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Research and Development Division, Salixiras Research Private Limited Bhubaneswar Odisha India
| | - Preetesh Kumar Panda
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| |
Collapse
|
4
|
Fulgencio S, Scaccaglia M, Frei A. Exploration of Rhenium Bisquinoline Tricarbonyl Complexes for their Antibacterial Properties. Chembiochem 2024; 25:e202400435. [PMID: 38785033 DOI: 10.1002/cbic.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Metal complexes have emerged as a promising source for novel classes of antibacterial agents to combat the rise of antimicrobial resistance around the world. In the exploration of the transition metal chemical space for novel metalloantibiotics, the rhenium tricarbonyl moiety has been identified as a promising scaffold. Here we have prepared eight novel rhenium bisquinoline tricarbonyl complexes and explored their antibacterial properties. Significant activity against both Gram-positive and Gram-negative bacteria was observed. However, all complexes also showed significant toxicity against human cells, putting into question the prospects of this specific rhenium compound class as metalloantibiotics. To better understand their biological effects, we conduct the first mode of action studies on rhenium bisquinoline complexes and show that they are able to form pores through bacterial membranes. Their straight-forward synthesis and tuneability suggests that further optimisation of this compound class could lead to compounds with enhanced bacterial specificity.
Collapse
Affiliation(s)
- Sofia Fulgencio
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Mirco Scaccaglia
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| |
Collapse
|
5
|
Romão CC, Mendes SS, Rebelo C, Carvalho SM, Saraiva LM. Antimicrobial and anticancer properties of carbon monoxide releasing molecules of the fac-[Re(CO) 3(N-N)L] + family. Dalton Trans 2024; 53:11009-11020. [PMID: 38874948 DOI: 10.1039/d4dt00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The toxicity profile of fac-[Re(CO)3(N-N)L]+ complexes against microbial and tumoral cells has been extensively studied, primarily focusing on modifications to the bidentate diimine (N-N) ligand. However, less attention has been paid to modifications of the axial ligand L, which is perpendicular to the Re-N-N plane. This study reveals that the high toxicity of the fac-[Re(CO)3(bpy)(Ctz)]+ complex may be attributed to the structural effect of the trityl (CPh3) group present in clotrimazole, as removal of phenyl rings causes a significant decrease in the activity against Staphylococcus aureus (S. aureus). Moreover, substitution of the 1-tritylimidazole ligand by the structurally related ligands PPh3 and PCy3 maintains similarly high activity levels. These findings contribute to understanding the interactions of toxic complexes with bacterial membranes, suggesting that the ligand structures play a crucial role in inhibiting cell wall synthesis processes, potentially including Lipid II synthesis. Compounds with Ph3E (E = C-imidazole; P) groups also showed to be 10 times more toxic than cisplatin against three mammalian cell lines (IC50: 2-4 μM). In contrast, the analogue 1-benzylimidazole and 1-tert-butylimidazole derivatives were as toxic as cisplatin. We observed that the decomposition of the [Re(I)(CO)3] fragment inside mammalian cell lines liberates CO, which is expected to exert biological effects. Therefore, compounds of this family possessing the structural motif Ph3E seem to combine high antimicrobial and antitumoral activities, the latter being much higher than that of cisplatin.
Collapse
Affiliation(s)
- Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Cátia Rebelo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
6
|
Qi LX, Wang XT, Huang JP, Yue TY, Lu YS, San DM, Xu YX, Han YT, Guo XY, Xie WD, Zhou YX. Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:5255. [PMID: 38791295 PMCID: PMC11120860 DOI: 10.3390/ijms25105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 μg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ling-Xiao Qi
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Jin-Ping Huang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Ting-Yan Yue
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yun-Shu Lu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yu-Xun Xu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Ya-Tong Han
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xiang-Yi Guo
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Wei-Dong Xie
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| |
Collapse
|
7
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Scaccaglia M, Birbaumer MP, Pinelli S, Pelosi G, Frei A. Discovery of antibacterial manganese(i) tricarbonyl complexes through combinatorial chemistry. Chem Sci 2024; 15:3907-3919. [PMID: 38487233 PMCID: PMC10935722 DOI: 10.1039/d3sc05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
The continuous rise of antimicrobial resistance is a serious threat to human health and already causing hundreds of thousands of deaths each year. While natural products and synthetic organic small molecules have provided the majority of our current antibiotic arsenal, they are falling short in providing new drugs with novel modes of action able to treat multidrug resistant bacteria. Metal complexes have recently shown promising results as antimicrobial agents, but the number of studied compounds is still vanishingly small, making it difficult to identify promising compound classes or elucidate structure-activity relationships. To accelerate the pace of discovery we have applied a combinatorial chemistry approach to the synthesis of metalloantibiotics. Utilizing robust Schiff-base chemistry and combining 7 picolinaldehydes with 10 aniline derivatives, and 6 axial ligands, either imidazole/pyridine-based or solvent, we have prepared a library of 420 novel manganese tricarbonyl complexes. All compounds were evaluated for their antibacterial properties and 10 lead compounds were identified, re-synthesised and fully characterised. All 10 compounds showed high and broad activity against Gram-positive bacteria. The best manganese complex displayed low toxicity against human cells with a therapeutic index of >100. In initial mode of action studies, we show that it targets the bacterial membrane without inducing pore formation or depolarisation. Instead, it releases its carbon monoxide ligands around the membrane and inhibits the bacterial respiratory chain. This work demonstrates that large numbers of metal complexes can be accessed through combinatorial synthesis and evaluated for their antibacterial potential, allowing for the rapid identification of promising metalloantibiotic lead compounds.
Collapse
Affiliation(s)
- Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Michael P Birbaumer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma Via Gramsci 14 43126 Parma Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
9
|
Sifana NO, Melyna, Septiani NLW, Septama AW, Manurung RV, Yuliarto B, Jenie SNA. Detection of Methicillin-Resistant Staphylococcus Aureus using vancomycin conjugated silica-based fluorescent nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123643. [PMID: 37979538 DOI: 10.1016/j.saa.2023.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Methicillin-Resistant Staphylococcus Aureus (MRSA) is a worldwide major pathogenic bacteria that has emerged over the past three decades as the leading cause of nosocomial and community-acquired infections. Biosensors can provide rapid, sensitive, and selective detection of the presence and number of bacteria in various environments. Herein, a novel fluorescence nanoprobe was designed as a biosensor for MRSA detection using dye-incorporated silica nanoparticles (FSiNP). Based on the results of specific surface area analysis using the Brauner Emmett-Teller (BET) method, the surface area of the nanoparticles was obtained at 377.127 m2/g, and the X-ray diffraction (XRD) analysis confirmed that it was in the amorphous phase. Vancomycin, as the bioreceptor, was immobilized on the silica surface through a hydrosilylation reaction, generating the biosensing platform FSiNP-Van. Each modification step was corroborated by the Fourier Transform Infra-Red (FTIR) spectroscopy. The sensing principle was based on the fluorescence-quenching mechanism of FSiNP-Van at 515 nm obtaining a rapid response time of 20 min. The FSiNP-Van nanoprobe provided a wide linear concentration range of 10-106 CFU/mL with a limit of MRSA detection calculated at 1 CFU/mL. The fluorescent nanoprobe demonstrated here is expected to find applications in point-of-care (POC) diagnostics to detect the presence of MRSA bacteria.
Collapse
Affiliation(s)
- Nining Oktafina Sifana
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia
| | - Melyna
- Master Program of Analytical Chemistry, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang, Banten 15134, Indonesia
| | - Robeth Viktoria Manurung
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Electronics, National Research and Innovation Agency (BRIN), Komplek LIPI Gd. 20, Jl. Cisitu Lama, Dago, Kecamatan Coblong, Bandung, Jawa Barat 40135, Indonesia
| | - Brian Yuliarto
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia.
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia.
| |
Collapse
|
10
|
de Araújo-Neto JB, Oliveira-Tintino CDDM, de Araújo GA, Alves DS, Ribeiro FR, Brancaglion GA, Carvalho DT, Lima CMG, Mohammed Ali HSH, Rather IA, Wani MY, Emran TB, Coutinho HDM, Balbino VDQ, Tintino SR. 3-Substituted Coumarins Inhibit NorA and MepA Efflux Pumps of Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1739. [PMID: 38136773 PMCID: PMC10741188 DOI: 10.3390/antibiotics12121739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Coumarins are compounds with scientifically proven antibacterial properties, and modifications to the chemical structure are known to improve their effects. This information is even more relevant with the unbridled advances of antibiotic resistance, where Staphylococcus aureus and its efflux pumps play a prominent role. The study's objective was to evaluate the potential of synthetic coumarins with different substitutions in the C-3 position as possible inhibitors of the NorA and MepA efflux pumps of S. aureus. For this evaluation, the following steps took place: (i) the determination of the minimum inhibitory concentration (MIC); (ii) the association of coumarins with fluoroquinolones and ethidium bromide (EtBr); (iii) the assessment of the effect on EtBr fluorescence emission; (iv) molecular docking; and (v) an analysis of the effect on membrane permeability. Coumarins reduced the MICs of fluoroquinolones and EtBr between 50% and 87.5%. Coumarin C1 increased EtBr fluorescence emission between 20 and 40% by reinforcing the evidence of efflux inhibition. The molecular docking results demonstrated that coumarins have an affinity with efflux pumps and establish mainly hydrogen bonds and hydrophobic interactions. Furthermore, C1 did not change the permeability of the membrane. Therefore, we conclude that these 3-substituted coumarins act as inhibitors of the NorA and MepA efflux pumps of S. aureus.
Collapse
Affiliation(s)
- José B. de Araújo-Neto
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Cícera D. de M. Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Gildênia A. de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Daniel S. Alves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Fernanda R. Ribeiro
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Guilherme A. Brancaglion
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Diogo T. Carvalho
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | | | - Hani S. H. Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Mohmmad Y. Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Talha B. Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Valdir de Q. Balbino
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Saulo R. Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| |
Collapse
|
11
|
Waters JE, Stevens-Cullinane L, Siebenmann L, Hess J. Recent advances in the development of metal complexes as antibacterial agents with metal-specific modes of action. Curr Opin Microbiol 2023; 75:102347. [PMID: 37467616 DOI: 10.1016/j.mib.2023.102347] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
The mounting burden of antimicrobial resistance (AMR) is one of the most concerning threats to public health worldwide. With low economic incentives and a dwindling supply of new drugs in clinical pipelines, more innovative approaches to novel drug design and development are desperately required. Metal-based compounds are rapidly emerging as an alternative to organic drugs, as they have the ability to kill pathogens via metal-specific modes of action. We herein review recent advances in metal-based antibacterial agents, including metal complexes, metal ions and catalytic metallodrugs. The review concludes with a perspective on the rational design of metal-based antibiotics, and how we can exploit their unique properties to tackle AMR.
Collapse
Affiliation(s)
- Jessica E Waters
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Lars Stevens-Cullinane
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Lukas Siebenmann
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Jeannine Hess
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom.
| |
Collapse
|
12
|
S Mendes S, Sorg M, Luís CM, Fontinha D, Francisco D, Moita D, C Romão C, G Pinho M, Pimentel C, Prudêncio M, M Saraiva L. Conjugated carbon monoxide-releasing molecules have broad-spectrum antimicrobial activity. Future Med Chem 2023; 15:1037-1048. [PMID: 37458074 DOI: 10.4155/fmc-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Aim: To test the antimicrobial effect of carbon monoxide-releasing molecules (CORMs) conjugated with azoles on different microorganisms. Methods & results: We used broth microdilution, checkerboard and cytotoxicity assays, as well as imaging, fluorescence and bioluminescence experiments to study [Re(CO)3(2,2'-bipyridyl)(Ctz)]+ (also known as ReBpyCtz). ReBpyCtz exhibits a low minimum inhibitory concentration value, increases the intracellular formation of reactive oxygen species and causes significant alterations on Staphylococcus aureus's membrane. ReBpyCtz is active against fungi, having a more prolonged fungicidal effect on Candida glabrata than clotrimazole and is selectively active on blood-stage malaria parasites, at a concentration that is not toxic to kidney epithelial cells. Conclusion: Conjugated CORMs have the potential to be active against different types of pathogens, thus constituting a promising class of broad-spectrum antimicrobials.
Collapse
Affiliation(s)
- Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Cláudia Malta Luís
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Denise Francisco
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
13
|
Qi X, Shen N, Al Othman A, Mezentsev A, Permyakova A, Yu Z, Lepoitevin M, Serre C, Durymanov M. Metal-Organic Framework-Based Nanomedicines for the Treatment of Intracellular Bacterial Infections. Pharmaceutics 2023; 15:1521. [PMID: 37242762 PMCID: PMC10220673 DOI: 10.3390/pharmaceutics15051521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF's pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.
Collapse
Affiliation(s)
- Xiaoli Qi
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ningfei Shen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Zhihao Yu
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mathilde Lepoitevin
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Christian Serre
- Institute of Porous Materials from Paris (IMAP), Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75006 Paris, France
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
14
|
Zhu M, Sun J, Wu Y, Ma X, Lei F, Li Q, Jiang C, Li F. Synthesis and anti-proliferative activity of dehydroabietinol derivatives bearing a triazole moiety. RSC Med Chem 2023; 14:680-691. [PMID: 37122546 PMCID: PMC10131649 DOI: 10.1039/d2md00427e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
In search of more efficacious antitumor agents, a series of novel dehydroabietinol derivatives containing a triazole moiety was synthesized, and evaluated for cytotoxicity against four human cancer cell lines. Many exhibited superior cytotoxic profiles compared to the parent molecule, dehydroabietic acid. In particular, compounds 5g, 5i and 5j exhibited promising cytotoxicity with IC50 values ranging from 4.84 to 9.62 μM against all the test cell lines. Cell clone formation and migration tests of compound 5g showed that it not only effectively inhibited the formation of MGC-803 cell colonies but also inhibited the MGC-803 cell migration and invasion. Additionally, the preliminary pharmacological mechanism indicated compound 5g induced apoptosis, arrested the mitotic process at the G0/G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased the intracellular ROS and Ca2+ levels.
Collapse
Affiliation(s)
- Mingjun Zhu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Jinchuan Sun
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University Nanning 530006 China
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Caina Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
15
|
Cortat Y, Nedyalkova M, Schindler K, Kadakia P, Demirci G, Nasiri Sovari S, Crochet A, Salentinig S, Lattuada M, Steiner OM, Zobi F. Computer-Aided Drug Design and Synthesis of Rhenium Clotrimazole Antimicrobial Agents. Antibiotics (Basel) 2023; 12:antibiotics12030619. [PMID: 36978486 PMCID: PMC10044843 DOI: 10.3390/antibiotics12030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of fac-Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand. The prepared molecules were selected following a pre-screening in silico analysis according to modification of the 2,2'-bipyridine (bpy) ligand in the coordination sphere of the complexes. CADD pointed to chiral 4,5-pinene and 5,6-pinene bipyridine derivatives as the most promising candidates. The corresponding complexes were synthesized, tested toward methicillin-sensitive and -resistant S. aureus strains, and the obtained results evaluated with regard to their binding affinity with a homology model of the S. aureus MurG enzyme. Overall, the title species revealed very similar minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as those of the reference compound used as the scaffold in our approach. The obtained docking scores advocate the viability of 'scaffold-hopping' for de novo design, a potential strategy for more cost- and time-efficient discovery of new antibiotics.
Collapse
Affiliation(s)
- Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Miroslava Nedyalkova
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Parth Kadakia
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Gozde Demirci
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Olimpia Mamula Steiner
- Haute école d'Ingénierie et d'Architecture, University of Applied Sciences Western Switzerland HES-SO, Pérolles 80, 1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Matlou ML, Malan FP, Nkadimeng S, McGaw L, Tembu VJ, Manicum ALE. Exploring the in vitro anticancer activities of Re(I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: a structural study. J Biol Inorg Chem 2023; 28:29-41. [PMID: 36463538 DOI: 10.1007/s00775-022-01971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
Fifteen rhenium(I) tricarbonyl complexes of the form fac-[Re(N,O')(CO)3(X)], where N,O'-bidentate ligand = 2-picolinic acid (Pico); 3,5-difluoropyridine-2-carboxylic acid (Dfpc); 3-trifluoromethyl-pyridine-2-carboxylic acid (Tfpc) and X = H2O; pyrazole (Pz); pyridine (Py); imidazole (Im); and methanol (CH3OH) were synthesized using the '2 + 1' mixed ligand approach with an average yield of 84%. The complexes were characterized using the following spectroscopic techniques: IR, 1H and 13C NMR, UV/Vis, and single-crystal X-ray diffraction. The effect of the fluorine atoms on the backbone of the N,O'-bidentate ligand was investigated and a trend was noticed in the carbonyl stretching frequencies: with Pico < Tfpc < Dfpc. The in vitro biological screening on Vero (healthy mammalian), HeLa (cervical carcinoma) and A549 (lung cancer) cells revealed one toxic complex, fac-[Re(Pico)(CO)3(H2O)], with respective LC50 values of 9.0 ± 0.9, 15.8 ± 4.9 (SI = 0.570) and 20.9 ± 0.8 (SI = 0.430) μg/mL. As a result, it can be used as a positive control drug of toxicity.
Collapse
Affiliation(s)
- Mabu L Matlou
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa
| | - Frederick P Malan
- Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0001, South Africa
| | - Sanah Nkadimeng
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida Campus, Florida, 1710, South Africa
| | - Lyndy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Vuyelwa J Tembu
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa
| | - Amanda-Lee E Manicum
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa.
| |
Collapse
|
18
|
Coumarin Triazoles as Potential Antimicrobial Agents. Antibiotics (Basel) 2023; 12:antibiotics12010160. [PMID: 36671361 PMCID: PMC9855047 DOI: 10.3390/antibiotics12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Currently, in hospitals and community health centers, microbial infections are highly common diseases and are a leading cause of death worldwide. Antibiotics are generally used to fight microbial infections; however, because of the abuse of antibiotics, microbes have become increasingly more resistant to most of them. Therefore, medicinal chemists are constantly searching for new or improved alternatives to combat microbial infections. Coumarin triazole derivatives displayed a variety of therapeutic applications, such as antimicrobial, antioxidant, and anticancer activities. This review summarizes the advances of coumarin triazole derivatives as potential antimicrobial agents covering articles published from 2006 to 2022.
Collapse
|
19
|
3-(3-Bromophenyl)-7-acetoxycoumarin. MOLBANK 2022. [DOI: 10.3390/m1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In natural product synthesis, the procurement of easily accessible starting materials is crucial. Chromenones and their subclass, coumarins, are a wide family of small, oxygen-containing aromatic heterocycles. Phenylcoumarins offer a particularly excellent starting point for a diverse chemical space of natural products, and thus are excellent staring materials for more complex natural products. Herein, we report an efficient synthesis of an easily accessible 3-phenylcoumarin bearing two orthogonally substitutable groups, bromine, and an acetyl-protected phenylic hydroxyl group.
Collapse
|
20
|
(E)-3-(2-(4-methylthiazol-2-yl)hydrazineylidene)chromane-2,4-dione. MOLBANK 2022. [DOI: 10.3390/m1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
(E)-3-(2-(4-methylthiazol-2-yl)hydrazineylidene)chromane-2,4-dione was synthesized for the first time and the compound was characterized by 1H and 13C spectroscopy, IR spectroscopy, and UV-Vis. The chemical structure and isomeric configuration of the molecule were confirmed by single-crystal X-ray diffraction.
Collapse
|
21
|
Xie J, Wang L, Zhang X, Li Y, Liao X, Yang C, Tang RY. Discovery of New Anti-MRSA Agents Based on Phenoxyethanol and Its Mechanism. ACS Infect Dis 2022; 8:2291-2306. [PMID: 36255441 DOI: 10.1021/acsinfecdis.2c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a severe threat to public health and safety. The discovery and development of novel anti-MRSA drugs with a new mode of action are a challenge. In this study, a class of novel aryloxyethyl propiolates and their homologues as anti-MRSA agents have been designed and synthesized based on phenoxyethanol, of which compound II-39 showed high inhibitory activity against MRSA with an MIC of 0.78 μg/mL and an MBC of 3.13 μg/mL, which was better than that of vancomycin. Compound II-39 could destroy the cell wall and cell membrane, inhibited the formation of a biofilm, and bound to the DNA of MRSA through the electrostatic and groove interaction. Proteomic and metabolomic studies revealed that compound II-39 affected multiple intracellular metabolic pathways of MRSA. Notably, compound II-39 could effectively inhibit the expression of CrtPQMN proteins and block the biosynthesis of virulence factor (staphyloxanthin). Thus, aryloxyethyl propiolates and their homologues are promising anti-MRSA agents with multiple targets.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Lijuan Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou510642, China
| | - Xin Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Caixin Yang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou510642, China.,Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
22
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
23
|
Kaul L, Abdo AI, Coenye T, Krom BP, Hoogenkamp MA, Zannettino ACW, Süss R, Richter K. The combination of diethyldithiocarbamate and copper ions is active against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro and in vivo. Front Microbiol 2022; 13:999893. [PMID: 36160243 PMCID: PMC9500474 DOI: 10.3389/fmicb.2022.999893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are associated with life-threatening infections. Despite the best medical care, these infections frequently occur due to antibiotic resistance and the formation of biofilms of these two bacteria (i.e., clusters of bacteria embedded in a matrix). As a consequence, there is an urgent need for effective anti-biofilm treatments. Here, we describe the antibacterial properties of a combination treatment of diethyldithiocarbamate (DDC) and copper ions (Cu2+) and their low toxicity in vitro and in vivo. The antibacterial activity of DDC and Cu2+ was assessed in vitro against both planktonic and biofilm cultures of S. aureus and S. epidermidis using viability assays, microscopy, and attachment assays. Cytotoxicity of DDC and Cu2+ (DDC-Cu2+) was determined using a human fibroblast cell line. In vivo antimicrobial activity and toxicity were monitored in Galleria mellonella larvae. DDC-Cu2+ concentrations of 8 μg/ml DDC and 32 μg/ml Cu2+ resulted in over 80% MRSA and S. epidermidis biofilm killing, showed synergistic and additive effects in both planktonic and biofilm cultures of S. aureus and S. epidermidis, and synergized multiple antibiotics. DDC-Cu2+ inhibited MRSA and S. epidermidis attachment and biofilm formation in the xCELLigence and Bioflux systems. In vitro and in vivo toxicity of DDC, Cu2+ and DDC-Cu2+ resulted in > 70% fibroblast viability and > 90% G. mellonella survival. Treatment with DDC-Cu2+ significantly increased the survival of infected larvae (87% survival of infected, treated larvae vs. 47% survival of infected, untreated larvae, p < 0.001). Therefore, DDC-Cu2+ is a promising new antimicrobial with activity against planktonic and biofilm cultures of S. epidermidis and S. aureus and low cytotoxicity in vitro. This gives us high confidence to progress to mammalian animal studies, testing the antimicrobial efficacy and safety of DDC-Cu2+.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Adrian I. Abdo
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel A. Hoogenkamp
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrew C. W. Zannettino
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Katharina Richter
- Richter Lab, Basil Hetzel Institute for Translational Health Research, Department of Surgery, University of Adelaide, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Katharina Richter,
| |
Collapse
|
24
|
Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. Pharmaceuticals (Basel) 2022; 15:ph15091107. [PMID: 36145328 PMCID: PMC9501577 DOI: 10.3390/ph15091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
Collapse
|
25
|
Üstün E, Şakar D, Çol Ayvaz M, Sönmez Çelebi M, Ertürk Ö. CO-Releasing, Antioxidant, Antibacterial, Zeta Potential, Theoretical, and Electrochemical Analysis of [Mn(CO)3(bpy)L]OTf Type Complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
27
|
Cooper SM, Siakalli C, White AJP, Frei A, Miller PW, Long NJ. Synthesis and anti-microbial activity of a new series of bis(diphosphine) rhenium(V) dioxo complexes. Dalton Trans 2022; 51:12791-12795. [PMID: 35920379 DOI: 10.1039/d2dt02157a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium-based metallodrugs have recently been highlighted as promising candidates for new antibiotics to combat multi-drug resistant (MDR) pathogens. A new class of rhenium(V) dioxo complexes were prepared from readily accessible diphosphine ligands, and have been shown to possess potent activity against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) alongside low human cell toxicity.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Christina Siakalli
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Angelo Frei
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
28
|
Mendes SS, Marques J, Mesterházy E, Straetener J, Arts M, Pissarro T, Reginold J, Berscheid A, Bornikoel J, Kluj RM, Mayer C, Oesterhelt F, Friães S, Royo B, Schneider T, Brötz-Oesterhelt H, Romão CC, Saraiva LM. Synergetic Antimicrobial Activity and Mechanism of Clotrimazole-Linked CO-Releasing Molecules. ACS BIO & MED CHEM AU 2022; 2:419-436. [PMID: 35996473 PMCID: PMC9389576 DOI: 10.1021/acsbiomedchemau.2c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Several metal-based
carbon monoxide-releasing molecules (CORMs)
are active CO donors with established antibacterial activity. Among
them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2′-bipyridyl)(azole)]+ display important synergies
against several microbes. We carried out a structure–activity
relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates
with varying metal and ligands. We concluded that the nature of the
bidentate ligand strongly influences the bactericidal activity, with
the substitution of bipyridyl by small bicyclic ligands leading to
highly active clotrimazole conjugates. On the contrary, the metal
did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts:
while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity
and clotrimazole shows only moderate minimal inhibitory concentrations,
the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order
of magnitude higher than that of clotrimazole, and the spectrum of
bacterial target species includes Gram-positive and Gram-negative
bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a
general impact on the membrane topology, has inhibitory effects on
peptidoglycan biosynthesis, and affects energy functions. The mechanism
of action of this kind of CORM conjugates involves a sequence of events
initiated by membrane insertion, followed by membrane disorganization,
inhibition of peptidoglycan synthesis, CO release, and break down
of the membrane potential. These results suggest that conjugation
of CORMs to known antibiotics may produce useful structures with synergistic
effects that increase the conjugate’s activity relative to
that of the antibiotic alone.
Collapse
Affiliation(s)
- Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Joana Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Edit Mesterházy
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Teresa Pissarro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jorgina Reginold
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Robert M Kluj
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Christoph Mayer
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Sofia Friães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Beatriz Royo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
29
|
Du T, Cao J, Xiao Z, Liu J, Wei L, Li C, Jiao J, Song Z, Liu J, Du X, Wang S. Van-mediated self-aggregating photothermal agents combined with multifunctional magnetic nickel oxide nanoparticles for precise elimination of bacterial infections. J Nanobiotechnology 2022; 20:325. [PMID: 35836225 PMCID: PMC9281033 DOI: 10.1186/s12951-022-01535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Building a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for precise bacterial elimination. Herein, a nanocomposite NiO NPs@AuNPs@Van (NAV) for selective MRSA removal was constructed by electrostatic self-assembly of highly photothermal magnetic NiO NPs and vancomycin (Van)-modified gold nanoparticles (AuNPs). In the presence of MRSA and under NIR irradiation, Van-mediated AuNPs can self-aggregate on MRSA surface, generating photothermal effect in situ and killing 99.6% MRSA in conjunction with magnetic NiO NPs. Additionally, the photothermal efficiency can be improved by magnetic enrichment due to the excellent magnetism of NAV, thereby enhancing the bactericidal effect at a lower experimental dose. In vitro antibacterial experiments and full-thickness skin wound healing test demonstrated that this combination therapy could effectively accelerate wound healing in MRSA-infected mice, increase collagen coverage, reduce IL-6 and TNF-α content, and upregulate VEGF expression. Biological safety experiments confirmed that NAV has good biocompatibility in vivo and in vitro. Overall, this work reveals a new type of nanocomposite with enhanced photothermal antibacterial activity as a potential nano-antibacterial agent for treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiangli Cao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lifei Wei
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chunqiao Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
30
|
Djokic L, Stankovic N, Galic I, Moric I, Radakovic N, Šegan S, Pavic A, Senerovic L. Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo. Front Microbiol 2022; 13:906312. [PMID: 35722344 PMCID: PMC9201388 DOI: 10.3389/fmicb.2022.906312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 μg mL-1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 μg mL-1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 μg mL-1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.
Collapse
Affiliation(s)
- Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Galic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Moric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Radakovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
31
|
Natarajan P, Priya, Chuskit D. Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2 H-chromen-2-ones from aryl alkynoate esters and nitrite. Org Biomol Chem 2022; 20:4616-4624. [PMID: 35608321 DOI: 10.1039/d2ob00827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 3-nitro-4-aryl-2H-chromen-2-ones in good yields have directly been obtained from aryl alkynoate esters and nitrite by employing a mixture of K2S2O8-nitrogen doped graphene as an oxidant in a watery medium at room temperature. A plausible mechanism for the reaction is also reported. It reveals that the product is formed through a cascade of nitro radical addition, spirocyclization, and ester migration. When compared to known methods for the synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters, this protocol is environmentally friendly, sustainable, practical and energy efficient and does not use a harmful nitro source. Furthermore, nitrogen doped graphene used in this approach can be easily recovered and reused at least four times without losing its activity.
Collapse
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| |
Collapse
|
32
|
Schutte-Smith M, Visser HG. Crystal and molecular structures of fac-[Re(Bid)(PPh 3)(CO) 3] [Bid is tropolone (TropH) and tribromotropolone (TropBr 3H)]. Acta Crystallogr C Struct Chem 2022; 78:351-359. [PMID: 35662135 PMCID: PMC9167630 DOI: 10.1107/s205322962200465x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Two rhenium complexes, namely, fac-tricarbonyl(triphenylphosphane-κP)(tropolonato-κ2O,O')rhenium(I), [Re(C7H5O2)(C18H15P)(CO)3] or fac-[Re(Trop)(PPh3)(CO)3] (1), and fac-tricarbonyl(3,5,7-tribromotropolonato-κ2O,O')(triphenylphosphane-κP)rhenium(I), [Re(C7H2Br3O2)(C18H15P)(CO)3] or fac-[Re(TropBr3)(PPh3)(CO)3] (2) (TropH is tropolone and and TropBr3H is tribromotropolone), were synthesized and their crystal and molecular structures confirmed by single-crystal X-ray diffraction. Both crystallized in the space group P-1 and display an array of inter- and intramolecular interactions which were confirmed by solid-state 13C NMR spectroscopy using cross polarization magic angle spinning (CPMAS) techniques, as well as Hirshfeld surface analysis. The slightly longer Re-P distance of 1 [2.4987 (5) versus 2.4799 (11) Å for 1 and 2, respectively] suggests stronger back donation from the carbonyl groups in the former case, possibly due to the stronger electron-donating ability of the unsubstituted tropolonate ring system. However, this is not supported in the Re-CO bond distances of 1 and 2.
Collapse
Affiliation(s)
- Marietjie Schutte-Smith
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa
| | - Hendrik Gideon Visser
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa
| |
Collapse
|
33
|
Rees KC, Dou Z, Whitehead DC. Oxadiazon Derivatives Elicit Potent Intracellular Growth Inhibition against Toxoplasma gondii by Disrupting Heme Biosynthesis. ACS Infect Dis 2022; 8:911-917. [PMID: 35363476 PMCID: PMC9106912 DOI: 10.1021/acsinfecdis.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections of Toxoplasma gondii can cause severe and sometimes fatal diseases in immunocompromised individuals. The de novo heme biosynthesis pathway is required for intracellular growth and pathogenesis, making it an appealing therapeutic target. We synthesized a small library of derivatives of the herbicide oxadiazon, a known inhibitor of the penultimate reaction within the heme biosynthesis pathway in plants, catalyzed by protoporphyrinogen oxidase (PPO). Seven of the 18 analogs exhibit potent intracellular growth inhibition of wild-type T. gondii (IC50 = 1 to 2.4 μM). An assay of the compounds against Toxoplasma PPO knockout and complementation strains confirmed the mode of action to be due to the potent inhibition of PPO. The most potent compounds have no detectable cytotoxicity against human foreskin fibroblast cells up to 100 μM. This study suggests that oxadiazon derivatives may represent a new molecular scaffold for the effective treatment of T. gondii infections.
Collapse
Affiliation(s)
- Kerrick C. Rees
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhicheng Dou
- Department of Biological Sciences and Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina 29634, United States
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
34
|
Zhang JJ, Qu LB, Bi YF, Pan CX, Yang R, Zeng HJ. Antibacterial activity and mechanism of chloroform fraction from aqueous extract of mugwort leaves (Artemisia argyi L.) against Staphylococcus aureus. Lett Appl Microbiol 2022; 74:893-900. [PMID: 35231137 DOI: 10.1111/lam.13684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 01/04/2023]
Abstract
In this work, the antibacterial activity and mechanism of chloroform fraction obtained from aqueous extract of mugwort leaves against Staphylococcus aureus were investigated. The extract showed obvious antibacterial activity against S. aureus which the minimum inhibitory concentration and minimum bactericidal concentration were determined to be 3·0 and 6·0 mg ml-1 respectively. The mechanism study suggested that the extract could destroy the integrity of the S. aureus cell walls and increase the permeability of cell membrane in a certain concentration, but it could not kill S. aureus in a short time. Instead, the extract could make bacteria in a state of apoptosis for a long time, interfere with the normal physiological metabolism of bacteria, and eventually make bacteria die, which was confirm by scanning electronic microscope.
Collapse
Affiliation(s)
- J-J Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - L-B Qu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Y-F Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - C-X Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - R Yang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - H-J Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
35
|
Li D, Gao S, Ye K, Wang Q, Xie C, Wu W, Feng L, Jiang L, Zheng K, Pang Q. Membrane-active La(III) and Ce(III) complexes as potent antibacterial agents: synthesis, characterization, in vitro, in silico, and in vivo studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
37
|
Nolan VC, Rafols L, Harrison J, Soldevila-Barreda JJ, Crosatti M, Garton NJ, Wegrzyn M, Timms DL, Seaton CC, Sendron H, Azmanova M, Barry NP, Pitto-Barry A, Cox JA. Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100099. [PMID: 35059676 PMCID: PMC8760505 DOI: 10.1016/j.crmicr.2021.100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
A new family of indole-containing arene ruthenium organometallic compounds are active against several bacterial species and drug resistant strains Bactericidal activity observed against various Gram negative, Gram positive and acid-fast bacteria, demonstrating broad-spectrum inhibitory activity Compound series exhibits low toxicity against human cells Shows considerable promise as next generation antibiotics
Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.
Collapse
|
38
|
Sovari SN, Radakovic N, Roch P, Crochet A, Pavic A, Zobi F. Combatting AMR: A molecular approach to the discovery of potent and non-toxic rhenium complexes active against C. albicans-MRSA co-infection. Eur J Med Chem 2021; 226:113858. [PMID: 34562853 DOI: 10.1016/j.ejmech.2021.113858] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Antimicrobial resistance (AMR) is a major emerging threat to public health, causing serious issues in the successful prevention and treatment of persistent diseases. While the problem escalates, lack of financial incentive has lead major pharmaceutical companies to interrupt their antibiotic drug discovery programs. The World Health Organisation (WHO) has called for novel solutions outside the traditional development pathway, with emphasis on new classes of active compounds with non-classical mechanisms of action. Metal complexes are an untapped source of antibiotic potential owing to unique modes of action and a wider range of three-dimensional geometries as compared to purely organic compounds. In this study, we present the antimicrobial and antifungal efficacy of a family of rhenium tricarbonyl diimine complexes with varying ligands, charge and lipophilicity. Our study allowed the identification of potent and non-toxic complexes active in vivo against S. aureus infections at MIC doses as low as 300 ng/mL, as well as against C. albicans-MRSA mixed co-infection. The compounds are capable of suppressing the C. albicans morphogenetic yeast-to-hyphal transition, eradicating fungal-S. aureus co-infection, while showing no sign of cardio-, hepato-, hematotoxiciy or teratogenicity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Natasa Radakovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Paul Roch
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
39
|
Morales-Guevara R, Fuentes JA, Paez-Hernández D, Carreño A. The role of substituted pyridine Schiff bases as ancillary ligands in the optical properties of a new series of fac-rhenium(i) tricarbonyl complexes: a theoretical view. RSC Adv 2021; 11:37181-37193. [PMID: 35496390 PMCID: PMC9043815 DOI: 10.1039/d1ra05737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, luminescent Re(i) tricarbonyl complexes have been increasingly proposed as fluorophores suitable for fluorescence microscopy to visualize biological structures and cells. In this sense, incorporating an asymmetrical pyridine Schiff base (PSB) as the ancillary ligand strongly modifies the staining and luminescent properties of Re(i) tricarbonyl complexes. In this work, we analyzed two series of Re(i) tricarbonyl complexes with their respective PSB ligands: (1) fac-[Re(CO)3(2,2'-bpy)(PSB)]1+ and (2) fac-[Re(CO)3(4,4'-bis(ethoxycarbonyl)-2,2'-bpy)(PSB)]1+, where the PSB exhibits substitutions at positions 4 or 6 in the phenolic ring with methyl or halogen substituents. Thus, we performed computational relativistic DFT and TDDFT studies to determine their optical properties. The ten complexes analyzed showed absorption in the visible light range. Furthermore, our analyses, including zero-field splitting (ZFS), allowed us to determine that the low-lying excited state locates below the 3LLCT states. Interestingly, seven of the ten analyzed complexes, whose corresponding PSB harbors an intramolecular hydrogen bond (IHB), exhibited luminescent emission that could be suitable for biological purposes: large Stokes shift, emission in the range 600-700 nm and τ in the order of 10-2 to 10-3 s. Conversely, the three complexes lacking the IHB due to two halogen substituents in the corresponding PSB showed a predicted emission with the lowest triplet excited state energy entering the NIR region. The main differences in the complexes' photophysical behavior have been explained by the energy gap law and time-resolved luminescence. These results emphasize the importance of choosing suitable substituents at the 4 and 6 positions in the phenolic ring of the PSB, which determine the presence of the IHB since they modulate the luminescence properties of the Re(i) core. Therefore, this study could predict Re(i) tricarbonyl complexes' properties, considering the desired emission features for biological and other applications.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello República 330 Santiago Chile
| | - Dayán Paez-Hernández
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Alexander Carreño
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| |
Collapse
|
40
|
Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a Privileged Scaffold in Medicinal Chemistry: The Landmarks of the Past Decade. Molecules 2021; 26:6755. [PMID: 34771164 PMCID: PMC8587835 DOI: 10.3390/molecules26216755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.
Collapse
Affiliation(s)
- Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
41
|
Frei A, Ramu S, Lowe GJ, Dinh H, Semenec L, Elliott AG, Zuegg J, Deckers A, Jung N, Bräse S, Cain AK, Blaskovich MAT. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021; 16:3165-3171. [PMID: 34018686 PMCID: PMC8596843 DOI: 10.1002/cmdc.202100157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2 (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Soumya Ramu
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Anke Deckers
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Nicole Jung
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| |
Collapse
|
42
|
Nasiri Sovari S, Kolly I, Schindler K, Cortat Y, Liu SC, Crochet A, Pavic A, Zobi F. Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. Molecules 2021; 26:5302. [PMID: 34500734 PMCID: PMC8434269 DOI: 10.3390/molecules26175302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Isabelle Kolly
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Shing-Chi Liu
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| |
Collapse
|
43
|
Coumarins as Tool Compounds to Aid the Discovery of Selective Function Modulators of Steroid Hormone Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175142. [PMID: 34500576 PMCID: PMC8433903 DOI: 10.3390/molecules26175142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.
Collapse
|
44
|
Rasheed S, Fries F, Müller R, Herrmann J. Zebrafish: An Attractive Model to Study Staphylococcus aureus Infection and Its Use as a Drug Discovery Tool. Pharmaceuticals (Basel) 2021; 14:594. [PMID: 34205723 PMCID: PMC8235121 DOI: 10.3390/ph14060594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Non-mammalian in vivo disease models are particularly popular in early drug discovery. Zebrafish (Danio rerio) is an attractive vertebrate model, the success of which is driven by several advantages, such as the optical transparency of larvae, the small and completely sequenced genome, the small size of embryos and larvae enabling high-throughput screening, and low costs. In this review, we highlight zebrafish models of Staphyloccoccus aureus infection, which are used in drug discovery and for studying disease pathogenesis and virulence. Further, these infection models are discussed in the context of other relevant zebrafish models for pharmacological and toxicological studies as part of early drug profiling. In addition, we examine key differences to commonly applied models of S.aureus infection based on invertebrate organisms, and we compare their frequency of use in academic research covering the period of January 2011 to January 2021.
Collapse
Affiliation(s)
- Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
45
|
Huang SY, Wang X, Shen DY, Chen F, Zhang GY, Zhang Z, Li K, Jin Z, Du D, Tang YZ. Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg Med Chem 2021; 38:116138. [PMID: 33857737 DOI: 10.1016/j.bmc.2021.116138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A series of novel pleuromutilin derivatives were designed and synthesized with 1,2,4-triazole as the linker connected to benzoyl chloride analogues under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213, AD3 and 144) were tested by the broth dilution method. Most of the synthesized derivatives displayed potent activities, and 22-(3-amino-2-(4-methyl-benzoyl)-1,2,4-triazole-5-yl)-thioacetyl)-22-deoxypleuromutilin (compound 12) was found to be the most active antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the time-kill curves showed compound 12 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 12 was further evaluated using MRSA infected murine thigh model. Compound 12 exhibited superior antibacterial efficacy than tiamulin. It was also found that compound 12 had no significant inhibitory effect on the proliferation of RAW264.7 cells. Compound 12 was further evaluated in CYP450 inhibition assay and showed moderate inhibitory effect on CYP3A4 (IC50 = 3.95 μM). Moreover, seven candidate compounds showed different affinities with the 50S ribosome by SPR measurement. Subsequently, binding of compound 12 and 20 to the 50S ribosome was further investigated by molecular modeling. Three strong hydrogen bonds were formed through the interaction of compound 12 and 20 with 50S ribosome. The binding free energy of compound 12 and 20 with the ribosome was calculated to be -10.7 kcal/mol and -11.66 kcal/mol, respectively.
Collapse
Affiliation(s)
- Si-Yu Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ding-Yi Shen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Yu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dan Du
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
46
|
Schindler K, Crochet A, Zobi F. Aerobically stable and substitutionally labile α-diimine rhenium dicarbonyl complexes. RSC Adv 2021; 11:7511-7520. [PMID: 35423250 PMCID: PMC8694950 DOI: 10.1039/d1ra00514f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the cis–cis–trans-[Re(CO)2(tBu2bpy)Br2]− anion (2, where tBu2bpy is 4,4′-di-tert-butyl-2,2′-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron cis–cis–trans-[Re(CO)2(tBu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2(tBu2bpy)Br(L)] species can be further reacted with Ls to prepare stable cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the cis–cis–trans-complexes, cis–cis–cis- (all cis) isomers are also formed. In particular, cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2(tBu2bpy)Br2]− and [Re(CO)2(tBu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core. New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes offer a convenient entry in the chemistry of the cis-[Re(CO)2]+ core.![]()
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
47
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|
48
|
Meşeli T, Doğan ŞD, Gündüz MG, Kökbudak Z, Skaro Bogojevic S, Noonan T, Vojnovic S, Wolber G, Nikodinovic-Runic J. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. NEW J CHEM 2021. [DOI: 10.1039/d1nj00150g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular modifications on sulfathiazole to overcome sulfonamide resistance: the discovery of selective antibacterial agents against Staphylococcus aureus.
Collapse
Affiliation(s)
- Tuğba Meşeli
- Department of Chemistry
- Faculty of Science
- Erciyes University
- Kayseri
- Turkey
| | - Şengül Dilem Doğan
- Department of Basic Sciences
- Faculty of Pharmacy
- Erciyes University
- Kayseri
- Turkey
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Hacettepe University
- Sıhhiye
- Turkey
| | - Zülbiye Kökbudak
- Department of Chemistry
- Faculty of Science
- Erciyes University
- Kayseri
- Turkey
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Theresa Noonan
- Department of Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Gerhard Wolber
- Department of Pharmaceutical and Medicinal Chemistry
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | |
Collapse
|
49
|
Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2020; 213:113056. [PMID: 33280899 DOI: 10.1016/j.ejmech.2020.113056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Abuse of antibiotics has led to the emergence of drug-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) was reported just two years after the clinical use of methicillin, which can cause severe infections with high morbidity and mortality in both community and hospital. The treatment of MRSA infection is greatly challenging since it has developed the resistance to almost all types of antibiotics. As such, it is of great significance and importance to develop novel therapeutic approaches. The fast development of nanotechnology provides a promising solution to this dilemma. Functional nanomaterials and nanoparticles can act either as drug carriers or as antibacterial agents for antibacterial therapy. Herein, we aim to provide a comprehensive understanding of the drug resistance mechanisms of MRSA and discuss the potential applications of some functionalized nanomaterials in anti-MRSA therapy. Also, the concerns and possible solutions for the nanomaterials-based anti-MRSA therapy are discussed.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anchun Mo
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|