1
|
Finotti A, Gambari R. Perspectives in MicroRNA Therapeutics for Cystic Fibrosis. Noncoding RNA 2025; 11:3. [PMID: 39846681 PMCID: PMC11755495 DOI: 10.3390/ncrna11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The discovery of the involvement of microRNAs (miRNAs) in cystic fibrosis (CF) has generated increasing interest in the past years, due to their possible employment as a novel class of drugs to be studied in pre-clinical settings of therapeutic protocols for cystic fibrosis. In this narrative review article, consider and comparatively evaluate published laboratory information of possible interest for the development of miRNA-based therapeutic protocols for cystic fibrosis. We consider miRNAs involved in the upregulation of CFTR, miRNAs involved in the inhibition of inflammation and, finally, miRNAs exhibiting antibacterial activity. We suggest that antago-miRNAs and ago-miRNAs (miRNA mimics) can be proposed for possible validation of therapeutic protocols in pre-clinical settings.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Falanga AP, Massaro M, Borbone N, Notarbartolo M, Piccialli G, Liotta LF, Sanchez-Espejo R, Viseras Iborra C, Raymo FM, Oliviero G, Riela S. Carrier capability of halloysite nanotubes for the intracellular delivery of antisense PNA targeting mRNA of neuroglobin gene. J Colloid Interface Sci 2024; 663:9-20. [PMID: 38387188 DOI: 10.1016/j.jcis.2024.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide nucleic acid (PNA) is a DNA mimic that shows good stability against nucleases and proteases, forming strongly recognized complementary strands of DNA and RNA. However, due to its feeble ability to cross the cellular membrane, PNA activity and its targeting gene action is limited. Halloysite nanotubes (HNTs) are a natural and low-cost aluminosilicate clay. Because of their peculiar ability to cross cellular membrane, HNTs represent a valuable candidate for delivering genetic materials into cells. Herein, two differently charged 12-mer PNAs capable of recognizing as molecular target a 12-mer DNA molecule mimicking a purine-rich tract of neuroglobin were synthetized and loaded onto HNTs by electrostatic attraction interactions. After characterization, the kinetic release was also assessed in media mimicking physiological conditions. Resonance light scattering measurements assessed their ability to bind complementary single-stranded DNA. Furthermore, their intracellular delivery was assessed by confocal laser scanning microscopy on living MCF-7 cells incubated with fluorescence isothiocyanate (FITC)-PNA and HNTs labeled with a probe. The nanomaterials were found to cross cellular membrane and cell nuclei efficiently. Finally, it is worth mentioning that the HNTs/PNA can reduce the level of neuroglobin gene expression, as shown by reverse transcription-quantitative polymerase chain reaction and western blotting analysis.
Collapse
Affiliation(s)
- Andrea P Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Leonarda F Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rita Sanchez-Espejo
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - Cesar Viseras Iborra
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables 33146-0431, FL, United States
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Mannully ST, Mahajna R, Nazzal H, Maree S, Zheng H, Appella DH, Reich R, Yavin E. Detecting the FLJ22447 lncRNA in Ovarian Cancer with Cyclopentane-Modified FIT-PNAs (cpFIT-PNAs). Biomolecules 2024; 14:609. [PMID: 38927013 PMCID: PMC11202290 DOI: 10.3390/biom14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on RNA as a molecular biomarker. In this regard, FLJ22447 lncRNA is an RNA biomarker that is over-expressed in ovarian cancer (OC) and in cancer-associated fibroblasts (CAFs). CAFs appear early on in OC as they provide a metastatic niche for OC progression. FIT-PNAs (forced intercalation-peptide nucleic acids) are DNA analogs that are designed to fluoresce upon hybridization to their complementary RNA target sequence. In recent studies, we have shown that the introduction of cyclopentane PNAs into FIT-PNAs (cpFIT-PNA) results in superior RNA sensors. Herein, we report the design and synthesis of cpFIT-PNAs for the detection of this RNA biomarker in living OC cells (OVCAR8) and in CAFs. cpFIT-PNA was compared to FIT-PNA and the cell-penetrating peptide (CPP) of choice was either a simple one (four L-lysines) or a CPP with enhanced cellular uptake (CLIP6). The combination of CLIP6 with cpFIT-PNA resulted in a superior sensing of FLJ22447 lncRNA in OVCAR8 cells as well as in CAFs. Moreover, incubation of CLIP6-cpFIT-PNA in OVCAR8 cells leads to a significant decrease (ca. 60%) in FLJ22447 lncRNA levels and in cell viability, highlighting the potential theranostic use of such molecules.
Collapse
Affiliation(s)
- Sheethal Thomas Mannully
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Rawan Mahajna
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Huda Nazzal
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Salam Maree
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA; (H.Z.); (D.H.A.)
| | - Daniel H. Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA; (H.Z.); (D.H.A.)
| | - Reuven Reich
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Eylon Yavin
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| |
Collapse
|
5
|
Falanga AP, Lupia A, Tripodi L, Morgillo CM, Moraca F, Roviello GN, Catalanotti B, Amato J, Pastore L, Cerullo V, D'Errico S, Piccialli G, Oliviero G, Borbone N. Exploring the DNA 2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation. Heliyon 2024; 10:e24599. [PMID: 38317891 PMCID: PMC10839560 DOI: 10.1016/j.heliyon.2024.e24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups' research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Antonio Lupia
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Carmine M. Morgillo
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Federica Moraca
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche, Naples, 80131, Italy
| | - Bruno Catalanotti
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Vincenzo Cerullo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- ImmunoViroTherapy Lab (IVT), Drug Research Program (DRP), Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| |
Collapse
|
6
|
Guo Y, Wang H, Lyu R, Wang J, Wang T, Shi J, Lyu L. Nanocarrier-Mediated Delivery of MicroRNAs for Fibrotic Diseases. Mol Diagn Ther 2024; 28:53-67. [PMID: 37897655 DOI: 10.1007/s40291-023-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery system may facilitate the prevention and alleviation of fibrotic diseases in the future.
Collapse
Affiliation(s)
- Yanfang Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Hanying Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Rumin Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Juan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jingpei Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
7
|
Singh G, Monga V. Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications. Bioorg Chem 2023; 141:106860. [PMID: 37748328 DOI: 10.1016/j.bioorg.2023.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
Nucleic acid represents the ideal drug candidate for protein targets that are hard to target or against which drug development is not easy. Peptide nucleic acids (PNAs) are synthesized by attaching modified peptide backbones generally derived from repetitive N-2-aminoethyl glycine units in place of the regular phosphodiester backbone and represent synthetic impersonator of nucleic acids that offers an exciting research field due to their fascinating spectrum of biotechnological, diagnostic and potential therapeutic applications. The semi-rigid peptide nucleic acid backbone serves as a nearly-perfect template for attaching complimentary base pairs on DNA or RNA in a sequence-dependent manner as described by Watson-Crick models. PNAs and their analogues are endowed with exceptionally high affinity and specificity for receptor sites, essentially due to their polyamide backbone's uncharged and flexible nature. The present review compiled various strategies to modify the polypeptide backbone for improving the target selectivity and stability of the PNAs in the body. The investigated biological activities carried out on PNAs have also been summarized in the present review.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
8
|
Papi C, Gasparello J, Zurlo M, Cosenza LC, Gambari R, Finotti A. The Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) Is under Post-Transcriptional Control of microRNAs: Analysis of the Effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p. Noncoding RNA 2023; 9:ncrna9020029. [PMID: 37104011 PMCID: PMC10146138 DOI: 10.3390/ncrna9020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chiara Papi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Jackson JJ, Mao Y, White TR, Foye C, Oliver KE. Features of CFTR mRNA and implications for therapeutics development. Front Genet 2023; 14:1166529. [PMID: 37168508 PMCID: PMC10165737 DOI: 10.3389/fgene.2023.1166529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease impacting ∼100,000 people worldwide. This lethal disorder is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-binding cassette-class C protein. More than 2,100 variants have been identified throughout the length of CFTR. These defects confer differing levels of severity in mRNA and/or protein synthesis, folding, gating, and turnover. Drug discovery efforts have resulted in recent development of modulator therapies that improve clinical outcomes for people living with CF. However, a significant portion of the CF population has demonstrated either no response and/or adverse reactions to small molecules. Additional therapeutic options are needed to restore underlying genetic defects for all patients, particularly individuals carrying rare or refractory CFTR variants. Concerted focus has been placed on rescuing variants that encode truncated CFTR protein, which also harbor abnormalities in mRNA synthesis and stability. The current mini-review provides an overview of CFTR mRNA features known to elicit functional consequences on final protein conformation and function, including considerations for RNA-directed therapies under investigation. Alternative exon usage in the 5'-untranslated region, polypyrimidine tracts, and other sequence elements that influence splicing are discussed. Additionally, we describe mechanisms of CFTR mRNA decay and post-transcriptional regulation mediated through interactions with the 3'-untranslated region (e.g. poly-uracil sequences, microRNAs). Contributions of synonymous single nucleotide polymorphisms to CFTR transcript utilization are also examined. Comprehensive understanding of CFTR RNA biology will be imperative for optimizing future therapeutic endeavors intended to address presently untreatable forms of CF.
Collapse
Affiliation(s)
- JaNise J. Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Yiyang Mao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Tyshawn R. White
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Catherine Foye
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Kathryn E. Oliver,
| |
Collapse
|
10
|
Combined Treatment of Bronchial Epithelial Calu-3 Cells with Peptide Nucleic Acids Targeting miR-145-5p and miR-101-3p: Synergistic Enhancement of the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Gene. Int J Mol Sci 2022; 23:ijms23169348. [PMID: 36012615 PMCID: PMC9409490 DOI: 10.3390/ijms23169348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.
Collapse
|
11
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
12
|
Cesaro E, Falanga AP, Catapano R, Greco F, Romano S, Borbone N, Pastore A, Marzano M, Chiurazzi F, D’Errico S, Piccialli G, Oliviero G, Costanzo P, Grosso M. Exploring a peptide nucleic acid-based antisense approach for CD5 targeting in chronic lymphocytic leukemia. PLoS One 2022; 17:e0266090. [PMID: 35358273 PMCID: PMC8970396 DOI: 10.1371/journal.pone.0266090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
We herein report an innovative antisense approach based on Peptide Nucleic Acids (PNAs) to down-modulate CD5 expression levels in chronic lymphocytic leukemia (CLL). Using bioinformatics tools, we selected a 12-mer tract of the CD5 mRNA as the molecular target and synthesized the complementary and control PNA strands bearing a serine phosphate dipeptide tail to enhance their water solubility and bioavailability. The specific recognition of the 12-mer DNA strand, corresponding to the target mRNA sequence by the complementary PNA strand, was confirmed by non-denaturing polyacrylamide gel electrophoresis, thermal difference spectroscopy, circular dichroism (CD), and CD melting studies. Cytofluorimetric assays and real-time PCR analysis demonstrated the downregulation of CD5 expression due to incubation with the anti-CD5 PNA at RNA and protein levels in Jurkat cell line and peripheral blood mononuclear cells from B-CLL patients. Interestingly, we also observed that transfection with the anti-CD5 PNA increases apoptotic response induced by fludarabine in B-CLL cells. The herein reported results suggest that PNAs could represent a potential candidate for the development of antisense therapeutic agents in CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukocytes, Mononuclear
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Peptide Nucleic Acids/chemistry
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | | | - Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Maria Marzano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Federico Chiurazzi
- Department of Clinical and Experimental Medicine, Division of Hematology, University of Naples Federico II, Napoli, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
13
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
15
|
Neri M, Kang J, Zuidema JM, Gasparello J, Finotti A, Gambari R, Sailor MJ, Bertucci A, Corradini R. Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads. ACS Biomater Sci Eng 2021; 8:4123-4131. [PMID: 34468123 PMCID: PMC9554869 DOI: 10.1021/acsbiomaterials.1c00431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peptide nucleic acids (PNAs) are a class of artificial oligonucleotide mimics that have garnered much attention as precision biotherapeutics for their efficient hybridization properties and their exceptional biological and chemical stability. However, the poor cellular uptake of PNA is a limiting factor to its more extensive use in biomedicine; encapsulation in nanoparticle carriers has therefore emerged as a strategy for internalization and delivery of PNA in cells. In this study, we demonstrate that PNA can be readily loaded into porous silicon nanoparticles (pSiNPs) following a simple salt-based trapping procedure thus far employed only for negatively charged synthetic oligonucleotides. We show that the ease and versatility of PNA chemistry also allows for producing PNAs with different net charge, from positive to negative, and that the use of differently charged PNAs enables optimization of loading into pSiNPs. Differently charged PNA payloads determine different release kinetics and allow modulation of the temporal profile of the delivery process. In vitro silencing of a set of specific microRNAs using a pSiNP-PNA delivery platform demonstrates the potential for biomedical applications.
Collapse
Affiliation(s)
- Martina Neri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jinyoung Kang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry and Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
16
|
Perera JDR, Carufe KEW, Glazer PM. Peptide nucleic acids and their role in gene regulation and editing. Biopolymers 2021; 112:e23460. [PMID: 34129732 DOI: 10.1002/bip.23460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The unique properties of peptide nucleic acid (PNA) makes it a desirable candidate to be used in therapeutic and biotechnological interventions. It has been broadly utilized for numerous applications, with a major focus in regulation of gene expression, and more recently in gene editing. While the classic PNA design has mainly been employed to date, chemical modifications of the PNA backbone and nucleobases provide an avenue to advance the technology further. This review aims to discuss the recent developments in PNA based gene manipulation techniques and the use of novel chemical modifications to improve the current state of PNA mediated gene targeting.
Collapse
Affiliation(s)
- J Dinithi R Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly E W Carufe
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Gasparello J, Fabbri E, Gambari R, Finotti A. Differential effects on the miRNome of the treatment of human airway epithelial Calu-3 cells with peptide-nucleic acids (PNAs) targeting microRNAs miR-101-3p and miR-145-5p: Next generation sequencing datasets. Data Brief 2021; 35:106718. [PMID: 33553515 PMCID: PMC7846929 DOI: 10.1016/j.dib.2021.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Since the demonstration that microRNAs are deeply involved in the regulation of Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR) gene, a great attention has been dedicated to possible alteration of the CFTR gene expression by targeting miRNAs causing down-regulation of CFTR and CFTR-associated proteins. The data here presented are related to previously published studies on the effects of treatment of human bronchial cells of PNAs targeting miR-101-3p and miR-145-5p (microRNAs shown to regulate the CFTR mRNA). These data here presented are relative to two companion articles "Treatment of human airway epithelial Calu-3 cells with a Peptide-Nucleic Acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene" (published in European Journal of Medicinal Chemistry, 2020) and "Peptide Nucleic Acids for MicroRNA Targeting" (published in Methods in Molecular Biology, 2020). The data obtained indicate that, while the expression of most microRNAs is not affected by PNA treatment, some of them are strongly modulated. In particular, some microRNAs involved in CF and/or CFTR regulation are co-inhibited by miR-101-3p and miR-145-5p. Among them, miR-155-5p, miR-125b-5p, miR-132-3p and miR-6873-3p. This has been demonstrated by Next Generation Sequencing (NGS) followed by RT-qPCR and RT-ddPCR validation.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
- Research Center on Innovative Therapy for Cystic Fibrosis, Ferrara University, 44121 Ferrara, Italy
- Corresponding author at: Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy.
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
- Research Center on Innovative Therapy for Cystic Fibrosis, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Bandiera T, Galietta LJV. Pharmacological approaches to cystic fibrosis. Eur J Med Chem 2021; 216:113240. [PMID: 33691259 DOI: 10.1016/j.ejmech.2021.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tiziano Bandiera
- D3 PharmaChemistry Line, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
19
|
Tamanini A, Fabbri E, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines 2021; 9:biomedicines9020117. [PMID: 33530577 PMCID: PMC7911309 DOI: 10.3390/biomedicines9020117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.
Collapse
Affiliation(s)
- Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Silvia Munari
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Giulio Cabrini
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: ; Tel.: +39-0532-974443
| |
Collapse
|
20
|
De Palma FDE, Raia V, Kroemer G, Maiuri MC. The Multifaceted Roles of MicroRNAs in Cystic Fibrosis. Diagnostics (Basel) 2020; 10:E1102. [PMID: 33348555 PMCID: PMC7765910 DOI: 10.3390/diagnostics10121102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a lifelong disorder affecting 1 in 3500 live births worldwide. It is a monogenetic autosomal recessive disease caused by loss-of-function mutations in the gene encoding the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR), the impairment of which leads to ionic disequilibria in exocrine organs. This translates into a chronic multisystemic disease characterized by airway obstruction, respiratory infections, and pancreatic insufficiency as well as hepatobiliary and gastrointestinal dysfunction. Molecular characterization of the mutational heterogeneity of CFTR (affected by more than 2000 variants) improved the understanding and management of CF. However, these CFTR variants are linked to different clinical manifestations and phenotypes, and they affect response to treatments. Expanding evidence suggests that multisystemic disease affects CF pathology via impairing either CFTR or proteins regulated by CFTR. Thus, altering the expression of miRNAs in vivo could constitute an appealing strategy for developing new CF therapies. In this review, we will first describe the pathophysiology and clinical management of CF. Then, we will summarize the current knowledge on altered miRNAs in CF patients, with a focus on the miRNAs involved in the deregulation of CFTR and in the modulation of inflammation. We will highlight recent findings on the potential utility of measuring circulating miRNAs in CF as diagnostic, prognostic, and predictive biomarkers. Finally, we will provide an overview on potential miRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, 80131 Naples, Italy;
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215123, China
- Karolinska Institutet, Department of Women’s and Children’s Health, 17176 Stockholm, Sweden
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| |
Collapse
|