1
|
Duzgun Z, Korkmaz FD, Akgün E. FDI-6 inhibits VEGF-B expression in metastatic breast cancer: a combined in vitro and in silico study. Mol Divers 2025; 29:1069-1078. [PMID: 38853176 PMCID: PMC11909019 DOI: 10.1007/s11030-024-10891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Angiogenesis is the process by which new blood vessels are formed to meet the oxygen and nutrient needs of tissues. This process is vitally important in many physiological and pathological conditions such as tumor growth, metastasis, and chronic inflammation. Although the relationship of FDI-6 compound with FOXM1 protein is well known in the literature, its relationship with angiogenesis is not adequately elucidated. This study investigates the relationship of FDI-6 with angiogenesis and vascular endothelial growth factor B (VEGF-B) protein expression alterations. Furthermore, the study aims to elucidate the in silico interaction of FDI-6 with the VEGFR1 protein, a key player in initiating the angiogenic process, which is activated through its binding with VEGF-B. Our results demonstrate a significant effect of FDI-6 on cell viability. Specifically, we determined that the IC50 value of FDI-6 in HUVEC cells after 24 h of treatment is 24.2 μM, and in MDA-MB-231 cells after 24 h of application, it is 10.8 μM. These findings suggest that the cytotoxic effect of FDI-6 varies depending on the cell type. In wound healing experiments, FDI-6 significantly suppressed wound closure in MDA-MB-231 cells but did not show a similar effect in HUVEC cells. This finding suggests FDI-6 may have potential cell-type-specific effects. Molecular docking studies reveal that FDI-6 exhibits a stronger interaction with the VEGFR1 protein compared to its inhibitor, a novel interaction not previously reported in the literature. Molecular dynamic simulation results demonstrate a stable interaction between FDI-6 and VEGFR1. This interaction suggests that FDI-6 might modulate mechanisms associated with angiogenesis. Our Western blot analysis results show regulatory effects of FDI-6 on the expression of the VEGF-B protein. We encourage exploration of FDI-6 as a potential therapeutic agent in pathological processes related to angiogenesis. In conclusion, this study provides a detailed examination of the relationship between FDI-6 and both the molecular interactions and protein expressions of VEGF-B. Our findings support FDI-6 as a potential therapeutic agent in pathological processes associated with angiogenesis.
Collapse
Affiliation(s)
- Zekeriya Duzgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey.
| | | | - Egemen Akgün
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| |
Collapse
|
2
|
Abusharkh KAN, Comert Onder F, Çınar V, Onder A, Sıkık M, Hamurcu Z, Ozpolat B, Ay M. Novel benzothiazole/benzothiazole thiazolidine-2,4-dione derivatives as potential FOXM1 inhibitors: In silico, synthesis, and in vitro studies. Arch Pharm (Weinheim) 2024:e2400504. [PMID: 39318080 DOI: 10.1002/ardp.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
The oncogenic transcription factor FOXM1 overexpressed in breast and other solid cancers, is a key driver of tumor growth and progression through complex interactions, making it an attractive molecular target for the development of targeted therapies. Despite the availability of small-molecule inhibitors, their limited specificity, potency, and efficacy hinder clinical translation. To identify effective FOXM1 inhibitors, we synthesized novel benzothiazole derivatives (KC10-KC13) and benzothiazole hybrids with thiazolidine-2,4-dione (KC21-KC36). These compounds were evaluated for FOXM1 inhibition. Molecular docking and molecular dynamics simulation analysis revealed their binding patterns and affinities for the FOXM1-DNA binding domain. The interactions with key amino acids such as Asn283, His287, and Arg286, crucial for FOXM1 inhibition, have been determined with the synthesized compounds. Additionally, the molecular modeling study indicated that KC12, KC21, and KC30 aligned structurally and interacted similarly to the reference compound FDI-6. In vitro studies with the MDA-MB-231 breast cancer cell line demonstrated that KC12, KC21, and KC30 significantly inhibited FOXM1, showing greater potency than FDI-6, with IC50 values of 6.13, 10.77, and 12.86 µM, respectively, versus 20.79 µM for FDI-6. Our findings suggest that KC12, KC21, and KC30 exhibit strong activity as FOXM1 inhibitors and may be suitable for in vivo animal studies.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Alper Onder
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Merve Sıkık
- Department of Medical System Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
3
|
Dong L, Gao L. SP1-Driven FOXM1 Upregulation Induces Dopaminergic Neuron Injury in Parkinson's Disease. Mol Neurobiol 2024; 61:5510-5524. [PMID: 38200349 DOI: 10.1007/s12035-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
The aberrant expression of Forkhead box M1 (FOXM1) has been associated with the pathological processes of Parkinson's disease (PD), but the upstream and downstream regulators remain poorly understood. This study sought to examine the underlying mechanism of FOXM1 in dopaminergic neuron injury in PD. Bioinformatics analysis was conducted to pinpoint the differential expression of FOXM1, which was verified in the nigral tissues of rotenone-lesioned mice and dopaminergic neuron MN9D cells. Interactions among SP1, FOXM1, SNAI2, and CXCL12 were analyzed. To evaluate their effects on dopaminergic neuron injury, the lentiviral vector-mediated manipulation of FOXM1, SP1, and CXCL12 was introduced in rotenone-lesioned mice and MN9D cells. SP1, FOXM1, SNAI2, and CXCL12 abundant expression occurred in rotenone-lesioned mice and MN9D cells. Silencing of FOXM1 delayed the rotenone-induced dopaminergic neuron injury in vitro. Mechanistically, SP1 was an upstream transcription factor of FOXM1 and upregulated FOXM1 expression, leading to increased SNAI2 and CXCL12 expression. In vivo, data confirmed that SP1 promoted dopaminergic neuron injury by activating the FOXM1/SNAI2/CXCL12 axis. Our data indicate that SP1 silencing has neuroprotective effects on dopaminergic neurons, which is dependent upon the inactivated FOXM1/SNAI2/CXCL12 axis.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
A Majed A, Al-Duhaidahawi D, A Omran H, Abbas S, S Abid D, Y Hmood A. Synthesis, molecular docking of new amide thiazolidine derived from isoniazid and studying their biological activity against cancer cells. J Biomol Struct Dyn 2023; 42:13485-13496. [PMID: 37922154 DOI: 10.1080/07391102.2023.2276313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/07/2023] [Indexed: 11/05/2023]
Abstract
BCL2, an antiapoptotic protein, is overexpressed in many cancers, making it a good cancer treatment target. In 30 years, few BCL2 targeting agents have shown clinical significance. This work designed new amide thiazolidine derived from isoniazid targeting BCL2 and tested them on cancer cell lines, for binding affinities, the novel candidates were docked to the BCL2 target receptor. IC50 of compound A8 46.67 ± 0.9 and 57.14 ± 0.88 μg/ml against PC3 and HEPG2 respectively with docking score -7.6 Kcal/mol with 6GL8 make it the best compound in this series. Melting point, FT-IR, elemental microanalysis (CHN), 1HNMR, and 13CNMR confirmed chemical structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahmed A Majed
- College of Education, Department of Chemistry, Basrah University, Basrah, Iraq
- Education Directorate of Thi-Qar, Ministry of Education, Thi-Qar, Iraq
| | | | - Haider A Omran
- Education Directorate of Basrah, Ministry of Education, Basrah, Iraq
| | - Sabah Abbas
- College of Pharmacy, University of Kufa, AL-Najaf, Iraq
| | - Dawood S Abid
- College of Education for Pure Sciences, Department of Chemistry, Basrah University, Basrah, Iraq
| | - Ahmed Y Hmood
- Department of Marine Environmental Chemistry, Marine Science Center, University of Basrah, Basrah, Iraq
| |
Collapse
|
5
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Han XY, Zhou ZY, Li SY, Xue ST. Advances in inhibitors of potential tumor target FOXM1. Future Med Chem 2023; 15:809-812. [PMID: 37226453 DOI: 10.4155/fmc-2023-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Xiao-Yang Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zi-Ying Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Gao Y, Geng J, Xie Z, Zhou Z, Yang H, Yi H, Han X, Xue S, Li Z. Synthesis and antineoplastic activity of ethylene glycol phenyl aminoethyl ether derivatives as FOXM1 inhibitors. Eur J Med Chem 2022; 244:114877. [DOI: 10.1016/j.ejmech.2022.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
8
|
Alimardan Z, Abbasi M, Khodarahmi G, Kashfi K, Hasanzadeh F, Mahmud A. Identification of new small molecules as dual FoxM1 and Hsp70 inhibitors using computational methods. Res Pharm Sci 2022; 17:635-656. [PMID: 36704430 PMCID: PMC9872178 DOI: 10.4103/1735-5362.359431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Background and purpose FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their inhibition serves as Bonafede targets in cancer treatment. Experimental approach FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, a new library from the ZINC database was obtained. Virtual screening was then performed using the created pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and FoxM1 proteins during 100 ns. Findings / Results The results of this study indicated that ZINC1152745 was stable in the active site of both proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70. Conclusion and implications Molecular dynamics simulations were performed on ZINC1152745 targeting FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA,Graduate Program in Biology, City University of New York Graduate Center, New York, USA,Department of Chemistry and Physics, State University of New York at Old Westbury, New York, USA
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Aghaei Mahmud
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
9
|
Singh G, Kajal K, Pradhan T, Bhurta D, Monga V. The medicinal perspective of 2,4-thiazolidinediones based ligands as antimicrobial, antitumor and antidiabetic agents: A review. Arch Pharm (Weinheim) 2022; 355:e2100517. [PMID: 35715383 DOI: 10.1002/ardp.202100517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure-activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Deendyal Bhurta
- Department of Pharmaceutical Chemistry, Rajendra Institute of Technology and Sciences, Sirsa, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
10
|
Huerta-García CS, Pérez DJ, Velázquez-Martínez CA, Tabatabaei Dakhili SA, Romo-Mancillas A, Castillo R, Hernández-Campos A. Structure–Activity Relationship of N-Phenylthieno[2,3-b]pyridine-2-carboxamide Derivatives Designed as Forkhead Box M1 Inhibitors: The Effect of Electron-Withdrawing and Donating Substituents on the Phenyl Ring. Pharmaceuticals (Basel) 2022; 15:ph15030283. [PMID: 35337081 PMCID: PMC8949145 DOI: 10.3390/ph15030283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
We report synthesis, characterization, biological evaluation, and molecular-docking studies of 18 thieno[2,3-b]pyridines with a phenylacetamide moiety at position 2, which is disubstituted with F, Cl, Br, or I at position 4, and with electron-withdrawing and electron-donating groups (-CN, -NO2, -CF3, and -CH3) at position 2, to study how the electronic properties of the substituents affected the FOXM1-inhibitory activity. Among compounds 1–18, only those bearing a -CN (regardless of the halogen) decreased FOXM1 expression in a triple-negative breast cancer cell line (MDA-MB-231), as shown by Western blotting. However, only compounds 6 and 16 decreased the relative expression of FOXM1 to a level lower than 50%, and hence, we determined their anti-proliferative activity (IC50) in MDA-MB-231 cells using the MTT assay, which was comparable to that observed with FDI-6, in contrast to compound 1, which was inactive according to both Western blot and MTT assays. We employed molecular docking to calculate the binding interactions of compounds 1–18 in the FOXM1 DNA-binding site. The results suggest a key role for residues Val296 and Leu289 in this binding. Furthermore, we used molecular electrostatic potential maps showing the effects of different substituents on the overall electron density.
Collapse
Affiliation(s)
- César Sebastian Huerta-García
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.S.H.-G.); (R.C.)
| | - David J. Pérez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6E 2E1, Canada; (D.J.P.); (C.A.V.-M.); (S.A.T.D.)
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos A. Velázquez-Martínez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6E 2E1, Canada; (D.J.P.); (C.A.V.-M.); (S.A.T.D.)
| | | | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.S.H.-G.); (R.C.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.S.H.-G.); (R.C.)
- Correspondence: ; Tel.: +52-55-56225287
| |
Collapse
|
11
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
12
|
Pérez DJ, Amirhossein Tabatabaei Dakhili S, Bergman C, Dufour J, Wuest M, Juengling FD, Wuest F, Velázquez-Martínez CA. FOXM1 Inhibitors as Potential Diagnostic Agents: First Generation of a PET Probe Targeting FOXM1 To Detect Triple-Negative Breast Cancer in vitro and in vivo. ChemMedChem 2021; 16:3720-3729. [PMID: 34402202 DOI: 10.1002/cmdc.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/15/2021] [Indexed: 01/18/2023]
Abstract
The FOXM1 protein controls the expression of essential genes related to cancer cell cycle progression, metastasis, and chemoresistance. We hypothesize that FOXM1 inhibitors could represent a novel approach to develop 18 F-based radiotracers for Positron Emission Tomography (PET). Therefore, in this report we describe the first attempt to use 18 F-labeled FOXM1 inhibitors to detect triple-negative breast cancer (TNBC). Briefly, we replaced the original amide group in the parent drug FDI-6 for a ketone group in the novel AF-FDI molecule, to carry out an aromatic nucleophilic (18 F)-fluorination. AF-FDI dissociated the FOXM1-DNA complex, decreased FOXM1 levels, and inhibited cell proliferation in a TNBC cell line (MDA-MB-231). [18 F]AF-FDI was internalized in MDA-MB-231 cells. Cell uptake inhibition experiments showed that AF-FDI and FDI-6 significantly decreased the maximum uptake of [18 F]AF-FDI, suggesting specificity towards FOXM1. [18 F]AF-FDI reached a tumor uptake of SUV=0.31 in MDA-MB-231 tumor-bearing mice and was metabolically stable 60 min post-injection. These results provide preliminary evidence supporting the potential role of FOXM1 to develop PET radiotracers.
Collapse
Affiliation(s)
- David J Pérez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6E 2E1, Canada
- Facultad de Medicina, Unidad de Radiofarmacia/ciclotrón, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, CDMX, Mexico
| | | | - Cody Bergman
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6E 2E1, Canada
| | - Jennifer Dufour
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6E 2E1, Canada
| | - Melinda Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6E 2E1, Canada
| | - Freimut D Juengling
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6E 2E1, Canada
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6E 2E1, Canada
| | | |
Collapse
|
13
|
Luo G, Lin X, Vega-Medina A, Xiao M, Li G, Wei H, Velázquez-Martínez CA, Xiang H. Targeting of the FOXM1 Oncoprotein by E3 Ligase-Assisted Degradation. J Med Chem 2021; 64:17098-17114. [PMID: 34812040 DOI: 10.1021/acs.jmedchem.1c01069] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor FOXM1 that regulates multiple proliferation-related genes through selective protein-DNA and protein-protein interactions is now considered an attractive oncotarget. There are several small-molecule inhibitors that indirectly suppress the expression of FOXM1 or block its DNA binding domain (FOXM1-DBD). However, insufficient specificity or/and efficacy are two potential drawbacks. Here, we employed in silico modeling of FOXM1-DBD with inhibitors to enable the design of an effective CRBN-recruiting molecule that induced significant FOXM1 protein degradation and exerted promising in vivo antitumor activity against TNBC xenograft models. This study is the first of its kind showcasing the use of an approach described in the literature as protein-targeting chimeras to degrade the elusive FOXM1, providing an alternative strategy to counter the pathological effects resulting from the increased transcriptional activity of FOXM1 observed in cancer cells.
Collapse
Affiliation(s)
- Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Antonio Vega-Medina
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6W1W7, Canada
| | - Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guolong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hanlin Wei
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | | | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
14
|
Zhang YL, Ma Y, Zeng YQ, Liu Y, He EP, Liu YT, Qiao FL, Yu R, Wang YS, Wu XY, Leng P. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1704. [PMID: 34988213 PMCID: PMC8667115 DOI: 10.21037/atm-21-5271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this review is to clarify the potential roles of forkhead box transcription factor M1 (FoxM1) in the occurrence and progression of breast cancer, as well as the predictive value of FoxM1 as a prognostic biomarker and potential therapeutic target for breast cancer. BACKGROUND Breast cancer, well-known as a molecularly heterogeneous cancer, is still one of the most frequently diagnosed malignant tumors among females worldwide. Tumor recurrence and metastasis are the central causes of high mortality in breast cancer patients. Many factors contribute to the occurrence and progression of breast cancer, including FoxM1. FoxM1, widely regarded as a classic proliferation-related transcription factor, plays pivotal roles in the occurrence, proliferation, invasion, migration, drug resistance, and epithelial-mesenchymal transition (EMT) processes of multiple human tumors including breast cancer. METHODS The PubMed database was searched for articles published in English from February 2008 to May 2021 using related keywords such as "forkhead box transcription factor M1", "human breast cancer", "FoxM1", and "human tumor". About 90 research papers and reports written in English were identified, most of which were published after 2015. These papers mainly concentrated on the functions of FoxM1 in the occurrence, development, drug resistance, and treatment of human breast cancer. CONCLUSIONS Considering that the abnormal expression of FoxM1 plays a significant role in the proliferation, invasion, metastasis, and chemotherapy drug resistance of breast cancer, and its overexpression is closely correlated with the unfavorable clinicopathological characteristics of breast tumor patients, it is considerably important to comprehend the regulatory mechanism of FoxM1 in breast cancer. This will provide strong evidence for FoxM1 as a potential biomarker for the targeted treatment and prognostic evaluation of breast cancer patients.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Ma
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.,Institute of Disaster Medicine, Sichuan University, Chengdu, China
| | - You-Qin Zeng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - En-Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chengdu Medical College-Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi-Tong Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Shuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin-Yu Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|