1
|
Ndiaye M, Robert F, Hiebel MA, Suzenet F. Synthesis of Polynitrogen-Containing [6-5-6] Tricyclic Derivatives by N-N Bond Formation and Their Fluorescent Properties. J Org Chem 2025; 90:6692-6701. [PMID: 40339152 DOI: 10.1021/acs.joc.5c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Polynitrogen-containing scaffolds are of major interest for many applications. To optimize and improve the potential of these scaffolds, it is important to be able to easily introduce and modulate the substituents, regardless of the number and position of the nitrogen atoms in the structure. Therefore, the synthetic approach ideally requires mild experimental conditions and an expanded scope of application. To this end, a versatile and efficient synthesis of [6-5-6] tricyclic derivatives of pyridopyrazolopyrazine, dipyridopyrazole, and pyridopyrazolopyrimidine types was undertaken at room temperature. Against all odds, the key oxidative cyclization step was successfully applied to two electron-poor heteroaromatic partners, and theoretical calculations were performed to rationalize the proposed mechanism for the N-N bond formation. Measurements of the fluorescence properties showed the strong impact of the number and position of nitrogen in the tricyclic scaffold. Among the seven families studied, pyridopyrazolopyrazine offers the best fluorescence properties in terms of brightness.
Collapse
Affiliation(s)
- Moussa Ndiaye
- Université d'Orléans, CNRS, ICOA, UMR 7311, Orléans 45067, France
| | - Frédéric Robert
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | | | - Franck Suzenet
- Université d'Orléans, CNRS, ICOA, UMR 7311, Orléans 45067, France
| |
Collapse
|
2
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2025; 20:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
3
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Cao P, Fan G, Zhao X, Ren X, Wang Y, Wang Y, Gao Q. Regioselective synthesis of 3,4-diarylpyrimido[1,2- b]indazole derivatives enabled by iron-catalyzed ring-opening of styrene oxides. Chem Commun (Camb) 2024; 60:11742-11745. [PMID: 39319418 DOI: 10.1039/d4cc03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The first synthesis of 3,4-diarylpyrimido[1,2-b]indazole derivatives from 3-aminoindazoles has been realized. The FeCl3-catalyzed intermolecular epoxide ring-opening reaction altered the order of annulation, with the free primary NH2 groups in 3-aminoindazoles preferentially reacting with styrene oxides instead of aromatic aldehydes. This protocol is further highlighted by its broad substrate compatibility, high chemo- and regioselectivities, and the late-stage modifications of bioactive molecules. Without aromatic aldehydes, the synthesis of 3-aryl-4-acylpyrimido[1,2-b]indazole derivatives can also be accomplished using alternative reaction conditions.
Collapse
Affiliation(s)
- Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xiaofei Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xinyu Ren
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuru Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
5
|
Shen X, Yu ZC, Zhou Y, Wu YD, Wu AX. Divergent synthesis of pyrrolidone fused pyrimido[1,2- b]indazole through selective trapping of an enone intermediate by 1 H-indazol-3-amine. Chem Commun (Camb) 2024; 60:9781-9784. [PMID: 39158556 DOI: 10.1039/d4cc03483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
An oxidant-controlled divergent synthesis of a pyrrolidone fused pyrimido[1,2-b]indazole skeleton was developed through selective cyclization of an in situ generated enone intermediate and 1H-indazol-3-amine. The one-pot, metal-free process formed three C-N bonds, one C-C bond, and a tetrasubstituted carbon stereocenter containing a hydroxyl group. This method not only allowed for the synthesis of over 60 new pyrrolidone fused pyrimido[1,2-b]indazole derivatives, but was also compatible with the transformation of complex active molecules and the derivation of target products. Significantly, product 4q exhibited aggregation-induced emission (AIE) characteristics without any further modification.
Collapse
Affiliation(s)
- Xi Shen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
You X, Wang B, Wen F, Li Z. Construction of pyrazolo[1,5- a]pyrimidines and pyrimido[1,2- b]indazoles with calcium carbide as an alkyne source. Org Biomol Chem 2024; 22:5822-5826. [PMID: 38953741 DOI: 10.1039/d4ob00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
An efficient method for the construction of 5-arylpyrazolo[1,5-a]pyrimidines using calcium carbide as a solid alkyne source instead of flammable and explosive gaseous acetylene, pyrazole-3-amine and (hetero)aromatic aldehydes as starting materials in the presence of a copper mediator is described. Meanwhile, 2-arylpyrimido[1,2-b]indazoles are also synthesized under similar conditions using indazole-3-amine as a substitute for pyrazole-3-amine as a starting material. The method has salient features such as the use of an inexpensive and easy-to-handle alkyne source, commercially available substrates, wide functional group tolerance, a low-cost mediator, and simple workup procedures. This protocol can also be extended to gram-scale synthesis.
Collapse
Affiliation(s)
- Xinjie You
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Botao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Fei Wen
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University, Lanzhou 730022, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
7
|
Ma LL, Zhou Y, Tang YX, Chen T, Wang ZH, Wu YD, Wang JG, Wu AX. I 2-DMSO-Mediated Construction of 2,3- and 2,4-Disubstituted Pyrimido[1,2- b]indazole Skeletons. J Org Chem 2024; 89:3941-3953. [PMID: 38421294 DOI: 10.1021/acs.joc.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic method for constructing 2,3- and 2,4-disubstituted pyrimidio[1,2-b]indazole skeletons through I2-DMSO-mediated and substrate-controlled regioselective [4 + 2] cyclization is reported. The reaction conditions are mild, its operation is simple, and the substrate scope is wide. More than 60 pyrimidio[1,2-b]indazole derivatives have been synthesized, providing a new methodology for constructing related molecules and potentially enriching bioactive-molecule libraries.
Collapse
Affiliation(s)
- Lin-Lin Ma
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zheng-Hao Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun-Gang Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Tellal S, Jismy B, Hikem-Oukacha D, Abarbri M. Synthesis of Trifluoromethylated Pyrimido[1,2- b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SN Ar Reactions. Molecules 2023; 29:44. [PMID: 38202627 PMCID: PMC10779788 DOI: 10.3390/molecules29010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields.
Collapse
Affiliation(s)
- Sakina Tellal
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| | - Djamila Hikem-Oukacha
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| |
Collapse
|
9
|
Zhou Y, Lei SG, Wang LS, Ma JT, Yu ZC, Wu YD, Wu AX. I 2-Promoted gem-Diarylethene Involved Aza-Diels-Alder Reaction and Wagner-Meerwein Rearrangement: Construction of 2,3,4-Trisubstituted Pyrimido[1,2- b]indazole Skeletons. Org Lett 2023; 25:3386-3390. [PMID: 37154544 DOI: 10.1021/acs.orglett.3c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A [3 + 1 + 2] cyclization-rearrangement reaction scheme was developed to synthesize pyrimido[1,2-b]indazoles from aryl methyl ketones, 3-aminoindazoles, and gem-diarylethenes. This metal-free process proceeds via a sequential aza-Diels-Alder reaction and Wagner-Meerwein rearrangement, and a possible reaction mechanism was demonstrated based on control experiments. This method exhibits good substrate compatibility and allows simple reaction conditions. Moreover, the products display significant aggregation-induced emission characteristics after simple modifications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
10
|
Ben Hassen M, Msalbi D, Jismy B, Elghali F, Aifa S, Allouchi H, Abarbri M, Chabchoub F. Three Component One-Pot Synthesis and Antiproliferative Activity of New [1,2,4]Triazolo[4,3- a]pyrimidines. Molecules 2023; 28:molecules28093917. [PMID: 37175327 PMCID: PMC10180348 DOI: 10.3390/molecules28093917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A series of new [1,2,4]triazolo[4,3-a]pyrimidine derivatives was prepared using a one-pot three-component synthesis from 5-amino-1-phenyl-1H-1,2,4-triazoles, aromatic aldehydes and ethyl acetoacetate. The compound structures were confirmed by IR, 1H-NMR, 13C-NMR, HRMS and X-ray analyses. The biological activity of these compounds as antitumor agents was evaluated. Their antitumor activities against cancer cell lines (MDA-MB-231 and MCF-7) were tested by the MTT in vitro method. Among them, compounds 4c and 4j displayed the best antitumor activity with IC50 values of 17.83 μM and 19.73 μM against MDA-MB-231 and MCF-7 cell lines, respectively, compared to the Cisplatin reference.
Collapse
Affiliation(s)
- Manel Ben Hassen
- Laboratory of Applied Chemistry: Heterocycles, Lipids, and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Badr Jismy
- Laboratory of Physico-Chemistry of Materials and Electrolytes for Energy (PCM2E), Faculty of Science and Technology, University of Tours, 37200 Tours, France
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Hassan Allouchi
- Faculty of Pharmacy, University of Tours, 37200 Tours, France
| | - Mohamed Abarbri
- Laboratory of Physico-Chemistry of Materials and Electrolytes for Energy (PCM2E), Faculty of Science and Technology, University of Tours, 37200 Tours, France
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids, and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
11
|
Sangepu VR, Sharma D, Venkateshwarlu R, Bhoomireddy RD, Jain KK, Kapavarapu R, Dandela R, Pal M. In silico studies, sonochemical synthesis and biological evaluation of 4-substituted pyrimido[1,2-b]indazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Messaoudi C, Jismy B, Jacquemin J, Allouchi H, M'Rabet H, Abarbri M. Stepwise synthesis of 2,6-difunctionalized ethyl pyrazolo[1,5- a]pyrimidine-3-carboxylate via site-selective cross-coupling reactions: experimental and computational studies. Org Biomol Chem 2022; 20:9684-9697. [PMID: 36416338 DOI: 10.1039/d2ob01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A variety of novel disubstituted 2-(alknyl, aryl and arylamine)-6-alkynylpyrazolo[1,5-a]pyrimidine derivatives was prepared via sequential site-selective cross-coupling reactions from 2,6-dibromopyrazolo[1,5-a]pyrimidine 3. The regio-controlled Sonogashira-type coupling of 3 with a wide range of terminal alkynes proceeded smoothly with excellent selectivity in favor of the C6-position through careful adjustment of the coupling conditions, followed by the subsequent introduction of alkynyl, aryl or arylamine groups at the C2-position via the Sonogashira, Suzuki-Miyaura and Buchwald-Hartwig coupling reactions, respectively. These promising results allow for further use and diversification of the chemically and biologically interesting pyrazolo[1,5-a]pyrimidine scaffold. In addition, computational studies were conducted to provide explanations for the origin of regioselectivity.
Collapse
Affiliation(s)
- Chaima Messaoudi
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France. .,Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| | - Johan Jacquemin
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hassan Allouchi
- Faculté de Pharmacie, Université de Tours, EA 7502 SIMBA, 31 Avenue Monge, 37200 Tours, France
| | - Hédi M'Rabet
- Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
13
|
Zeng Z, Chen C, SiTu Y, Shen Z, Chen Y, Zhang Z, Tang C, Jiang T. Anoectochilus roxburghii flavonoids extract ameliorated the memory decline and reduced neuron apoptosis via modulating SIRT1 signaling pathway in senescent mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115361. [PMID: 35609756 DOI: 10.1016/j.jep.2022.115361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus roxburghii (A. roxburghii) is a precious herb and folk medicine in many Asian countries. It has been used traditionally to treat diabetes, etc., and also used as a dietary therapy to delay senescence. AIM OF THE STUDY This study was to evaluate the neuroprotective effects of A. roxburghii flavonoids extract (ARF) and whether its effects were due to the regulation of SIRT1 signaling pathway in senescent mice and in D-galactose (D-gal) induced aging in SH-SY5Y cells. MATERIALS AND METHODS 18-month-old mice were randomly divided into senescent model, low-dose ARF, high-dose ARF and vitamin E group. 2-Month-old mice were as a control group. After 8 weeks treatment, Morris water maze (MWM) was performed. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), monoamine oxidase (MAO) and acetylcholinesterase (ACh-E) in the cortex were determined. Hippocampus morphologic changes were observed with haematoxylin and eosin (H&E), Nissl, senescence-associated-galactosidase (SA-β-gal) and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. Apoptosis-related molecular expressions in the hippocampus were performed by western blotting. Furthermore, after stimulated by EX527 (a SIRT1 inhibitor), the SIRT1-dependent neuroprotective effects of ARF were determined by measuring SRIT1 and p53 expression in SH-SY5Y aging cells induced by D-gal. RESULTS ARF could significantly ameliorate memory decline in senescent mice and reduce the generations of ROS, MDA and the activities of MAO and ACh-E, while increasing SOD activities in the cortex of aging mice. ARF obviously improved hippocampus pathological alterations, increased the number of Nissl bodies, while reducing senescent and apoptotic cells in senescent mice hippocampus. Further, ARF positively regulated SIRT1 expression, and reduced apoptosis-related molecules p53, p21 and Caspase-3 expression, while increasing the ratio of Bcl-2/Bax. In D-gal-induced SH-SY5Y cells, the effects of ARF on SIRT1 and p53, and the ability of scavenging ROS were mostly abolished after incubation with the EX527. CONCLUSIONS ARF, in a SIRT1-dependent manner, exerted neuroprotection via modulating SIRT1/p53 signaling pathway against memory decline and apoptosis due to age-induced oxidative stress damage in senescent mice.
Collapse
Affiliation(s)
- Zhijun Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Cong Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Ying SiTu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanfen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhisi Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunping Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Tao Jiang
- Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Qu Z, Ji X, Tang S, Deng GJ, Huang H. Hydrogen-Borrowing Reduction/Dehydrogenative Aromatization of Nitroarenes through Visible-Light-Induced Energy Transfer: An Entry to Pyrimidoindazoles and Carbazoles. Org Lett 2022; 24:7173-7177. [DOI: 10.1021/acs.orglett.2c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| |
Collapse
|
15
|
Guo Y, Gao Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 2022; 20:7138-7150. [PMID: 36043318 DOI: 10.1039/d2ob01348g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-based heterocycles are an important class of structural scaffolds distributed in biologically active natural products, medicinal chemistry, and agrochemicals. Hence, there is increasing interest in the development of novel synthetic strategies for the construction of these privileged structural motifs. Recently, 3-aminoindazoles have emerged as versatile synthons participating in a variety of condensation annulation, denitrogenative transannulation and rearrangement ring expansion reactions, which provide efficient synthetic routes for the formation of nitrogen heterocycles. This review systematically highlights for the first time the most recent advances in 3-aminoindazoles to provide a deep understanding of using 3-aminoindazoles as versatile synthons in organic transformations for synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
16
|
qin Z, Ma R, Ying S, Li F, Ma Y. Synthesis of substituted pyrimido[1,2‐b]indazoles through [3+2+1] cyclization of 3‐aminoindazoles, ketones and N,N‐dimethylaminoethanol as one carbon synthon. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Fanzhu Li
- Zhejiang Chinese Medical University CHINA
| | | |
Collapse
|
17
|
Cheng NN, Zhang LH, Ge R, Feng XE, Li QS. Triphenylpyrazoline ketone chlorophenols as potential candidate compounds against Parkinson’s disease: design, synthesis, and biological evaluation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Xu Z, Geng X, Cai Y, Wang L. A Straightforward Approach to Fluorinated Pyrimido[1,2- b]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. J Org Chem 2022; 87:6562-6572. [PMID: 35486919 DOI: 10.1021/acs.joc.2c00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and efficient three-component reaction with two C-N bonds and one C-F bond formation has been reported, which provides a straightforward route to a variety of fluorinated pyrimido[1,2-b]indazole derivatives. This transformation has the advantage of excellent functional group compatibility, including aliphatic and aromatic substituents enaminones. Moreover, metal and additives are not necessary for this reaction, which is of great significance for the synthesis and application of fluorinated heterocycles.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, PR China
| |
Collapse
|
19
|
Qin Z, Zhang R, Ying S, Ma Y. Iron-catalyzed [3+2+1] annulation of 2-aminobenzimidazoles/3-aminopyrazoles and aromatic alkynes using N,N-dimethylaminoethanol as one carbon synthon for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-b]indazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient method for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-b]indazoles from 2-aminobenzimidazoles/3-aminoindazoles, alkynes and N,N-dimethylaminoethanol in a three-component [3+2+1] annulation catalyzed by FeCl3 has been established, where N,N-dimethylaminoethanol...
Collapse
|
20
|
Elkamhawy A, Woo J, Gouda NA, Kim J, Nada H, Roh EJ, Park KD, Cho J, Lee K. Melatonin Analogues Potently Inhibit MAO-B and Protect PC12 Cells against Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101604. [PMID: 34679739 PMCID: PMC8533333 DOI: 10.3390/antiox10101604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) metabolizes dopamine and plays an important role in oxidative stress by altering the redox state of neuronal and glial cells. MAO-B inhibitors are a promising therapeutical approach for Parkinson’s disease (PD). Herein, 24 melatonin analogues (3a–x) were synthesized as novel MAO-B inhibitors with the potential to counteract oxidative stress in neuronal PC12 cells. Structure elucidation, characterization, and purity of the synthesized compounds were performed using 1H-NMR, 13C-NMR, HRMS, and HPLC. At 10 µM, 12 compounds showed >50% MAO-B inhibition. Among them, compounds 3n, 3r, and 3u–w showed >70% inhibition of MAO-B and IC50 values of 1.41, 0.91, 1.20, 0.66, and 2.41 µM, respectively. When compared with the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 3n, 3r, 3u, and 3v demonstrated better selectivity indices (SI > 71, 109, 83, and 151, respectively). Furthermore, compounds 3n and 3r exhibited safe neurotoxicity profiles in PC12 cells and reversed 6-OHDA- and rotenone-induced neuronal oxidative stress. Both compounds significantly up-regulated the expression of the anti-oxidant enzyme, heme oxygenase (HO)-1. Treatment with Zn(II)-protoporphyrin IX (ZnPP), a selective HO-1 inhibitor, abolished the neuroprotective effects of the tested compounds, suggesting a critical role of HO-1 up-regulation. Both compounds increased the nuclear translocation of Nrf2, which is a key regulator of the antioxidative response. Taken together, these data show that compounds 3n and 3r could be further exploited for their multi-targeted role in oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| |
Collapse
|
21
|
Elkamhawy A, Kim HJ, Elsherbeny MH, Paik S, Park JH, Gotina L, Abdellattif MH, Gouda NA, Cho J, Lee K, Nim Pae A, Park KD, Roh EJ. Discovery of 3,4-dichloro-N-(1H-indol-5-yl)benzamide: A highly potent, selective, and competitive hMAO-B inhibitor with high BBB permeability profile and neuroprotective action. Bioorg Chem 2021; 116:105352. [PMID: 34562673 DOI: 10.1016/j.bioorg.2021.105352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mohamed H Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
22
|
Jismy B, El Qami A, Jacquemin J, Guillot R, Tikad A, Abarbri M. Efficient Synthesis of
tert
‐Butyl 2,4‐Dialkynylated and 2‐Alkynylated‐4‐Arylated‐1
H
‐Imidazole‐1‐Carboxylate
via
Regioselective Sonogashira Cross‐Coupling Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Université de Tours Faculté des Sciences et Techniques Avenue Monge Faculté des Sciences, Parc de Grandmont 37200 Tours France
| | - Abdelkarim El Qami
- Laboratoire de Chimie Physique et de Chimie Bioorganique URAC 22 Département de Chimie Université Hassan II de Casablanca Faculté des Sciences et Techniques de Mohammedia B.P. 146 28800 Mohammedia Morocco
| | - Johan Jacquemin
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Université de Tours Faculté des Sciences et Techniques Avenue Monge Faculté des Sciences, Parc de Grandmont 37200 Tours France
| | - Regis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182 Université Paris Saclay 91405 Orsay Cedex France
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles Département de Chimie Faculté des Sciences Université Moulay Ismail B.P. 11201, Zitoune 50050 Meknès Morocco
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Université de Tours Faculté des Sciences et Techniques Avenue Monge Faculté des Sciences, Parc de Grandmont 37200 Tours France
| |
Collapse
|
23
|
Ramle AQ, Fei CC, Tiekink ERT, Basirun WJ. Indoleninyl-substituted pyrimido[1,2- b]indazoles via a facile condensation reaction. RSC Adv 2021; 11:24647-24651. [PMID: 35481028 PMCID: PMC9036913 DOI: 10.1039/d1ra04372b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
A new series of pyrimido[1,2-b]indazoles bearing indolenine moieties was synthesized through a simple condensation reaction with up to 94% yield. The present method features the versatile formation of a pyrimidine ring with a broad range of substrates, great functional group compatibility and facile synthetic operation. The work offers opportunities in drug development as well as in materials science.
Collapse
Affiliation(s)
- Abdul Qaiyum Ramle
- Department of Chemistry, University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chee Chin Fei
- Nanotechnology and Catalysis Research Centre, University of Malaya Kuala Lumpur 50603 Malaysia
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
| | - Wan Jefrey Basirun
- Department of Chemistry, University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
24
|
Koszła O, Stępnicki P, Zięba A, Grudzińska A, Matosiuk D, Kaczor AA. Current Approaches and Tools Used in Drug Development against Parkinson's Disease. Biomolecules 2021; 11:897. [PMID: 34208760 PMCID: PMC8235487 DOI: 10.3390/biom11060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
25
|
Liu X, Zhou J, Lin J, Zhang Z, Wu S, He Q, Cao H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- b]indazole from 3-Aminoindazoles and Ynals. J Org Chem 2021; 86:9107-9116. [PMID: 34132097 DOI: 10.1021/acs.joc.1c01094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A straightforward and novel controllable site-selective construction of 2- and 4-substituted pyrimido[1,2-b]indazole from 3-aminoindazoles and ynals has been developed. The high regioselectivity of this reaction could be easily switched by converting different catalytic systems. In this way, a series of 2- and 4-substituted pyrimido[1,2-b]indazole derivatives were obtained in moderate to good yields. In addition, the photophysical properties of compound 3a prepared by the present method were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Zemin Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Suying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| |
Collapse
|