1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Mendez-Arriaga JM. Platinum Group Metals against Parasites: State of the Art and Future Perspectives. Med Chem 2025; 21:2-10. [PMID: 39916434 DOI: 10.2174/0115734064324855240806052735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 05/08/2025]
Abstract
BACKGROUND Globally, parasitic diseases are considered among the neglected diseases. Clinically, several drugs are used in treatment, however due to drug resistance and multidrug resistance and the low investment in new research lines, there has been a failure in the treatment of parasitic illnesses. OBJECTIVES The present mini-review is a comprehensive review of the use of platinum group metals as biological agents. It aims to establish the actual state of the art of these metal elements in the antiparasitic activity-specific area and define the future possibilities of action. METHODS The review comprises more than 100 research works done in this field. The differences between platinum group metals chemistry and their use as metal complexes with biological activity have been discussed. RESULTS This review highlighted the platinum group metal's potential as an antiparasitic agent for different diseases. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for parasitic disease therapy.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Arriaga
- Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
3
|
Hossain MM, Soha K, Rahman A, Auwal A, Pronoy TUH, Rashel KM, Nurujjaman M, Rahman H, Roy TG, Khanam JA, Islam F. Rhodium complex [RhLI 2]I: a novel anticancer agent inducing tumor inhibition and apoptosis. Discov Oncol 2024; 15:782. [PMID: 39692939 DOI: 10.1007/s12672-024-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Numerous chemotherapeutic agents are currently employed in cancer treatment, but many are associated with significant side effects. This study aims to identify a novel anticancer drug that minimizes or eliminates these adverse effects. The anticancer activity of the Rhodium (III) complex cis-[RhLI2]I was evaluated through both in vivo and in vitro functional assays. Apoptosis in cancer cells post-treatment was assessed using microscopy and gene expression analysis. In cytotoxicity screening via the brine shrimp lethality bioassay, the compound exhibited an LC50 value of 25.90 µg/mL (P < 0.001). It also achieved an 88.96% inhibition of cell growth (P < 0.001), an 82.39% increase in lifespan (P < 0.001), and a significant reduction in tumor weight at a dosage of 200 µg/kg in Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. Restoration of hematological parameters, such as RBC, WBC, and hemoglobin levels, was observed in treated tumor-bearing mice compared to untreated EAC-bearing mice. The compound inhibited the growth and proliferation of breast cancer (MCF7) cells in a dose-dependent manner, achieving a maximum inhibition of 88.9% at 200 µg/mL. Apoptotic induction in MCF7 cells occurred through the upregulation of p53, Bax, caspase-3, -8, and -9, alongside the downregulation of the anti-apoptotic protein Bcl-2. No long-term adverse effects on hematological or biochemical parameters or tissue levels were observed in the mice. Given these findings, this compound demonstrates significant cytotoxic effects and has the potential to serve as a promising chemotherapeutic agent, warranting further investigation at more advanced stages.
Collapse
Affiliation(s)
- M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Soha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Arifur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - K M Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tapashi G Roy
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Queenslan, 4222, Australia.
| |
Collapse
|
4
|
Audzeyenka I, Piwkowska A, Rogacka D, Makowski M, Kowalik M. Biological Evaluation of a Rhodium(III) Bipyridylsulfonamide Complex: Effects on Mitochondrial Dynamics and Cytoskeletal Remodeling in Breast Cancer Cells. J Med Chem 2024; 67:21364-21379. [PMID: 39576967 DOI: 10.1021/acs.jmedchem.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (2) and its ligand (L) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound 2 also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| | - Mateusz Kowalik
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Li W, Li S, Zhu M, Xu G, Man X, Zhang Z, Liang H, Yang F. Developing a Rhodium(III) Complex to Reprogram the Tumor Immune and Metabolic Microenvironments: Overcoming Multidrug Resistance and Metastasis in Non-Small Cell Lung Cancer. J Med Chem 2024; 67:17243-17258. [PMID: 39298516 DOI: 10.1021/acs.jmedchem.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To effectively inhibit the growth and metastasis of non-small cell lung cancer (NSCLC) and overcome its multidrug resistance (MDR), we designed and synthesized a series of rhodium (Rh, III) 2-benzoylpyridine thiosemicarbazone complexes. Through studying their structure-activity relationships, we identified the Rh(III) complex (Rh4) with excellent cytotoxicity against multidrug-resistant lung cancer cells (A549/ADR cells). Additionally, we successfully constructed an apoferritin (AFt) nanoparticle (NP) delivery system (AFt-Rh4 NPs). Importantly, AFt-Rh4 NPs not only exhibited excellent antitumor and antimetastatic capabilities against multidrug-resistant NSCLC in vivo but also demonstrated enhanced targeting ability and reduced systemic toxicity and adverse effects. Furthermore, we confirmed and elucidated the mechanisms by which Rh4/AFt-Rh4 NPs inhibit tumor metastasis and reverse MDR in NSCLC. This was achieved by reprogramming the immune and metabolic tumor microenvironments through induction of immunogenic cell death and inhibition of dual-energy metabolism.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
6
|
Wang FY, Yang LM, Xiong XL, Yang J, Yang Y, Tang JQ, Gao L, Lu Y, Wang Y, Zou T, Liang H, Huang KB. Rhodium(III) Complex Noncanonically Potentiates Antitumor Immune Responses by Inhibiting Wnt/β-Catenin Signaling. J Med Chem 2024; 67:13778-13787. [PMID: 39134504 DOI: 10.1021/acs.jmedchem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/β-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in β-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.
Collapse
Affiliation(s)
- Feng-Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiao-Lin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiu-Qin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lei Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
7
|
Caković A, Ćoćić D, Živanović M, Janković N, Milivojević N, Delibašić M, Kostić M, Radojević I, Grujović M, Marković KG, Klisurić OR, Vraneš M, Bogojeski J. Enhancing Bioactivity of N,N,N-Chelating Rhodium(III) Complexes with Ionic Liquids: Toward Targeted Cancer Therapy. J Med Chem 2024. [PMID: 39058952 DOI: 10.1021/acs.jmedchem.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This study investigates the potential of using ionic liquids as cosolvents to enhance the solubility and activity of poorly soluble rhodium(III) complexes, particularly those with diene, pyridine derivatives, and camphor-derived bis-pyrazolylpyridine ligands, in relation to 5'-GMP, CT-DNA, and HSA as well as their biological activity. Findings indicate that ionic liquids significantly increase the substitution activity of these complexes toward 5'-GMP while only marginally affecting DNA/HSA binding affinities with molecular docking, further confirming the experimental results. Lipophilicity assessments indicated good lipophilicity. Notably, cytotoxicity studies show that Rh2 is selectively effective against HeLa cancer cells, with IL1 and IL10 modulating the cytotoxic effects. Redox evaluations indicate that rhodium complexes induce oxidative stress in cancerous cells while maintaining redox balance in noncancerous cells. By elucidating the role of ionic liquids in modulating these effects, the study proposes a promising avenue for augmenting the efficacy and selectivity of cancer treatments, thus opening new horizons in cancer therapeutics.
Collapse
Affiliation(s)
- Angelina Caković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Živanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marija Delibašić
- University of Belgrade, Faculty of Biology, Center for Forensic and Applied Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marina Kostić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ivana Radojević
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Mirjana Grujović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Katarina G Marković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Bogojeski
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
8
|
Huang XQ, Wu RC, Liang JM, Zhou Z, Qin QP, Liang H. Anticancer activity of 8-hydroxyquinoline-triphenylphosphine rhodium(III) complexes targeting mitophagy pathways. Eur J Med Chem 2024; 272:116478. [PMID: 38718624 DOI: 10.1016/j.ejmech.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Metallodrugs exhibiting distinct mechanisms of action compared with cisplatin hold promise for overcoming cisplatin resistance and improving the efficacy of anticancer drugs. In this study, a new series of rhodium (Rh)(III) complexes containing tris(triphenylphosphine)rhodium(I) chloride [(TPP)3RhCl] (TPP = triphenylphosphine, TPP=O = triphenylphosphine oxide) and 8-hydroxyquinoline derivatives (H-XR1-H-XR4), namely [Rh(XR1)2(TPP)Cl]·(TPP=O) (Yulin Normal University-1a [YNU-1a]), [Rh(XR2)2(TPP)Cl] (YNU-1b), [Rh(XR3)2(TPP)Cl] (YNU-1c), and [Rh(XR4)2(TPP)Cl] (YNU-1d), was synthesized and characterized via X-ray diffraction, mass spectrometry and IR. The cytotoxicity of the compounds YNU-1a-YNU-1d in Hep-G2 and HCC1806 human cancer cell lines and normal HL-7702 cell line was evaluated. YNU-1c exhibited cytotoxicity and selectivity in HCC1806 cells (IC50 = 0.13 ± 0.06 μM, selectivity factor (SF) = 384.6). The compounds YNU-1b and YNU-1c, which were selected for mechanistic studies, induced the activation of apoptotic pathways and mitophagy. In addition, these compounds released cytochrome c, cleaved caspase-3/pro-caspase-3 and downregulated the levels of mitochondrial respiratory chain complexes I/IV (M1 and M4) and ATP. The compound YNU-1c, which was selected for in vivo experiments, exhibited tumor growth inhibition (58.9 %). Importantly, hematoxylin and eosin staining and TUNEL revealed that HCC1806 tumor tissues exhibited significant apoptotic characteristics. YNU-1a-YNU-1d compounds are promising drug candidates that can be used to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Jian-Min Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Das N, Bora B, Upadhyay A, Das D, Bera A, Goswami TK. Cu(II) flavonoids as potential photochemotherapeutic agents. Dalton Trans 2024; 53:3316-3329. [PMID: 38260975 DOI: 10.1039/d3dt02663a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flavonoids, naturally derived polyphenolic compounds, have received significant attention due to their remarkable biochemical properties that offer substantial health benefits to humans. In this work, a series of six Cu(II) flavonoid complexes of the formulation [Cu(L1)(L2)](ClO4) where L1 is 3-hydroxy flavone (HF1, 1 and 4), 4-fluoro-3-hydroxy flavone (HF2, 2 and 5), and 2,6-difluoro-3-hydroxy flavone (HF3, 3 and 6); L2 is 1,10-phenanthroline (phen, 1-3) and 2-(anthracen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip, 4-6) were successfully synthesized, fully characterized and also evaluated for their in vitro photo-triggered cytotoxicity in cancer cells. The single-crystal X-ray diffraction structure of complex 2 shows square pyramidal geometry around the Cu(II) center. The complexes 1-6 showed quasi-reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple at ∼-0.230 V with a very large ΔEp value of ∼350-480 mV against the Ag/AgCl reference electrode in DMF-0.1 M tetrabutylammonium perchlorate (TBAP) at a scan rate of 50 mV s-1. The complexes were found to have considerable binding propensity for human serum albumin (HSA) and calf thymus DNA (ct-DNA). The complexes displayed remarkable dose-dependent photocytotoxicity in visible light (400-700 nm) in both A549 (human lung cancer) and MCF-7 (human breast cancer) cell lines while remaining significantly less toxic in darkness. They were found to be much less toxic to HPL1D (immortalized human peripheral lung epithelial) normal cells compared to A549 and MCF-7 cancer cells. Upon exposure to visible light, they generate reactive oxygen species, which are thought to be the main contributors to the death of cancer cells. In the presence of visible light, the complexes predominantly elicit an apoptotic mode of cell death. Complex 6 preferentially localizes in the mitochondria of A549 cells.
Collapse
Affiliation(s)
- Namisha Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Bidisha Bora
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Dhananjay Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
10
|
Kostova I. Anticancer Metallocenes and Metal Complexes of Transition Elements from Groups 4 to 7. Molecules 2024; 29:824. [PMID: 38398576 PMCID: PMC10891901 DOI: 10.3390/molecules29040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
With the progression in the field of bioinorganic chemistry, the role of transition metal complexes as the most widely used therapeutics is becoming a more and more attractive research area. The complexes of transition metals possess a great variety of attractive pharmacological properties, including anticancer, anti-inflammatory, antioxidant, anti-infective, etc., activities. Transition metal complexes have proven to be potential alternatives to biologically active organic compounds, especially as antitumor agents. The performance of metal coordination compounds in living systems is anticipated to differ generally from the action of non-metal-containing drugs and may offer unique diagnostic and/or therapeutic opportunities. In this review, the rapid development and application of metallocenes and metal complexes of elements from Groups 4 to 7 in cancer diagnostics and therapy have been summarized. Most of the heavy metals discussed in the current review are newly discovered metals. That is why the use of their metal-based compounds has attracted a lot of attention concerning their organometallic and coordination chemistry. All of this imposes more systematic studies on their biological activity, biocompatibility, and toxicity and presupposes further investigations.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
11
|
Paciotti R, Marrone A. A computational insight on the aromatic amino acids conjugation with [Cp*Rh(H 2O) 3] 2+ by using the meta-dynamics/FMO3 approach. J Mol Model 2023; 30:4. [PMID: 38082186 PMCID: PMC10713709 DOI: 10.1007/s00894-023-05794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
CONTEXT Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(H2O)3]2+ complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6. In this computational work, in order to deepen the mechanism of this chemoselective conjugation, we study the ligand exchange reaction between [Cp*Rh(H2O)3]2+ and three small molecules, namely p-cresol, 3-methylimidazole, and toluene, selected as mimetic of aromatic side chains of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe), respectively. Our outcomes suggest that the high selectivity for Tyr side chain might be related to OH group able to affect both thermodynamic and kinetic of ligand exchange reaction, due to its ability to act as both H bond acceptor and donor. These mechanistic aspects can be used to design new metal drugs containing the [Cp*Rh]2+ scaffold targeting specifically Tyr residues involved in biological/pathological processes such as phosphorylation by means of Tyr-kinase enzyme and protein-protein interactions. METHODS The geometry of three encounter complexes and product adducts were optimized at the B3LYP//CPCM/ωB97X-D level of theory, adopting the 6-311+G(d,p) basis set for all non-metal atoms and the LANL2DZ pseudopotential for the Rh atom. Meta-dynamics RMSD (MTD(RMSD)) calculations at GFN2-xTB level of theory were performed in NVT conditions at 298.15 K to investigate the bioconjugation reactions (simulation time: 100 ps; integration step 2.0; implicit solvent model: GBSA). The MTD(RMSD) simulation was performed in two replicates for each encounter complex. Final representative subsets of 100 structures for each run were gained with a sampling rate of 1 ps and analyzed by performing single point calculations using the FMO3 method at RI-MP2/6-311G//PCM[1] level of theory, adopting the MCP-TZP core potential for Rh atom.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy.
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy
| |
Collapse
|
12
|
Margariti A, Papakonstantinou VD, Stamatakis GM, Demopoulos CA, Machalia C, Emmanouilidou E, Schnakenburg G, Nika MC, Thomaidis NS, Philippopoulos AI. First-Row Transition Metal Complexes Incorporating the 2-(2'-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023; 28:6899. [PMID: 37836742 PMCID: PMC10574351 DOI: 10.3390/molecules28196899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.
Collapse
Affiliation(s)
- Antigoni Margariti
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Vasiliki D. Papakonstantinou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - George M. Stamatakis
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.D.P.); (G.M.S.); (C.A.D.); (C.M.); (E.E.)
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany;
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.-C.N.); (N.S.T.)
| | - Athanassios I. Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
13
|
Cao S, Wang A, Li K, Lin Z, Yang H, Zhang X, Qiu J, Tai X. A novel tetranuclear Cu(ii) complex for DNA-binding and in vitro anticancer activity. RSC Adv 2023; 13:26324-26329. [PMID: 37671352 PMCID: PMC10476018 DOI: 10.1039/d3ra03624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
A novel tetranuclear Cu(ii) complex (TNC) was successfully synthesized and characterized by X-ray single crystal diffraction. The interaction of the complex with calf thymus DNA (CT-DNA) has been studied by UV-vis absorption titration, fluorescence technology and molecular docking. The results indicated that TNC could bind to the DNA through an intercalative mode. The agarose gel electrophoresis experiment showed that TNC could cleave supercoiled plasmid DNA into linear DNA. The anticancer activity of TNC was tested on four cancer cell lines: MCF7, A549, 4T1 and HepG2. The results indicated that TNC shown significant activity against all of above cell lines.
Collapse
Affiliation(s)
- Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Anlin Wang
- Affiliated Beijing Chaoyang Hospital, Capital Medical University No. 8 Gongren Tiyuchang Nanlu, Chaoyang District Beijing 100020 P. R. China
| | - Kaoxue Li
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Zhiteng Lin
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Hongwei Yang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xiaolei Zhang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Jianmei Qiu
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xishi Tai
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| |
Collapse
|
14
|
Fahmy HM, Abdel-Rahman FM, El-Sayed AA, El-Sherif AA. Study of novel bidentate heterocyclic amine-based metal complexes and their biological activities: cytotoxicity and antimicrobial activity evaluation. BMC Chem 2023; 17:78. [PMID: 37454081 PMCID: PMC10349454 DOI: 10.1186/s13065-023-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Metallic antitumor drugs with heterocyclic ligands, such as novel AMI (amino methyl imidazole) complexes [Pd(AMI)Cl2](1), [Cu(AMI)L1](2), and [Cu(AMI)L2·2H2O](3) where L1 = oxalate and L2 = malonate, were synthesized and characterized. Assessments included elemental analyses, mass spectrometry, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, and thermal analysis. The cytotoxicity of AMI complexes compared to cisplatin was assessed using MTT (3-[4,5-dimethylthiazol-2-yl] 2,5diphenyl tetrazolium bromide) assay with breast (MCF-7) and cervical (HeLa) cancer cell lines. After treating these cells with the AMI complexes' IC50 values for 48 h, malondialdehyde levels and catalase activity were used to assess oxidative stress, antioxidant activity was evaluated with DPPH radical scavenging method, comet assays assessed DNA damage, and DNA fragmentation was evaluated using the gel electrophoresis. In vitro, antimicrobial activity was assessed using a disc diffusion method. The anticancer activity results showed that IC50 (half-maximal inhibitory concentration) values of complex one, two, and three against MCF-7 and HeLa cancer cells are 0.156 ± 0.0006, 0.125 ± 0.001, 0.277 ± 0.002 μM respectively for MCF-7 cells and 0.222 ± 0.0005, 0.126 ± 0.0009, 0.152 ± 0.001 μM respectively for HeLa cells. Complex two demonstrated strong anticancer activity against MCF-7 and Hela cells. The study of oxidative stress parameters revealed that Malondialdehyde levels increased in cancer cell lines treated with complexes compared to untreated cells. Catalase activity decreased in cells treated with palladium chelate. The DPPH radical scavenging assay results identified that complex one was a more potent antioxidant in MCF-7 and Hela cells than other complexes with SC50 values of 227.5 ± 0.28 and 361 ± 1.2 μL/mL, respectively. The comet assay results showed that complex two caused significant DNA damage in MCF-7 and HeLa cancer cells treated. Antimicrobial assays identified complex three as the most effective. Copper complexes give better antifungal activity against A. flavus than the palladium complex. We conclude that complex two is the most active in both cell types and might be assessed as a clinically useful drug for breast cancer treatment. The significance of the current study is the synthesis of antitumor drugs containing heterocyclic ligands, such as novel AMI complexes, and the study of their biological activities.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
16
|
Zouaghi MO, Amri N, Hassen S, Arfaoui Y, Özdemir N, Özdemir I, Hamdi N. Biological determination, Molecular Docking and Hirshfeld surface analysis of rhoduim(I)-N-heterocyclic carbene complex: Synthesis, crystal structure, DFT calculations, Optical and Non Linear Optical properties. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
17
|
Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [( η5-C 5R 5)Co{P(OEt) 2O} 3] -, (R = H, Me; Et = -C 2H 5) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023; 28:molecules28041859. [PMID: 36838847 PMCID: PMC9964123 DOI: 10.3390/molecules28041859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs). Herein, the synthesis and biological investigation of a series of organometallic tin(II) and tin(IV) complexes, featuring the oxygen tripodal Kläui ligands [(η5-C5R5)Co{P(OEt)2O}3]-, {R = H, (LOEt-); Me (L*OEt-)}, are reported. Reaction of NaLOEt (1a) and NaL*OEt (1b) with SnCl2, yielded the rare four-coordinate LOEtSnCl (2a) and L*OEtSnCl (2b) complexes. Accordingly, LOEtSnPh3 (3a) and L*OEtSnPh3 (3b) were prepared, starting from Ph3SnCl. Characterization includes spectroscopy and X-ray diffraction studies for 2a, 2b and 3b. The antiplatelet activity of the lead complexes 2b and 3a (IC50 = 0.5 μΜ) is superior compared to that of 1a and 1b, while both complexes display a pronounced inhibitory activity against thrombin (IC50 = 1.8 μM and 0.6 μM). The in vitro cytotoxic activities of 3a and 2b on human Jurkat T lymphoblastic tumor cell line is higher than that of cisplatin.
Collapse
|
18
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
19
|
Ahmad MG, Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Ait‐Ramdane‐Terbouche C, Elazara ZS, Terbouche A, Lakhdari H, Khalfaoui M, Boumechhour A, Mezaoui D. Synthesis, Spectral Characterization, Antioxidant, Antimicrobial and Anticancer Activities of New Binuclear Copper and Rhodium Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chafia Ait‐Ramdane‐Terbouche
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques(CRAPC), BP384, Bou-Ismail RP 42004 Tipasa Algeria
| | - Zakaria Sid Elazara
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques(CRAPC), BP384, Bou-Ismail RP 42004 Tipasa Algeria
- Faculté de Chimie, USTHB 16111 Algiers Algeria
| | - Achour Terbouche
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques(CRAPC), BP384, Bou-Ismail RP 42004 Tipasa Algeria
| | - Houria Lakhdari
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques(CRAPC), BP384, Bou-Ismail RP 42004 Tipasa Algeria
| | | | - Abdenour Boumechhour
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques(CRAPC), BP384, Bou-Ismail RP 42004 Tipasa Algeria
| | - Djillali Mezaoui
- Laboratoire Sciences des Matériaux, Faculté de Chimie, USTHB 16111 Algiers Algeria
| |
Collapse
|
21
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
22
|
Wang ZF, Nai XL, Xu Y, Pan FH, Tang FS, Qin QP, Yang L, Zhang SH. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans 2022; 51:12866-12875. [PMID: 35861361 DOI: 10.1039/d2dt01929a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel rhodium(III) complexes, [RhIII(QB1)Cl3(DMSO)] (RhN1), [RhIII(QB2)Cl3(CH3OH)]·CH3OH (RhN2), [RhIII(QB3)Cl3(CH3OH)]·CH3OH (RhS), and [RhIII(QB4)Cl3(DMSO)] (RhQ), bearing quinoline-benzopyran ligands (QB1-QB4) were synthesized and used to develop highly anticancer therapeutic and fluorescence imaging agents. Compared with the QB1-QB4 ligands (IC50 > 89.2 ± 1.7 μM for A549/DDP), RhN1, RhN2, RhS and RhQ exhibit selective cytotoxicity against lung carcinoma cisplatin-resistant A549/DDP (A549CDDP) cancer cells, with IC50 values in the range of 0.08-2.7 μM. The fluorescent imaging agent RhQ with the more extended planar QB4 ligand exhibited high anticancer activity in A549CDDP cells and was found in the cell nucleus fraction, whereas RhS had no fluorescence properties. RhQ and RhS may trigger cell apoptosis by causing DNA damage and initiating the mitochondrial dysfunction pathway. Furthermore, RhQ has a higher antitumor efficacy (ca. 55.3%) than RhS (46.4%) and cisplatin (CDDP, 33.1%), and RhQ demonstrated significantly lower toxicity in vivo than CDDP, making it a promising Rh(III)-based anticancer therapeutic and fluorescence imaging agent.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| | - Xiao-Ling Nai
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yue Xu
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Feng-Hua Pan
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Fu-Shun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China.
| | - Qi-Pin Qin
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Lin Yang
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| |
Collapse
|
23
|
Karaca EÖ, Çiftçi O, Özdemir İ, Karabıyık H, Karabıyık H, Gürbüz N, Özdemir İ, Mansour L, Youssef A, Hamdi N. Crystal structure, optical properties, spectroscopic characterization and density functional theory studies of a new rhodium(i)-imidazolidin-2-ylidene complexes: Synthesis, characterization and cytotoxic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Li Q, Liu Y, Zhao B, Lei J, Lu S, Gong W, Liang K, Wu J, Hong X, Xiao Y. A single-molecular ruthenium(II) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy. Chem Commun (Camb) 2022; 58:6546-6549. [PMID: 35579558 DOI: 10.1039/d2cc00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel NIR-II Ru(II) polypyridyl fluorophore Ru-1 dots for synergistic chemo-photothermal therapy against 4T1 tumors were designed and synthesized. Guided by in vivo NIR-II fluorescence imaging, the synergistic therapeutic efficacy, intracellular delivery, and biodistribution of the Ru-1 dots were precisely tracked in real-time.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Yishen Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Bingshan Zhao
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Siyu Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Wanxia Gong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ke Liang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Junzhu Wu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
25
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Sahyon HA, Althobaiti F, Ramadan AEMM, Fathy AM. Quercetin - based rhodium(III) complex: Synthesis, characterization and diverse biological potentials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
28
|
Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022; 12:12011-12052. [PMID: 35481063 PMCID: PMC9020348 DOI: 10.1039/d2ra00067a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and has emerged as a controversial public health issue worldwide. The increasing number of patients with T2DM on one hand, and serious long-term complications of the disease such as obesity, neuropathy, and vascular disorders on the other hand, have induced a huge economic impact on society globally. In this regard, inhibition of α-glucosidase, the enzyme responsible for the hydrolysis of carbohydrates in the body has been the main therapeutic approach to the treatment of T2DM. As α-glucosidase inhibitors (α-GIs) have occupied a special position in the current research and prescription drugs are generally α-GIs, researchers have been encouraged to design and synthesize novel and efficient inhibitors. Previously, the presence of a sugar moiety seemed to be crucial for designing α-GIs since they can attach to the carbohydrate binding site of the enzyme mimicking the structure of disaccharides or oligosaccharides. However, inhibitors lacking glycosyl structures have also shown potent inhibitory activity and development of non-sugar based inhibitors is accelerating. In this respect, in vitro anti-α-glucosidase activity of metal complexes has attracted lots of attention and this paper has reviewed the inhibitory activity of first-row transition metal complexes toward α-glucosidase and discussed their probable mechanisms of action.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
- Liosa Pharmed Parseh Company Shiraz Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
29
|
Microwave assisted synthesis of rhodium(+Ⅰ) N-heterocyclic carbene complexes and their cytotoxicity against tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Jakopec S, Pantalon Juraj N, Brozovic A, Jadreško D, Perić B, Kirin SI, Raić‐Malić S. Ferrocene conjugates linked by 1,2,3‐triazole and their Zn(II) and Cu(II) complexes: Synthesis, characterization and biological activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| | - Natalija Pantalon Juraj
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Anamaria Brozovic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology Ruđer Bošković Institute Zagreb Croatia
| | - Dijana Jadreško
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research Ruđer Bošković Institute Zagreb Croatia
| | - Berislav Perić
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Srećko I. Kirin
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Silvana Raić‐Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| |
Collapse
|
31
|
Vorobyeva SN, Shekhovtsov NA, Baidina IA, Sukhikh TS, Tkachev SV, Bushuev MB, Belyaev AV. The saga of rhodium(III) nitrate complexes and their speciation in solution: An integrated experimental and quantum chemical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Laconsay CJ, Pla-Quintana A, Tantillo DJ. Effects of Axial Solvent Coordination to Dirhodium Complexes on the Reactivity and Selectivity in C–H Insertion Reactions: A Computational Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Anna Pla-Quintana
- Department of Chemistry, University of California, Davis, California 95616, United States
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona 17003, Catalunya, Spain
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
33
|
Loreto D, Merlino A. The interaction of rhodium compounds with proteins: A structural overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|