1
|
Tchorz JS. Prometheus 2.0: drug-induced liver regeneration arising. Cell Res 2024; 34:541-542. [PMID: 38684779 PMCID: PMC11291901 DOI: 10.1038/s41422-024-00965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
2
|
Zwirner S, Abu Rmilah AA, Klotz S, Pfaffenroth B, Kloevekorn P, Moschopoulou AA, Schuette S, Haag M, Selig R, Li K, Zhou W, Nelson E, Poso A, Chen H, Amiot B, Jia Y, Minshew A, Michalak G, Cui W, Rist E, Longerich T, Jung B, Felgendreff P, Trompak O, Premsrirut PK, Gries K, Muerdter TE, Heinkele G, Wuestefeld T, Shapiro D, Weissbach M, Koenigsrainer A, Sipos B, Ab E, Zacarias MO, Theisgen S, Gruenheit N, Biskup S, Schwab M, Albrecht W, Laufer S, Nyberg S, Zender L. First-in-class MKK4 inhibitors enhance liver regeneration and prevent liver failure. Cell 2024; 187:1666-1684.e26. [PMID: 38490194 PMCID: PMC11011246 DOI: 10.1016/j.cell.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.
Collapse
Affiliation(s)
- Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; HepaRegeniX GmbH, Tübingen 72072, Germany
| | - Anan A Abu Rmilah
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Bent Pfaffenroth
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Philip Kloevekorn
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Athina A Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Svenja Schuette
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Roland Selig
- HepaRegeniX GmbH, Tübingen 72072, Germany; Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Kewei Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Erek Nelson
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Antti Poso
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
| | - Harvey Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Jia
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Minshew
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Michalak
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Cui
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | - Philipp Felgendreff
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Omelyan Trompak
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | | | - Katharina Gries
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas E Muerdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Georg Heinkele
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Torsten Wuestefeld
- Laboratory for In Vivo Genetics & Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University of Singapore, Singapore 637551, Singapore
| | | | | | - Alfred Koenigsrainer
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of General-, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Eiso Ab
- ZoBio B.V., Leiden 2333 CH, the Netherlands
| | | | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| | - Scott Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| |
Collapse
|
3
|
Jansen RA, Mainardi S, Dias MH, Bosma A, van Dijk E, Selig R, Albrecht W, Laufer SA, Zender L, Bernards R. Small-molecule inhibition of MAP2K4 is synergistic with RAS inhibitors in KRAS-mutant cancers. Proc Natl Acad Sci U S A 2024; 121:e2319492121. [PMID: 38377196 PMCID: PMC10907260 DOI: 10.1073/pnas.2319492121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | | | | | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen72074, Germany
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
| | - Lars Zender
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen72076, Germany
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg69120, Germany
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
4
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Pandimeena G, Mathavan T, Samuel EJJ, Milton Franklin Benial A. Quantum chemical, spectroscopic and molecular docking investigations of potential pulmonary fibrosis drug methyl 2-chloro 4-iodonicotinate. J Mol Recognit 2023; 36:e3001. [PMID: 36315423 DOI: 10.1002/jmr.3001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
In this work, the methyl 2-chloro 4-iodonicotinate (MCIN) was investigated to study the structural, spectroscopic and electronic properties using density functional theory (DFT) quantum chemical calculations. The most stable structure of MCIN was optimized by DFT/B3LYP method with a LanLD2Z basis set. The optimized parameters and vibrational wavenumbers were determined. The vibrational task of the molecule was done by potential energy distribution calculations. The 13 C NMR spectrum of the MCIN molecule was simulated by the Gauge-Invariant-Atomic Orbital method using a dimethyl sulfoxide solution and the isotropic chemical shift values of the molecule were calculated and observed. Ultraviolet-visible spectra were simulated and observed. The pharmaceutical activity was predicted using frontier molecular orbital and natural bond orbital analysis. The reactive sites of the MCIN molecule were determined using Mulliken atomic charge distribution, molecular electrostatic potential surface and the local reactivity analysis. The molecular docking analysis confirms that the title molecule can be used in drug design for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- G Pandimeena
- P.G. & Research Department of Physics, N.M.S.S.V.N. College, Madurai, India
| | - T Mathavan
- P.G. & Research Department of Physics, N.M.S.S.V.N. College, Madurai, India
| | - E James Jebaseelan Samuel
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT) university, Vellore, India
| | | |
Collapse
|
6
|
Hamdy NA, El Sayed MT, Hussein HAR, Mounier MM, Anwar MM. Synthesis of novel heterocyclic compounds bearing tetralin moiety of potential anticancer activity targeting the intrinsic apoptotic pathway. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nehal A. Hamdy
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mardia T. El Sayed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hoda A. R. Hussein
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Marwa M. Mounier
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Manal M. Anwar
- Therapeutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Structure-based discovery of 1-(3-fluoro-5-(5-(3-(methylsulfonyl)phenyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)phenyl)-3-(pyrimidin-5-yl)urea as a potent and selective nanomolar type-II PLK4 inhibitor. Eur J Med Chem 2022; 243:114714. [DOI: 10.1016/j.ejmech.2022.114714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023]
|
8
|
Scaffold modified Vemurafenib analogues as highly selective mitogen activated protein kinase kinase 4 (MKK4) inhibitors. Eur J Med Chem 2022; 240:114584. [PMID: 35868124 DOI: 10.1016/j.ejmech.2022.114584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4) has recently been identified as druggable target for the treatment of acute liver failure in RNAi experiments. In these experiments MKK4 was identified to be a major regulator in hepatocyte regeneration. Inhibitors thereof may serve as medication to promote liver regeneration or reducing hepatocyte death. Just a small number of potent inhibitors with acceptable selectivity towards relevant off-targets are known up to date. Among the known potent inhibitors, selectivity is highly sensitive towards minor modifications of the molecule, which makes it necessary to carefully balance between potency and selectivity. In the herein presented study, a new class of Vemurafenib-derived inhibitors was investigated with α-carbolines as new scaffold. This new scaffold showed a remarkable intrinsic selectivity towards the chosen off-targets, without affecting potency towards MKK4 on a broad range of structural modifications.
Collapse
|
9
|
Sun Y, Tang H, Wang X, Feng F, Fan T, Zhao D, Xiong B, Xie H, Liu T. Identification of 1 H-pyrazolo[3,4-b]pyridine derivatives as novel and potent TBK1 inhibitors: design, synthesis, biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem 2022; 37:1411-1425. [PMID: 35587686 PMCID: PMC9132415 DOI: 10.1080/14756366.2022.2076674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in coordinating the signalling pathways of innate immunity, involving in the process of neuroinflammation, autophagy, and oncogenesis. In current study, based on rational drug design strategy, we discovered a series of 1H-pyrazolo[3,4-b]pyridine derivatives as potent TBK1 inhibitors and dissected the structure–activity relationships (SARs). Through the several rounds of optimisation, compound 15y stood out as a potent inhibitor on TBK1 with an IC50 value of 0.2 nM and also displayed good selectivity. The mRNA detection of TBK1 downstream genes showed that compound 15y effectively inhibited TBK1 downstream IFN signalling in stimulated THP-1 and RAW264.7 cells. Meanwhile, compound 15y exhibited a micromolar antiproliferation effect on A172, U87MG, A375, A2058, and Panc0504 cell lines. Together, current results provided a promising TBK1 inhibitor 15y as lead compound for immune- and cancer-related drug discovery.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haotian Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Fang Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tiantian Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tongchao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
10
|
Tahir T, Tabassum R, Javed Q, Ali A, Ashfaq M, Shahzad MI. Synthesis, kinetics, structure-activity relationship and in silico ADME studies of new diazenyl azo-phenol derivatives against urease, SARS-CoV-2 main protease (Mpro) and ribosomal protein S1 (RpsA) of Mycobacterium tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
12
|
Barghash RF, Eldehna WM, Kovalová M, Vojáčková V, Kryštof V, Abdel-Aziz HA. One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as potent antileukemic agents. Eur J Med Chem 2021; 227:113952. [PMID: 34731763 DOI: 10.1016/j.ejmech.2021.113952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 01/10/2023]
Abstract
In the current study, we report on the development of novel series of pyrazolo[3,4-b]pyridine derivatives (8a-u, 11a-n, and 14a,b) as potential anticancer agents. The prepared pyrazolo[3,4-b]pyridines have been screened for their antitumor activity in vitro at NCI-DTP. Thereafter, compound 8a was qualified by NCI for full panel five-dose assay to assess its GI50, TGI and LC50 values. Compound 8a showed broad-spectrum anti-proliferative activities over the whole NCI panel, with outstanding growth inhibition full panel GI50 (MG-MID) value equals 2.16 μM and subpanel GI50 (MG-MID) range: 1.92-2.86 μM. Furthermore, pyrazolo[3,4-b]pyridines 8a, 8e-h, 8o, 8u, 11a, 11e, 11h, 11l and 14a-b were assayed for their antiproliferative effect against a panel of leukemia cell lines (K562, MV4-11, CEM, RS4;11, ML-2 and KOPN-8) where they possessed moderate to excellent anti-leukemic activity. Moreover, pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b were further explored for their effect on cell cycle on RS4;11 cells, in which they dose-dependently increased populations of cells in G2/M phases. Finally we analyzed the changes of selected proteins (HOXA9, MEIS1, PARP, BcL-2 and McL-1) related to cell death and viability in RS4;11 cells via Western blotting. Collectively, the obtained results suggested pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b as promising lead molecules for further optimization to develop more potent and efficient anticancer candidates.
Collapse
Affiliation(s)
- Reham F Barghash
- Institute of Chemical Industries Researches, National Research Centre, Dokki, Giza, P.O. Box 12622, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Markéta Kovalová
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| |
Collapse
|
13
|
Aggarwal R, Kumar S, Sadana R, Guzman A, Kumar V. Multicomponent synthesis, in vitro cytotoxic evaluation and molecular modelling studies of polyfunctionalized pyrazolo[3,4-b]pyridine derivatives against three human cancer cell lines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- CSIR-National Institute of Science Communication and Policy Research (CSIR-NIScPR), Pusa Gate, K.S. Krishnan Marg, New Delhi, India
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rachna Sadana
- Department of Natural Sciences, University of Houston, Houston, USA
| | - Andrea Guzman
- Department of Natural Sciences, University of Houston, Houston, USA
| | - Virender Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
14
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Pyridine Scaffolds, Phenols and Derivatives of Azo Moiety: Current Therapeutic Perspectives. Molecules 2021; 26:molecules26164872. [PMID: 34443460 PMCID: PMC8399416 DOI: 10.3390/molecules26164872] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Synthetic heterocyclic compounds have incredible potential against different diseases; pyridines, phenolic compounds and the derivatives of azo moiety have shown excellent antimicrobial, antiviral, antidiabetic, anti-melanogenic, anti-ulcer, anticancer, anti-mycobacterial, anti-inflammatory, DNA binding and chemosensing activities. In the present review, the above-mentioned activities of the nitrogen-containing heterocyclic compounds (pyridines), hydroxyl (phenols) and azo derivatives are discussed with reference to the minimum inhibitory concentration and structure–activity relationship, which clearly indicate that the presence of nitrogen in the phenyl ring; in addition, the hydroxyl substituent and the incorporation of a diazo group is crucial for the improved efficacies of the compounds in probing different diseases. The comparison was made with the reported drugs and new synthetic derivatives that showed recent therapeutic perspectives made in the last five years.
Collapse
|