1
|
Saeed A, Tahir A, Shah M, Hussain F, Sadiq A, Rashid U. Dihydropyrimidine-2-thione derivatives as SARS-CoV-2 main protease inhibitors: synthesis, SAR and in vitro profiling. RSC Adv 2025; 15:6424-6440. [PMID: 40013067 PMCID: PMC11864037 DOI: 10.1039/d4ra08449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
Despite the passage of approximately five years since the outbreak, an efficacious remedy for SARS-CoV-2 remains elusive, highlighting the urgent imperative for developing SARS-CoV-2 potent inhibitors. In our current study, we have unmasked the hitherto unrealized potential of dihydropyrimidine-2-thiones against the Main Protease (Mpro) of SARS-CoV-2. Employing a predictive docking tool, we identified promising lead compounds and optimized them via comprehensive Structural Activity Relationship (SAR) studies. Key design elements included proton donor/acceptor groups, six-membered rings, and fluorinated moieties to enhance interactions. These leads underwent in vitro inhibition assays to enhance their interaction with key Mpro amino acid residues. Our findings indicated that all synthesized compounds exhibited significant inhibition of the Mpro. Compounds 12j (IC50 = 0.063 μM), and 12l (IC50 = 0.054 μM) displayed exceptional in vitro binding affinities. In addition to their string inhibitory activity, CC50 values were assessed, confirming acceptable cytotoxicity profiles for potent compounds. Molecular dynamic simulation substantiated the binding mechanism revealing that compound 12l maintains robust stability with the target protein. Furthermore, compounds predicted to have minimal oral toxicity and high intestinal absorption make them promising candidates for drug development. These findings paved the way for the potent clinical application of these dihydropyrimidine-2-thiones as efficient SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Anees Saeed
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Ayesha Tahir
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Fahad Hussain
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand Chakdara 18000 Dir (L) KP Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus-22060 Pakistan
| |
Collapse
|
2
|
Suleman M, Moltrasio C, Tricarico PM, Marzano AV, Crovella S. Natural Compounds Targeting Thymic Stromal Lymphopoietin (TSLP): A Promising Therapeutic Strategy for Atopic Dermatitis. Biomolecules 2024; 14:1521. [PMID: 39766227 PMCID: PMC11673240 DOI: 10.3390/biom14121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with rising prevalence, marked by eczematous lesions, itching, and a weakened skin barrier often tied to filaggrin gene mutations. This breakdown allows allergen and microbe entry, with thymic stromal lymphopoietin (TSLP) playing a crucial role by activating immune pathways that amplify the allergic response. TSLP's central role in AD pathogenesis makes it a promising therapeutic target. Consequently, in this study, we used the virtual drug screening, molecular dynamics simulation, and binding free energies calculation approaches to explore the African Natural Product Database against the TSLP protein. The molecular screening identified four compounds with high docking scores, namely SA_0090 (-7.37), EA_0131 (-7.10), NA_0018 (-7.03), and WA_0006 (-6.99 kcal/mol). Furthermore, the KD analysis showed a strong binding affinity of these compounds with TSLP, with values of -5.36, -5.36, -5.34, and -5.32 kcal/mol, respectively. Moreover, the strong binding affinity of these compounds was further validated by molecular dynamic simulation analysis, which revealed that the WA_0006-TSLP is the most stable complex with the lowest average RMSD. However, the total binding free energies were -40.5602, -41.0967, -27.3293, and -51.3496 kcal/mol, respectively, showing the strong interaction between the selected compounds and TSLP. Likewise, these compounds showed excellent pharmacokinetics characteristics. In conclusion, this integrative approach provides a foundation for the development of safe and effective treatments for AD, potentially offering relief to millions of patients worldwide.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Paola Maura Tricarico
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| |
Collapse
|
3
|
Saliu JA. Machine Learning-Based Approach to Identify Inhibitors of Sterol-14-Alpha Demethylase: A Study on Chagas Disease. Bioinform Biol Insights 2024; 18:11779322241262635. [PMID: 39081668 PMCID: PMC11287730 DOI: 10.1177/11779322241262635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives Chagas Disease, caused by the parasite Trypanosoma cruzi, remains a significant public health concern, particularly in Latin America. The current standard treatment for Chagas Disease, benznidazole, is associated with various side effects, necessitating the search for alternative therapeutic options. In this study, we aimed to identify potential therapeutics for Chagas Disease through a comprehensive computational analysis. Methods A library of compounds derived from Cananga odorata was screened using a combination of pharmacophore modeling, structure-based screening, and quantitative structure-activity relationship (QSAR) analysis. The pharmacophore model facilitated the efficient screening of the compound library, while the structure-based screening identified hit compounds with promising inhibitory potential against the target enzyme, sterol-14-alpha demethylase. Results The QSAR model predicted the bioactivity of the hit compounds, revealing one compound to exhibit superior activity compared to benznidazole. Evaluation of the physicochemical, pharmacokinetic, toxicity, and medicinal chemistry properties of the hit compounds indicated their drug-like characteristics, oral bioavailability, ease of synthesis, and reduced toxicity profiles. Conclusion Overall, our findings present a promising avenue for the discovery of novel therapeutics for Chagas Disease. The identified hit compounds possess favorable drug-like properties and demonstrate potent inhibitory effects against the target enzyme. Further in vitro and in vivo studies are warranted to validate their efficacy and safety profiles.
Collapse
Affiliation(s)
- Jamiyu A Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
4
|
Grigoreva TA, Vorona SV, Novikova DS, Tribulovich VG. Rational Design Problematics of Peptide Nucleic Acids as SARS-CoV-2 Inhibitors. ACS OMEGA 2024; 9:33000-33010. [PMID: 39100288 PMCID: PMC11292644 DOI: 10.1021/acsomega.4c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The use of viral protein inhibitors has shown to be insufficiently effective in the case of highly variable SARS-CoV-2. In this work, we examined the possibility of designing agents that bind to a highly conserved region of coronavirus (+)RNA. We demonstrated that while the design of antisense RNAs is based on the complementary interaction of nitrogenous bases, it is possible to use semirigid docking methods in the case of unnatural peptide nucleic acids. The transition from N-(2-aminoethyl)glycine chain to a more conformationally rigid piperidine-containing backbone allowed us to significantly increase the affinity of structures to the target RNA.
Collapse
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular
Pharmacology, St. Petersburg State Institute of Technology (Technical
University), Moskovskii pr., 26, St. Petersburg 190013, Russia
| | - Svetlana V. Vorona
- Laboratory of Molecular
Pharmacology, St. Petersburg State Institute of Technology (Technical
University), Moskovskii pr., 26, St. Petersburg 190013, Russia
| | - Daria S. Novikova
- Laboratory of Molecular
Pharmacology, St. Petersburg State Institute of Technology (Technical
University), Moskovskii pr., 26, St. Petersburg 190013, Russia
| | - Vyacheslav G. Tribulovich
- Laboratory of Molecular
Pharmacology, St. Petersburg State Institute of Technology (Technical
University), Moskovskii pr., 26, St. Petersburg 190013, Russia
| |
Collapse
|
5
|
Suleman M, Sayaf AM, Khan A, Khan SA, Albekairi NA, Alshammari A, Agouni A, Yassine HM, Crovella S. Molecular screening of phytocompounds targeting the interface between influenza A NS1 and TRIM25 to enhance host immune responses. J Infect Public Health 2024; 17:102448. [PMID: 38815532 DOI: 10.1016/j.jiph.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response. METHODS In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25. RESULTS The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule. CONCLUSION Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Abrar Mohammad Sayaf
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Doctoral School, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar; College of Health Sciences-QU Health, Qatar University, 2713 Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
| |
Collapse
|
6
|
Najmi A, Alam MS, Thangavel N, Taha MME, Meraya AM, Albratty M, Alhazmi HA, Ahsan W, Haque A, Azam F. Synthesis, molecular docking, and in vivo antidiabetic evaluation of new benzylidene-2,4-thiazolidinediones as partial PPAR-γ agonists. Sci Rep 2023; 13:19869. [PMID: 37963936 PMCID: PMC10645977 DOI: 10.1038/s41598-023-47157-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia.
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O Box 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
7
|
Mohiuddin A, Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-133706. [PMID: 37584349 PMCID: PMC11348471 DOI: 10.2174/1871526523666230816151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Positive strides have been achieved in developing vaccines to combat the coronavirus-2019 infection (COVID-19) pandemic. Still, the outline of variations, particularly the most current delta divergent, has posed significant health encounters for people. Therefore, developing strong treatment strategies, such as an anti-COVID-19 medicine plan, may help deal with the pandemic more effectively. During the COVID-19 pandemic, some drug design techniques were effectively used to develop and substantiate relevant critical medications. Extensive research, both experimental and computational, has been dedicated to comprehending and characterizing the devastating COVID-19 disease. The urgency of the situation has led to the publication of over 130,000 COVID-19-related research papers in peer-reviewed journals and preprint servers. A significant focus of these efforts has been the identification of novel drug candidates and the repurposing of existing drugs to combat the virus. Many projects have utilized computational or computer-aided approaches to facilitate their studies. In this overview, we will explore the key computational methods and their applications in the discovery of small-molecule therapeutics for COVID-19, as reported in the research literature. We believe that the true effectiveness of computational tools lies in their ability to provide actionable and experimentally testable hypotheses, which in turn facilitate the discovery of new drugs and combinations thereof. Additionally, we recognize that open science and the rapid sharing of research findings are vital in expediting the development of much-needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Abu Mohiuddin
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| | - Sumanta Mondal
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| |
Collapse
|
8
|
Aodah AH, Balaha MF, Jawaid T, Khan MM, Ansari MJ, Alam A. Aegle marvels (L.) Correa Leaf Essential Oil and Its Phytoconstituents as an Anticancer and Anti- Streptococcus mutans Agent. Antibiotics (Basel) 2023; 12:835. [PMID: 37237738 PMCID: PMC10215268 DOI: 10.3390/antibiotics12050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aegle mamelons (A. marmelos) or Indian Bael leaves possess anti-cancerous and antibacterial properties and are used in the traditional medicine system for the treatment of oral infections. In the present study, the essential oil of the leaves of A. marmelos was explored for its anticancer, antioxidant, and anti-cariogenic properties. The hydro-distilled oil of A. marmelos leaves was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Monoterpene limonene (63.71%) was found to have the highest percentage after trans-2-Hydroxy-1,8-cineole and p-Menth-2,8-dien-1-ol. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to investigate the anticancer activity of the extracted oil against human oral epidermal carcinoma (KB), and the results showed significantly higher (**** p < 0.0001) anticancer activity (45.89%) in the doxorubicin (47.87%) when compared to the normal control. The antioxidant activity of the essential oil was evaluated using methods of DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). The results showed a significant (*** p < 0.001) percentage of inhibition of DPPH-induced free radical (70.02 ± 1.6%) and ABTS-induced free radical (70.7 ± 1.32%) at 100 µg/mL with IC50, 72.51 and 67.33 µg/mL, respectively, comparatively lower than standard compound ascorbic acid. The results of the molecular docking study of the significant compound limonene with the receptors tyrosinase and tyrosine kinase 2 supported the in vitro antioxidant potential. The anti-cariogenic activity was evaluated against Streptococcus mutans (S. mutans). Results showed a significant minimum inhibitor concentration of 0.25 mg/mL and the killing time was achieved at 3 to 6 h. The molecular-docking study showed that limonene inhibits the surface receptors of the S. mutans c-terminal domain and CviR protein. The study found that A. marmelos leaves have potential anti-carcinoma, antioxidant, and anti-cariogenic effects on human oral epidermal health, making them a valuable natural therapeutic agent for managing oral cancer and infections.
Collapse
Affiliation(s)
- Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.A.)
| | - Mohamed F. Balaha
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mohammed Moizuddin Khan
- Department of Basic Medical Sciences, College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.H.A.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Kumar S, Choudhary M. Design and molecular docking studies of {N 1-[2-(amino)ethyl]ethane-1,2-diamine}-[tris(oxido)]-molybdenum(VI) complex as a potential antivirus drug: from synthesis to structure. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2173589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
10
|
Chen R, Gao Y, Liu H, Li H, Chen W, Ma J. Advances in research on 3C-like protease (3CL pro) inhibitors against SARS-CoV-2 since 2020. RSC Med Chem 2023; 14:9-21. [PMID: 36760740 PMCID: PMC9890616 DOI: 10.1039/d2md00344a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 in late 2019 is still threatening global human health. Although some vaccines and drugs are available in the market, controlling the spread of the SARS-CoV-2 virus remains a huge challenge. 3C-like protease (3CLpro) is a highly conserved key protease for SARS-CoV-2 replication, and no relevant homologous protein with a similar cleavage site to 3CLpro has been identified in humans, highlighting that development of 3CLpro inhibitors exhibits great promise for treatment of COVID-19. In this review, the authors describe the structure and function of 3CLpro. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the SARS-CoV-2 3CLpro inhibitors reported since 2020 are classified into peptidomimetic covalent inhibitors, non-peptidomimetic covalent inhibitors and non-covalent small molecule inhibitors, and the representative inhibitors, their biological activities and binding models are highlighted. Collectively, we hope that all the information presented here will provide new insights into the design and development of more effective 3CLpro inhibitors against SARS-CoV-2 as novel anti-coronavirus drugs.
Collapse
Affiliation(s)
- Roufen Chen
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - He Li
- School of Medicine, Huaqiao University Quanzhou 362000 China
| | - Wenfa Chen
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 China
| |
Collapse
|
11
|
Abstract
In the design and development of therapeutic agents, macromolecules with restricted structures have stronger competitive edges than linear biological entities since cyclization can overcome the limitations of linear structures. The common issues of linear peptides include susceptibility to degradation of the peptidase enzyme, off-target effects, and necessity of routine dosing, leading to instability and ineffectiveness. The unique conformational constraint of cyclic peptides provides a larger surface area to interact with the target at the same time, improving the membrane permeability and in vivo stability compared to their linear counterparts. Currently, cyclic peptides have been reported to possess various activities, such as antifungal, antiviral and antimicrobial activities. To date, there is emerging interest in cyclic peptide therapeutics, and increasing numbers of clinically approved cyclic peptide drugs are available on the market. In this review, the medical significance of cyclic peptides in the defence against viral infections will be highlighted. Except for chikungunya virus, which lacks specific antiviral treatment, all the viral diseases targeted in this review are those with effective treatments yet with certain limitations to date. Thus, strategies and approaches to optimise the antiviral effect of cyclic peptides will be discussed along with their respective outcomes. Apart from isolated naturally occurring cyclic peptides, chemically synthesized or modified cyclic peptides with antiviral activities targeting coronavirus, herpes simplex viruses, human immunodeficiency virus, Ebola virus, influenza virus, dengue virus, five main hepatitis viruses, termed as type A, B, C, D and E and chikungunya virus will be reviewed herein. Graphical Abstract
Collapse
|
12
|
Bajrai LH, Faizo AA, Alkhaldy AA, Dwivedi VD, Azhar EI. Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. PLoS One 2022; 17:e0277328. [PMID: 36383621 PMCID: PMC9668197 DOI: 10.1371/journal.pone.0277328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leena H. Bajrai
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Areej A. Alkhaldy
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Esam I. Azhar
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
14
|
Firouzi R, Ashouri M, Karimi‐Jafari MH. Structural insights into the substrate‐binding site of main protease for the structure‐based COVID‐19 drug discovery. Proteins 2022; 90:1090-1101. [DOI: 10.1002/prot.26318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science University of Tehran Tehran Iran
| | | |
Collapse
|
15
|
High predictive QSAR models for predicting the SARS coronavirus main protease inhibition activity of ketone-based covalent inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC8547569 DOI: 10.1007/s13738-021-02426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this research, a dataset including 29 ketone-based covalent inhibitors with SARS-CoV-1 3CLpro inhibition activity was used to develop high predictive QSAR models. Twenty-two molecules were put in train set and seven molecules in test set. By using stepwise MLR method for molecules in train set, four molecular descriptors including Mor26p, Hy, GATS7p and Mor04v were selected to build QSAR models. MLR and ANN methods were used to create QSAR models for predicting the activity of molecules in both train and test sets. Both QSAR models were validated by calculating several statistical parameters. R2 values for the test set of MLR and ANN models were 0.93 and 0.95, respectively, and RMSE values for their test sets were 0.24 and 0.17, respectively. Other calculated statistical parameters (especially \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{F3}^{2}$$\end{document}QF32 parameter) show that created ANN model has more predictive power with respect to developed MLR model (with four descriptor). Calculated leverages for all molecules show that predicted pIC50 (by both QSAR models) for all molecules is acceptable, and drawn residuals plots show that there is no systematic error in building both QSAR modes. Also, based on developed MLR model, used molecular descriptors were interpreted.
Collapse
|
16
|
Nocentini A, Capasso C, Supuran CT. Perspectives on the design and discovery of α-ketoamide inhibitors for the treatment of novel coronavirus: where do we stand and where do we go? Expert Opin Drug Discov 2022; 17:547-557. [DOI: 10.1080/17460441.2022.2052847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
17
|
Browne RB, Goswami N, Borah P, Roy JD. Computational approaches for evaluation of isobavachin as potential inhibitor against t877a and w741l mutations in prostate cancer. J Biomol Struct Dyn 2022; 41:2398-2418. [PMID: 35118933 DOI: 10.1080/07391102.2022.2032353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the World's second most common cancer, with the fifth-highest male mortality rate. Point mutations such as T877A and W741L are frequently seen in advanced prostate cancer patients, conferring drug-resistance and hence driving cancer growth. Such occurrence of drug resistance in prostate cancer necessitates designing of suitable ligands to ensure better interactions with the receptors which can block the progression of the disease. The present study focus on the modification of plant-derived flavonoids that might act as inhibitors against such point mutations namely, T877A and W741L. In T877A mutation threonine is substituted by alanine at the 877 codon and W741L mutation, tryptophan is substituted by lysine at the 741 codon in prostate cancer. The study revolved on the aspect of the evaluation of Isobavachin and its derivatives as a potential agent to tackle such point mutations by using the in silico approach. A total of 98 molecular dockings were performed to find the ligand-receptor complexes with the lowest binding energy employing Autodock Software to conduct the blind and site-specific docking. Additionally, ligands were screened for Drug-likeness and toxicity using several tools yielding eight possible drug candidates. Based on the results of Molecular Docking, Drug-likeness, and ADMET testing, ten structures, including six complexes and three receptors were subjected to molecular dynamics simulation of 100 ns covering RMSD, RMSF, Rg, and MM/PBSA. Based on the simulation results, Isobavachin, IsoMod4, and IsoMod7 were concluded to be stable and exhibited potential properties for developing a novel drug to combat prostate cancer and its associated drug-resistance.
Collapse
Affiliation(s)
- Rene Barbie Browne
- Department of Biochemistry, Assam Don Bosco University, Guwahati, Assam, India
| | - Nabajyoti Goswami
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Jayanti Datta Roy
- Department of Bio-Sciences, Assam Don Bosco University, Guwahati, Assam, India
| |
Collapse
|
18
|
Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Brief Bioinform 2022; 23:bbab484. [PMID: 34850817 PMCID: PMC8690229 DOI: 10.1093/bib/bbab484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.
Collapse
Affiliation(s)
- Jinxian Wang
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Yi Luo
- School of Science, The University of Auckland,Auckland 1010, Auckland, New Zealand
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| |
Collapse
|
19
|
Kumar S, Choudhary M. Structure-based design and synthesis of copper( ii) complexes as antivirus drug candidates targeting SARS CoV-2 and HIV. NEW J CHEM 2022. [DOI: 10.1039/d2nj00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the structure-based design and synthesis of two novel square-planar trans-N2O2 Cu(ii) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) of 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol (L1H) and 2-((Z)-(2,4-dibromophenylimino)methyl)-4-bromophenol (L2H) as potential inhibitors against the main protease of the SARS-CoV-2 and HIV viruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|
20
|
Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1, 10-phenanthroline. J Mol Struct 2021; 1246:131246. [PMID: 34658419 PMCID: PMC8510892 DOI: 10.1016/j.molstruc.2021.131246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
This work deals with the synthesis, crystal structure, computational study and antiviral potential of mixed ligand copper(II) complex [Cu(L)(phen)](1), (where, H2L = (Z)-N'-((E)-2-hydroxy-3,5-diiodobenzylidene)-N,N-dimethylcarbamohydrazonothioic acid, phen = 1,10-phenanthroline). The Schiff base ligand (H2L) is coordinated with Cu(II) ion in O, N, S-tridentate mode. The copper complex (1) crystallized in the monoclinic system of the space group P21/c with eight molecules in the unit cell and reveals a square pyramidal geometry. Furthermore, we also perform quantum chemical calculations to get insights into the structure-property relationship and functional properties of ligand (H2L) and its copper (II) complex [Cu(L)(phen)](1). Complex [Cu(L)(phen)](1) was also virtually designed in-silico evaluation by Swiss-ADME. Additionally, inspiring by recent developments to find a potential inhibitor for the COVID-19 virus, we have also performed molecular docking study of ligand and its copper complex (1) to see if our compounds shows an affinity for the main protease (Mpro) of COVID-19 spike protein (PDB ID: 7C8U). Interestingly, the results are found quite encouraging where the binding affinity and inhibition constant were found to be -7.14 kcal/mol and 5.82 μM for ligand (H2L) and -6.18 kcal/mol and 0.76 μM for complex [Cu(L)(phen)](1) with Mpro protein. This binding affinity is reasonably well as compared to recently known antiviral drugs. For instance, the binding affinity of ligand and complex was found to be better than docking results of chloroquine (-6.293 kcal/mol), hydroxychloroquine (-5.573 kcal/mol) and remdesivir (-6.352 kcal/mol) with Mpro protein. The present study may offer the technological solutions and potential inhibition to the COVID-19 virus in the ongoing and future challenges of the global community. In the framework of synthesis and characterization of mixed ligand copper (II) complex; the major conclusions can be drawn as follow.
Collapse
|
21
|
A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Eur J Med Chem 2021; 221:113530. [PMID: 34023738 PMCID: PMC8096527 DOI: 10.1016/j.ejmech.2021.113530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.
Collapse
|
22
|
Boonserm P, Puthong S, Wichai T, Noitang S, Khunrae P, Sooksai S, Komolpis K. Investigation of major amino acid residues of anti-norfloxacin monoclonal antibodies responsible for binding with fluoroquinolones. Sci Rep 2021; 11:17140. [PMID: 34433868 PMCID: PMC8387498 DOI: 10.1038/s41598-021-96466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
It is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.
Collapse
Affiliation(s)
- Patamalai Boonserm
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Thanaporn Wichai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitang
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Pongsak Khunrae
- King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sarintip Sooksai
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand. .,Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
23
|
Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021; 26:3526. [PMID: 34207756 PMCID: PMC8228528 DOI: 10.3390/molecules26123526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, humanity has faced an important global threat. Many studies have been published on the origin, structure, and mechanism of action of the SARS-CoV-2 virus and the treatment of its disease. The priority of scientists all over the world has been to direct their time to research this subject. In this review, we highlight chemical studies and therapeutic approaches to overcome COVID-19 with seven different sections. These sections are the structure and mechanism of action of SARS-CoV-2, immunotherapy and vaccine, computer-aided drug design, repurposing therapeutics for COVID-19, synthesis of new molecular structures against COVID-19, food safety/security and functional food components, and potential natural products against COVID-19. In this work, we aimed to screen all the newly synthesized compounds, repurposing chemicals covering antiviral, anti-inflammatory, antibacterial, antiparasitic, anticancer, antipsychotic, and antihistamine compounds against COVID-19. We also highlight computer-aided approaches to develop an anti-COVID-19 molecule. We explain that some phytochemicals and dietary supplements have been identified as antiviral bioproducts, which have almost been successfully tested against COVID-19. In addition, we present immunotherapy types, targets, immunotherapy and inflammation/mutations of the virus, immune response, and vaccine issues.
Collapse
Affiliation(s)
- Aliye Gediz Erturk
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Arzu Sahin
- Department of Basic Medical Sciences—Physiology, Faculty of Medicine, Uşak University, 1-EylulUşak 64000, Turkey;
| | - Ebru Bati Ay
- Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Emel Pelit
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey;
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Irem Kulu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey;
| | - Melek Gul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey;
| | - Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| | - Sirin Oba Ilter
- Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Tuba Yildirim
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| |
Collapse
|