1
|
Tokalı FS. Recent advances in quinazolinone derivatives: structure, design and therapeutic potential. Future Med Chem 2025; 17:1071-1091. [PMID: 40350383 DOI: 10.1080/17568919.2025.2504327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Quinazolinones, a prominent class of heterocyclic compounds, have garnered significant attention due to their diverse biological activities and synthetic versatility. Over the past thirty years, extensive research has been conducted to explore their pharmacological potential, making them an essential scaffold in modern medicinal chemistry.This review provides an analysis of the most common synthesis methods employed for the preparation of quinazolinones, highlighting their efficiency and applicability. Furthermore, it presents an in-depth discussion of their broad-spectrum biological activities, including anticancer, antimicrobial, antifungal, anti-inflammatory, anticonvulsant, anti-Alzheimer's, antiparasitic, antioxidant, antidiabetic, and antiviral properties. By summarizing the latest advancements in quinazolinone research, specifically those made in the past five years, this review aims to serve as a valuable resource for researchers, facilitating easy access to recent studies and promoting further advancements in the field.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Türkiye
| |
Collapse
|
2
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3321-3343. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
3
|
El-Mahdy RY, Galal N, Lotfy R, Arafa RK. Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR. Comput Biol Med 2025; 186:109640. [PMID: 39765103 DOI: 10.1016/j.compbiomed.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 02/20/2025]
Abstract
Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR. The most active compounds demonstrated potent IC50s against MDA-MB-231 and HepG2 cancer cells being comparable to or better than the reference drugs erlotinib and lapatinib. IC50s of 5f and 15a against MDA-MB-231 were 3.34 and 4.99, whilst those against HepG2 were 6.37 and 2.18 μM, respectively. Also, members of this series demonstrated selective cytotoxicity against cancer cell lines showing low toxicity on human skin fibroblast normal cells hFB-4. Both 5f and 15a also effectively inhibited EGFR with sub-micromolar respective IC50s of 0.07 and 0.12 μM. The two derivatives halted the cell cycle progression of treated cancer cells and induced apoptosis as affirmed by flow cytometry along with RT-PCR-determined overexpression of the pro-apoptotic genes p53, Caspase 3, and Bax. Notably, docking and molecular dynamics simulations of members of this series of quinazolin-4-one derivatives showed that analogs with a short linker at the N3 position of the quinazoline ring exemplified by 5f bind to the active form of EGFR with their terminal aryl ring dwelling in the BPI pocket similar to erlotinib, while those with a longer linker represented by 15a bind to the inactive form in a comparable manner to lapatinib lodging the terminal phenyl in the BPII pocket.
Collapse
Affiliation(s)
- Ragaa Y El-Mahdy
- Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt
| | - Noha Galal
- Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt
| | - Rahma Lotfy
- Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt.
| |
Collapse
|
4
|
Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J, Sharma S. Green Synthetic and Pharmacological Developments in the Hybrid Quinazolinone Moiety: An Updated Review. Curr Top Med Chem 2025; 25:493-532. [PMID: 39162270 DOI: 10.2174/0115680266313354240807051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Anamika Srivastva
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nikilesh Arya
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
5
|
Upadhyay R, Tandel P, Patel AB. Halogen-based quinazolin-4(3H)-one derivatives as MCF-7 breast cancer inhibitors: Current developments and structure-activity relationship. Arch Pharm (Weinheim) 2025; 358:e2400740. [PMID: 39535302 DOI: 10.1002/ardp.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Currently, cancer is a serious health challenge with predominance beyond restrictions. Breast cancer remains one of the major contributors to cancer-related morbidity and mortality in women. Chemotherapy continues to be crucial in the treatment of all variants of cancer. Several antitumor drugs are presently in different phases of clinical trials, whereas many more have been approved for clinical use. However, these drugs have the potential to cause adverse effects, and certain individuals may become resistant to them, which would eventually reduce the drug's efficacy. Therefore, it is essential to discover, develop, and improve newer anticancer drug molecules that could potentially inhibit proliferative pathways. In recent years, quinazolinone derivatives, more specifically halogen-substituted 4(3H)-quinazolinone, have drawn attention as a promising new class of chemotherapeutic agents. In addition, these molecules showed significant inhibition in micromolar ranges when tested in vitro against the MCF-7 cell line. Therefore, this study aims to emphasize the intriguing versatility of halogen atoms, providing an in-depth summary and highlighting recent developments in the anticancer properties of halogenated 4(3H)-quinazolinones. It also features a detailed discussion of the structure-activity relationship (SAR) of various functional groups and their interaction with amino acid residues utilizing molecular docking studies. The intent is to foster novel discoveries that can inspire innovative investigations in this domain. Hence, this study simplifies the drug design and development strategies by prolonging the array of pharmacologically active candidates.
Collapse
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Pooja Tandel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
6
|
Rhazi Y, Sghyar R, Deak N, Es-Sounni B, Rossafi B, Soran A, Laghmari M, Arzine A, Nakkabi A, Hammani K, Chtita S, M. Alanazi M, Nemes G, El. Yazidi M. New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study. Pharmaceuticals (Basel) 2024; 17:1390. [PMID: 39459029 PMCID: PMC11510333 DOI: 10.3390/ph17101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (5a-e). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction. Methods: The structural identification of the products was performed using various spectroscopic methods, such as IR, 1H, 13C, and HMBC NMR, HRMS, and single-crystal X-ray diffraction. To further examine the regioselectivity of the cycloaddition, Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level were employed. Additionally, the antioxidant potential of the compounds was tested in vitro using DPPH (2,2-Diphenyl-1-picrylhydrazyl)radical scavenging assays. The reaction selectively produced 3,5-disubstituted isoxazoles, with the regiochemical outcome being independent of the substituents on the phenyl ring. Results: Theoretical calculations using DFT were in agreement with the experimental results, revealing activation energies of -81.15 kcal/mol for P-1 and -77.32 kcal/mol for P-2, favoring the formation of P-1. An analysis of the Intrinsic Reaction Coordinate (IRC) confirmed that the reaction proceeded via a concerted but asynchronous mechanism. The antioxidant tests demonstrated that the synthesized compounds exhibited significant radical scavenging activity, as shown in the DPPH assay. The 1,3-dipolar cycloaddition of arylnitriloxides with N-propargylquinazolin-4(3H)-one successfully resulted in novel 3,5-disubstituted isoxazoles. Conclusions: The experimental findings were well-supported by theoretical predictions, and the antioxidant assays revealed strong activity, indicating the potential for future biological applications of these compounds.
Collapse
Affiliation(s)
- Yassine Rhazi
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Riham Sghyar
- Laboratory of Applied Organic Chemistry, Faculty of Science and Techniques, Sidi Mohamed Ben Abdellah University, Routed ‘Imouzzer, P.O. Box 2202, Fez 30050, Morocco;
| | - Noemi Deak
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Bouchra Es-Sounni
- Laboratory of Innovative Materials and Biotechnologies of Natural Resources, Faculty of Sciences, Moulay Ismail University, P.O. Box 11201, Meknes 50000, Morocco;
| | - Bouchra Rossafi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca 20023, Morocco; (B.R.); (S.C.)
| | - Albert Soran
- Supramolecular Organic and Organometallic Chemistry Centre, Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania;
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, P.O. Box 1223, Taza-Gare, Taza 30050, Morocco; (M.L.); (K.H.)
| | - Azize Arzine
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
| | - Asmae Nakkabi
- Laboratory of Materials Engineering for the Environment and Natural Resources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknes, P.O. Box 509, Boutalamine, Errachidia 52000, Morocco;
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, P.O. Box 1223, Taza-Gare, Taza 30050, Morocco; (M.L.); (K.H.)
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca 20023, Morocco; (B.R.); (S.C.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gabriela Nemes
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Mohamed El. Yazidi
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
| |
Collapse
|
7
|
Badawy AM, Eltamany EE, Hussien RM, Mohamed OG, El-Ayouty MM, Nafie MS, Tripathi A, Ahmed SA. Cornulacin: a new isoflavone from Cornulaca monacantha and its isolation, structure elucidation and cytotoxicity through EGFR-mediated apoptosis. RSC Med Chem 2024:d4md00524d. [PMID: 39185453 PMCID: PMC11342161 DOI: 10.1039/d4md00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Chemical investigation of the methanolic extract of Cornulaca monacantha (Amaranthaceae), an annual wild herb collected from North Sinai, Egypt, yielded a new isoflavone cornulacin 1 and five known compounds: N-trans-feruloyltyramine 2, N-trans-feruloyl-3'-methoxytyramine 3, N-trans-caffeoyl tyramine 4, Cannabisin F 5 and (2aS, 3aS) lyciumamide D 6. Using MTT assay, the isolated compounds were evaluated for their in vitro cytotoxicity against pancreatic (Panc1) and ovarian (A2780) cancer cell lines. Compounds 1, 2, 3, and 4 exhibited promising cytotoxic activity against the tested cells, among which compound 1 (IC50 of 2.1 ± 0.21 μM) was the most active one against A2780 cells, whereas compound 2 (IC50 of 3.4 ± 0.11 μM) was the most effective compound against Panc1 cells. Accordingly, compound 1 was further investigated for its apoptotic induction in A2780 cancer cells using Annexin V/PI staining. Compound 1 significantly stimulated apoptotic ovarian A2780 cancer cells by 45.9-fold and arrested cell proliferation in the S-phase. Such activity was mediated through the upregulation of proapoptotic genes Bax; P53; and caspase 3, 8, and 9 besides the downregulation of the Bcl-2 gene, the anti-apoptotic one. Furthermore, molecular docking investigation demonstrated the strong binding affinity of compound 1 with EGFR active sites, which validated its experimental EGFR enzyme inhibition activity.
Collapse
Affiliation(s)
- Ahmed M Badawy
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Rodina M Hussien
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr el Aini St. Cairo 11562 Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Mayada M El-Ayouty
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Ann Arbor MI 48109 USA
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
8
|
Nafie MS, Ali MA, Youssef MM. N-allyl quinoxaline derivative exhibited potent and selective cytotoxicity through EGFR/VEGFR-mediated apoptosis: In vitro and in vivo studies. J Biochem Mol Toxicol 2024; 38:e23690. [PMID: 38493304 DOI: 10.1002/jbt.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohab A Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Haggag HS, Aboukhatwa SM, Nafie MS, Paul A, Sharafeldin N, Oliver AW, El-Hamamsy MH. Design and synthesis of quinazolin-4-one derivatives as potential anticancer agents and investigation of their interaction with RecQ helicases. Bioorg Chem 2024; 144:107086. [PMID: 38219478 DOI: 10.1016/j.bioorg.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The upregulation of RecQ helicases has been associated with cancer cell survival and resistance to chemotherapy, making them appealing targets for therapeutic intervention. In this study, twenty-nine novel quinazolinone derivatives were designed and synthesized. The anti-proliferative activity of all compounds was evaluated against 60 cancer cell lines at the National Cancer Institute Developmental Therapeutic Program, with six compounds (11f, 11g, 11k, 11n, 11p, and 11q) being promoted to a five-dose screen. Compound 11g demonstrated high cytotoxic activity against all examined cell lines. The compounds were further assayed for Bloom syndrome (BLM) helicase inhibition, where 11g, 11q, and 11u showed moderate activity. These compounds were counter-screened against WRN and RECQ1 helicases, where 11g moderately inhibited both enzymes. An ATP competition assay confirmed that the compounds bound to the ATP site of RecQ helicases, and molecular docking simulations were used to study the binding mode within the active site of BLM, WRN, and RECQ1 helicases. Compound 11g induced apoptosis in both HCT-116 and MDA-MB-231 cell lines, but also caused an G2/M phase cell cycle arrest in HCT-116 cells. This data revealed the potential of 11g as a modulator of cell cycle dynamics and supports its interaction with RecQ helicases. In addition, compound 11g displayed non-significant toxicity against FCH normal colon cells at doses up to 100 µM, which confirming its high safety margin and selectivity on cancer cells. Overall, these findings suggest compound 11g as a potential pan RecQ helicase inhibitor with high anticancer potency and a favorable safety margin and selectivity.
Collapse
Affiliation(s)
- Hanan S Haggag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago 60608, IL, USA
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, (P. O. Box 27272), Sharjah, United Arab Emirates; Chemistry Department (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Anju Paul
- Genome Damage and Stability Centre, Science Park Road, University of Sussex Falmer, Brighton BN1 9RQ, UK
| | - Nabaweya Sharafeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex Falmer, Brighton BN1 9RQ, UK
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Biswas T, Mittal RK, Sharma V, Kanupriya, Mishra I. Nitrogen-fused Heterocycles: Empowering Anticancer Drug Discovery. Med Chem 2024; 20:369-384. [PMID: 38192143 DOI: 10.2174/0115734064278334231211054053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024]
Abstract
The worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen- containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.
Collapse
Affiliation(s)
- Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
11
|
Salama EE, Youssef MF, Aboelmagd A, Boraei ATA, Nafie MS, Haukka M, Barakat A, Sarhan AAM. Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation. Pharmaceuticals (Basel) 2023; 16:1724. [PMID: 38139850 PMCID: PMC10748079 DOI: 10.3390/ph16121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.
Collapse
Affiliation(s)
- Eid E. Salama
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed F. Youssef
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed Aboelmagd
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed T. A. Boraei
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A. M. Sarhan
- Chemistry Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt; or
| |
Collapse
|
12
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, synthesis, molecular modelling and antitumor evaluation of S-glucosylated rhodanines through topo II inhibition and DNA intercalation. J Enzyme Inhib Med Chem 2023; 38:2163996. [PMID: 36629439 PMCID: PMC9848385 DOI: 10.1080/14756366.2022.2163996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt,CONTACT Ahmed I. Khodair Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Fatimah M. Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Siham A. Al-Issa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
El-Behairy MF, Abd-Allah WH, Khalifa MM, Nafie MS, Saleh MA, Abdel-Maksoud MS, Al-Warhi T, Eldehna WM, Al‐Karmalawy AA. Design and synthesis of novel rigid dibenzo[ b,f]azepines through ring closure technique as promising anticancer candidates against leukaemia and acting as selective topoisomerase II inhibitors and DNA intercalators. J Enzyme Inhib Med Chem 2023; 38:2157825. [PMID: 36629421 PMCID: PMC9848257 DOI: 10.1080/14756366.2022.2157825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this research, two novel series of dibenzo[b,f]azepines (14 candidates) were designed and synthesised based on the rigidification principle and following the reported doxorubicin's pharmacophoric features. The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines. Further, the promising candidates (5a-g) were evaluated for their ability to inhibit topoisomerase II, where 5e was noticed to be the most active congener. Moreover, its cytotoxicity was evaluated against leukaemia SR cells. Also, 5e arrested the cell cycle at the G1 phase and increased the apoptosis ratio by 37.34%. Furthermore, in vivo studies of 5e showed the inhibition of tumour proliferation and the decrease in its volume. Histopathology and liver enzymes were examined as well. Besides, molecular docking, physicochemical, and pharmacokinetic properties were carried out. Finally, a SAR study was discussed to open the gate for further optimisation of the most promising candidate (5e).HighlightsTwo novel series of dibenzo[b,f]azepines were designed and synthesised based on the rigidification principle in drug design.The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines.5e was the most active anti-topo II congener (IC50 = 6.36 ± 0.36 µM).5e was evaluated against leukaemia SR cells and its cytotoxic effect was confirmed (IC50 = 13.05 ± 0.62 µM).In vivo studies of 5e significantly inhibited tumour proliferation by 62.7% and decreased tumour volume to 30.1 mm3 compared to doxorubicin treatment.
Collapse
Affiliation(s)
- Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, The United Arab Emirates,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed S. Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed A. Al‐Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt,CONTACT Ahmed A. Al‐Karmalawy Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
14
|
Eltahawy NA, Swidan SA, Nafie MS, Saeedan AS, Nasr AM, Badr JM, Abdelhameed RFA. Silver nanoparticles formulation of Marrubium alysson L. phenolic extract potentiates cytotoxicity through apoptosis with molecular docking study as Bcl-2 inhibitors. J Biomol Struct Dyn 2023; 42:12077-12089. [PMID: 37817536 DOI: 10.1080/07391102.2023.2267666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Crude or semi-purified extracts of plants can play a significant role as antitumor agents. They were used as stabilizing and reducing agents in the preparation of silver nanoparticles (AgNPs) that allows these particles to have more efficient cytotoxic activity. In the current study, the extract of Marrubium alysson L., a plant of common occurrence in Egypt was used to synthesize AgNPs for the first time, where comparison of anticancer activity of crude and phenolic extracts with the AgNPs were extensively studied against cancer cell lines PC-3 and HCT-116. Interestingly, AgNPs of the crude extract exhibited promising cytotoxicity with IC50 values of 10.4 and 16.3 μg/ml, while AgNPs of the phenolic extract exhibited very potent cytotoxicity with IC50 values of 2.66 and 1.34 μg/ml compared to Doxorubicin (as a standard reference drug) that exhibited IC50 values of 5.13 and 4.36 μg/ml, respectively against the tested cells. Additionally, AgNPs of the phenolic extract induced apoptosis in HCT-116 with a higher ratio than in PC-3 cells. It induced apoptosis in PC-3 cells by 79.3-fold change, while it induced total colon apoptotic cell death by 228.3-fold change compared to untreated control. Finally, the apoptotic activity of AgNPs of the phenolic extract in the treated PC-3 and HCT-116 cells was confirmed using RT-PCR. As a result, AgNPs of the phenolic extract could be considered a promising anticancer candidate through apoptosis-induction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nermeen A Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Mohamed S Nafie
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, Collage of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali M Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, New Galala, Egypt
| | - Jihan M Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala, Egypt
| |
Collapse
|
15
|
El-Fakharany ZS, Nissan YM, Sedky NK, Arafa RK, Abou-Seri SM. New proapoptotic chemotherapeutic agents based on the quinolone-3-carboxamide scaffold acting by VEGFR-2 inhibition. Sci Rep 2023; 13:11346. [PMID: 37443185 PMCID: PMC10444817 DOI: 10.1038/s41598-023-38264-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
In the current study, we designed and synthesized a series of new quinoline derivatives 10a-p as antiproliferative agents targeting cancer through inhibition of VEGFR-2. Preliminary molecular docking to assess the interactions of the designed derivatives with the binding site of VEGFR-2 (PDB code: 4ASD) displayed binding poses and interactions comparable to sorafenib. The synthesized compounds exhibited VEGFR-2 inhibitory activity with IC50 ranging from 36 nM to 2.23 μM compared to sorafenib (IC50 = 45 nM), where derivative 10i was the most potent. Additionally, the synthesized derivatives were evaluated in vitro for their cytotoxic activity against HepG2 cancer cell line. Seven compounds 10a, 10c, 10d, 10e, 10i, 10n and 10o (IC50 = 4.60, 4.14, 1.07, 0.88, 1.60, 2.88 and 2.76 μM respectively) displayed better antiproliferative activity than sorafenib (IC50 = 8.38 μM). Compound 10i was tested against Transformed Human Liver Epithelial-2 normal cell line (THLE-2) to evaluate its selective cytotoxicity. Furthermore, 10i, as a potent representative of the series, was assayed for its apoptotic activity and cell cycle kinetics' influence on HepG2, its effects on the gene expression of VEGFR-2, and protein expression of the apoptotic markers Caspase-7 and Bax. Compound 10i proved to have a potential role in apoptosis by causing significant increase in the early and late apoptotic quartiles, a remarkable activity in elevating the relative protein expression of Bax and Caspase-7 and a significant reduction of VEGFR-2 gene expression. Collectively, the obtained results indicate that compound 10i has a promising potential as a lead compound for the development of new anticancer agents.
Collapse
Affiliation(s)
- Zeinab S El-Fakharany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, 12451, Egypt
| | - Yassin M Nissan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, 12451, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Jihad MI, Mahdi MF. Molecular Docking Study of New Sorafenib Analogues as Platelet-Derived Growth Factor Receptor Inhibitors for the Treatment of Cancer. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S1023-S1026. [PMID: 37694099 PMCID: PMC10485473 DOI: 10.4103/jpbs.jpbs_244_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer is a disease triggered by an uncontrolled growth of a group of cells usually from a single cell. Chemotherapy is a common and systematic therapy that involves the use of anticancer drugs also known as chemotherapeutical agents to treat cancer. Tyrosine kinases are a subset of protein kinases that are a family of over 90 enzymes that selectively phosphorylate tyrosine residues in various substrates. Receptors with internal tyrosine kinase activity mediate the actions of several growth factors, differentiation factors, and hormones, resulting in the reproduction and differentiation of the affected cells. In the fight against cancer, the platelet-derived growth factor receptor has emerged as a novel target via inhibition of this receptor resulting in the inhibition of tyrosine kinase cascade. Docking investigations were conducted using the Genetic Optimization for Ligand Docking (GOLD) Suite (v. 5.7.1) from the Cambridge Crystallographic Data Center. A high-definition X-ray crystallography of the platelet-derived growth factor protein [Protein Data Bank (PDB) ID 6JOL] was downloaded from the website PDB with a resolution of 2 A. Compounds II, III, VII, and VIII have greater binding energies than the GOLD standard medication sorafenib, which gives Piecewise Linear Potential (PLP) fitness value (85.3). Other ligands exhibit good inhibitory action and docking scores comparable to that of the reference ligand sorafenib.
Collapse
Affiliation(s)
- Marwan I. Jihad
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mustansiriyah, Baghdad, Iraq
| | - Monther F. Mahdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mustansiriyah, Baghdad, Iraq
| |
Collapse
|
17
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, Synthesis, Computational Investigations, and Antitumor Evaluation of N-Rhodanine Glycosides Derivatives as Potent DNA Intercalation and Topo II Inhibition against Cancer Cells. ACS OMEGA 2023; 8:13300-13314. [PMID: 37065038 PMCID: PMC10099454 DOI: 10.1021/acsomega.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen and sulfur glycosylation was carried out via the reaction of rhodanine (1) with α-acetobromoglucose 3 under basic conditions. Deacetylation of the protected nitrogen nucleoside 4 was performed with CH3ONa in CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleoside 6. Further, deacetylation of the protected sulfur nucleoside 5 was performed with CH3ONa in CH3OH with the cleavage of the rhodanine ring to give the hydrolysis product 7. The protected nitrogen nucleosides 11a-f were produced by condensing the protected nitrogen nucleoside 4 with the aromatic aldehydes 10a-f in C2H5OH while using morpholine as a secondary amine catalyst. Deacetylation of the protected nitrogen nucleosides 11a-f was performed with NaOCH3/CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleosides 12a-f. NMR spectroscopy was used to designate the anomers' configurations. To examine the electrical and geometric properties derived from the stable structure of the examined compounds, molecular modeling and DFT calculations using the B3LYP/6-31+G (d,p) level were carried out. The quantum chemical descriptors and experimental findings showed a strong connection. The IC50 values for most compounds were very encouraging when evaluated against MCF-7, HepG2, and A549 cancer cells. Interestingly, IC50 values for 11a, 12b, and 12f were much lower than those for Doxorubicin (7.67, 8.28, 6.62 μM): (3.7, 8.2, 9.8 μM), (3.1, 13.7, 21.8 μM), and (7.17, 2.2, 4.5 μM), respectively. Against Topo II inhibition and DNA intercalation, when compared to Dox (IC50 = 9.65 and 31.27 μM), compound 12f showed IC50 values of 7.3 and 18.2 μM, respectively. In addition, compound 12f induced a 65.6-fold increase in the rate of apoptotic cell death in HepG2 cells, with the cell cycle being arrested in the G2/M phase as a result. Additionally, it upregulated the apoptosis-mediated genes of P53, Bax, and caspase-3,8,9 by 9.53, 8.9, 4.16, 1.13, and 8.4-fold change, while it downregulated the Bcl-2 expression by 0.13-fold. Therefore, glucosylated Rhodanines may be useful as potential therapeutic candidates against cancer because of their topoisomerase II and DNA intercalation activity.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry
Department, Faculty of Science, Kafrelsheikh
University, 33516 Kafrelsheikh, Egypt
| | - Fatimah M. Alzahrani
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical
Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, 6632110 Tanta, Egypt
| | - Siham A. Al-Issa
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry
Department (Biochemistry program), Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| |
Collapse
|
18
|
Elrayess R, Elgawish MS, Nafie MS, Ghareb N, Yassen ASA. 2‐Phenylquinazolin‐4(3
H
)‐one scaffold as newly designed, synthesized VEGFR‐2 allosteric inhibitors with potent cytotoxicity through apoptosis. Arch Pharm (Weinheim) 2023:e2200654. [DOI: 10.1002/ardp.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Mohamed S. Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Mohamed S. Nafie
- Chemistry Department (Biochemistry program), Faculty of Science Suez Canal University Ismailia Egypt
| | - Nagat Ghareb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| |
Collapse
|
19
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
21
|
Youssef M, Nafie MS, Salama EE, Boraei AT, Gad EM. Synthesis of New Bioactive Indolyl-1,2,4-Triazole Hybrids As Dual Inhibitors for EGFR/PARP-1 Targeting Breast and Liver Cancer Cells. ACS OMEGA 2022; 7:45665-45677. [PMID: 36530255 PMCID: PMC9753112 DOI: 10.1021/acsomega.2c06531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer is the most severe disease worldwide. Every year, tens of millions of people are diagnosed with cancer, and over half of those people will ultimately die from the disease. Hence, the discovery of new inhibitors for fighting cancer is necessary. As a result, new indolyl-triazole hybrids were synthesized to target breast and liver cancer cells. The synthetic strategy involves glycosylation of the 4-aryltriazolethiones 3a-b with acetyl-protected α-halosugars in the presence of K2CO3 in acetone to give a mixture of β-S-glycosides 6a-b, 7a-b, and β-N-glycosides 8a-b, 9a-b. Chemo-selective S-glycosylation was achieved using NaHCO3 in ethanol. The migration of glycosyl moiety from sulfur to nitrogen (S → N glycosylmigration) was achieved thermally without any catalyst. Alkylation of the triazole-thiones with 2-bromoethanol and 1-bromopropan-2-ol in the presence of K2CO3 yielded the corresponding S-alkylated products. The synthesized compounds were tested for their cytotoxicity using an MTT assay and for apoptosis induction targeting PARP-1 and EGFR. Compounds 12b, 13a, and 13b exhibited cytotoxic activities with promising IC50 values of 2.67, 6.21, 1.07 μM against MCF-7 cells and 3.21, 8.91, 0.32 μM against HepG2 cells compared to Erlotinib (IC50 = 2.51, 2.91 μM, respectively) as reference drug. Interestingly, compounds 13b induced apoptosis in MCf-7 and HepG2 cells, arresting the cell cycle at the G2/M and S phases, respectively. Additionally, the dual enzyme inhibition seen in compound 13b against EGFR and PARP-1 is encouraging, with IC50 values of 62.4 nM compared to Erlotinib (80 nM) and 1.24 nM compared to Olaparib (1.49 nM), respectively. The anticancer activity was finally validated using an in vivo SEC-cancer model; compound 13b improved both hematological and biochemical analyses inhibiting tumor proliferation by 66.7% compared to Erlotinib's 65.7%. So, compound 13b may serve as a promising anticancer activity through dual PARP-1/EGFR target inhibition.
Collapse
|
22
|
Khalifa MM, Al-Karmalawy AA, Elkaeed EB, Nafie MS, Tantawy MA, Eissa IH, Mahdy HA. Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: design, synthesis, anti-proliferative, docking, and in vivo studies. J Enzyme Inhib Med Chem 2022; 37:299-314. [PMID: 34894955 PMCID: PMC8667898 DOI: 10.1080/14756366.2021.2007905] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.
Collapse
Affiliation(s)
- Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Comparative Cytotoxic Evaluation of Zygophyllum album Root and Aerial Parts of Different Extracts and Their Biosynthesized Silver Nanoparticles on Lung A549 and Prostate PC-3 Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15111334. [PMID: 36355507 PMCID: PMC9695243 DOI: 10.3390/ph15111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV–VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.
Collapse
|
24
|
Altowyan MS, Soliman SM, Haukka M, Al-Shaalan NH, Alkharboush AA, Barakat A. Synthesis, Characterization, and Cytotoxicity of New Spirooxindoles Engrafted Furan Structural Motif as a Potential Anticancer Agent. ACS OMEGA 2022; 7:35743-35754. [PMID: 36249408 PMCID: PMC9558703 DOI: 10.1021/acsomega.2c03790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A new series of spirooxindoles based on ethylene derivatives having furan aryl moiety are reported. The new hybrids were achieved via [3 + 2] cycloaddition reaction as an economic one-step efficient approach. The final constructed spirooxindoles have four contiguous asymmetric carbon centers. The structure of 3a is exclusively confirmed using X-ray single crystal diffraction. The supramolecular structure of 3a is controlled by O···H, H···H, and C···C intermolecular contacts. It includes layered molecules interconnected weak C-H···O (2.675 Å), H···H (2.269 Å), and relatively short Cl···Br interhalogen interactions [3.4500(11)Å]. Using Hirshfeld analysis, the percentages of these intermolecular contacts are 10.6, 25.7, 6.4, and 6.2%, respectively. The spirooxindoles along with ethylene derivatives having furan aryl moiety were assessed against breast (MCF7) and liver (HepG2) cancer cell lines. The results indicated that the new chalcone 3b showed excellent activity in both cell lines (MCF7 and HepG2) with IC50 = 4.1 ± 0.10 μM/mL (MCF7) and 3.5 ± 0.07 μM/mL (HepG2) compared to staurosporine with 4.3 and 2.92 folds. Spirooxindoles 6d (IC50 = 4.3 ± 0.18 μM/mL), 6f (IC50 = 10.3 ± 0.40 μM/mL), 6i (IC50 = 10.7 ± 0.38 μM/mL), and 6j (IC50 = 4.7 ± 0.18 μM/mL) exhibited potential activity against breast adenocarcinoma, while compounds 6d (IC50 = 6.9 ± 0.23 μM/mL) and 6f (IC50 = 3.5 ± 0.11 μM/mL) were the most active hybrids against human liver cancer cell line (HepG2) compared to staurosporine [IC50 = 17.8 ± 0.50 μM/mL (MCF7) and 10.3 ± 0.23 μM/mL (HepG2)]. Molecular docking study exhibited the virtual mechanism of binding of compound 3b as a dual inhibitor of EGFR/CDK-2 proteins, and this may highlight the molecular targets for its cytotoxic activity.
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saied M. Soliman
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 Finland
| | - Nora Hamad Al-Shaalan
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aminah A. Alkharboush
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Hammouda MM, Elmaaty AA, Nafie MS, Abdel-Motaal M, Mohamed NS, Tantawy MA, Belal A, Alnajjar R, Eldehna WM, Al‐Karmalawy AA. Design and synthesis of novel benzoazoninone derivatives as potential CBSIs and apoptotic inducers: In Vitro, in Vivo, molecular docking, molecular dynamics, and SAR studies. Bioorg Chem 2022; 127:105995. [DOI: 10.1016/j.bioorg.2022.105995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
|
26
|
Goda MS, Elhady SS, Nafie MS, Bogari HA, Malatani RT, Hareeri RH, Badr JM, Donia MS. Phragmanthera austroarabica A.G.Mill. and J.A.Nyberg Triggers Apoptosis in MDA-MB-231 Cells In Vitro and In Vivo Assays: Simultaneous Determination of Selected Constituents. Metabolites 2022; 12:metabo12100921. [PMID: 36295823 PMCID: PMC9611470 DOI: 10.3390/metabo12100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phragmanthera austroarabica (Loranthaceae), a semi-parasitic plant, is well known for its high content of polyphenols that are responsible for its antioxidant and anti-inflammatory activities. Gallic acid, catechin, and methyl gallate are bioactive metabolites of common occurrence in the family of Loranthaceae. Herein, the concentrations of these bioactive metabolites were assessed using high-performance thin layer chromatography (HPTLC). Methyl gallate, catechin, and gallic acid were scanned at 280 nm. Their concentrations were assessed as 14.5, 6.5 and 43.6 mg/g of plant dry extract, respectively. Phragmanthera austroarabica extract as well as the three pure compounds were evaluated regarding the cytotoxic activity. The plant extract exhibited promising cytotoxic activity against MDA-MB-231 breast cells with the IC50 value of 19.8 μg/mL while the tested pure compounds displayed IC50 values in the range of 21.26–29.6 μg/mL. For apoptosis investigation, P. austroarabica induced apoptotic cell death by 111-fold change and necrosis by 9.31-fold change. It also activated the proapoptotic genes markers and inhibited the antiapoptotic gene, validating the apoptosis mechanism. Moreover, in vivo studies revealed a significant reduction in the breast tumor volume and weight in solid Ehrlich carcinoma (SEC) mice. The treatment of SEC mice with P. austroarabica extract improved both hematological and biochemical parameters with amelioration in the liver and kidney histopathology to near normal. Taken together, P. austroarabica extract exhibited promising anti-cancer activity through an apoptosis-induction.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raina T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Marwa S. Donia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Khedr AIM, Goda MS, Farrag AFS, Nasr AM, Swidan SA, Nafie MS, Abdel-Kader MS, Badr JM, Abdelhameed RFA. Silver Nanoparticles Formulation of Flower Head’s Polyphenols of Cynara scolymus L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation. Molecules 2022; 27:molecules27196304. [PMID: 36234842 PMCID: PMC9572662 DOI: 10.3390/molecules27196304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 μg/mL and 0.94 μg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.
Collapse
Affiliation(s)
- Amgad I. M. Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Abdelaziz F. S. Farrag
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City 11837, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City 11837, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence: ; Tel.: +966-545-539-145
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
28
|
Thabet FM, Dawood KM, Ragab EA, Nafie MS, Abbas AA. Design and synthesis of new bis(1,2,4-triazolo[3,4- b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Adv 2022; 12:23644-23660. [PMID: 36090415 PMCID: PMC9389373 DOI: 10.1039/d2ra03549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
A number of new 1,ω-bis((acetylphenoxy)acetamide)alkanes 5a-f were prepared then their bromination using NBS furnished the novel bis(2-bromoacetyl)phenoxy)acetamides 6a-f. Reaction of 6a-f with 4-amino-5-substituted-4H-1,2,4-triazole-3-thiol 7a-d and with o-phenylenediamine derivatives 9a and b afforded the corresponding bis(1,2,4-triazolo[3,4-b][1,3,4]thiadiazine) derivatives 8a-l and bis(quinoxaline) derivatives 10a-e in good yields. The cytotoxicity of the synthesized compounds as well as apoptosis induction through PARP-1 and EGFR as molecular targets was evaluated. Three compounds, 8d, 8i and 8l, exhibited much better cytotoxic activities against MDA-MB-231 than the drug Erlotinib. Interestingly, compound 8i induced apoptosis in MDA-MB-231 cells by 38-fold compared to the control arresting the cell cycle at the G2/M phase, and its treatment upregulated P53, Bax, caspase-3, caspase-8, and caspase-9 gene levels, while it downregulated the Bcl2 level. Compound 8i exhibited promising dual enzyme inhibition of PARP-1 (IC50 = 1.37 nM) compared to Olaparib (IC50 = 1.49 nM), and EGFR (IC50 = 64.65 nM) compared to Erlotinib (IC50 = 80 nM). These results agreed with the molecular docking studies that highlighted the binding disposition of compound 8i inside the PARP-1 and EGFR protein active sites. Hence, compound 8i may serve as a potential anti-breast cancer agent.
Collapse
Affiliation(s)
- Fatma M Thabet
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Mohamed S Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| |
Collapse
|
29
|
Abbas SE, Abdel-Gawad NM, George RF, Elyazid MGA, Zaater MA, El-Ashrey MK. Some 2-(4-bromophenoxymethyl)-6-iodo-3-substituted quinazolin-4(3H)ones: Synthesis, cytotoxic activity, EGFR inhibition and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Shawish I, Barakat A, Aldalbahi A, Alshaer W, Daoud F, Alqudah DA, Al Zoubi M, Hatmal MM, Nafie MS, Haukka M, Sharma A, de la Torre BG, Albericio F, El-Faham A. Acetic Acid Mediated for One-Pot Synthesis of Novel Pyrazolyl s-Triazine Derivatives for the Targeted Therapy of Triple-Negative Breast Tumor Cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR Signaling Cascades. Pharmaceutics 2022; 14:1558. [PMID: 36015186 PMCID: PMC9414415 DOI: 10.3390/pharmaceutics14081558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy one-pot procedure for the reaction of β-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates. The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested. However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of 81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment compared to the untreated control.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Anamika Sharma
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
| |
Collapse
|
31
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
32
|
Wang S, Wu Y, Liu M, Zhao Q, Jian L. DHW-208, A Novel Phosphatidylinositol 3-Kinase (PI3K) Inhibitor, Has Anti-Hepatocellular Carcinoma Activity Through Promoting Apoptosis and Inhibiting Angiogenesis. Front Oncol 2022; 12:955729. [PMID: 35903690 PMCID: PMC9315107 DOI: 10.3389/fonc.2022.955729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. Due to insidious onset and lack of early symptoms, most HCC patients are diagnosed at advanced stages without adequate methods but systemic therapies. PI3K/AKT/mTOR signaling pathway plays a crucial role in the progression and development of HCC. Aberrant activation of PI3K/AKT/mTOR pathway is involved in diverse biological processes, including cell proliferation, apoptosis, migration, invasion and angiogenesis. Therefore, the development of PI3K-targeted inhibitors is of great significance for the treatment of HCC. DHW-208 is a novel 4-aminoquinazoline derivative pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in HCC and investigate its underlying mechanism. DHW-208 could inhibit the proliferation, migration, invasion and angiogenesis of HCC through the PI3K/AKT/mTOR signaling pathway in vitro. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in HCC. Therefore, DHW-208 is a candidate compound to be developed as a small molecule PI3K inhibitor for the treatment of HCC, and our study provides a certain theoretical basis for the treatment of HCC and the development of PI3K inhibitors.
Collapse
Affiliation(s)
- Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Wu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| |
Collapse
|
33
|
Synthesis of Some 2-Substituted-5-(Benzothiazol-2-yl)-1H-Benzimidazole Derivatives and Investigation of Their Antiproliferative Effects. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea. Molecules 2022; 27:molecules27134109. [PMID: 35807354 PMCID: PMC9268025 DOI: 10.3390/molecules27134109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, β-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of −19.93 and −16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.
Collapse
|
35
|
Çevik U, Celik I, Mella J, Mellado M, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and Molecular Modeling Studies of a Novel Benzimidazole as an Aromatase Inhibitor. ACS OMEGA 2022; 7:16152-16163. [PMID: 35571854 PMCID: PMC9097188 DOI: 10.1021/acsomega.2c01497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds 5b,c showed satisfactory potencies with much higher anticancer activity in comparison to the reference drug doxorubicin against the studied cancer cell lines. In vitro, enzymatic inhibition assays of aromatase (ARO) enzymes were performed. Molecular docking, molecular dynamics simulations, and binding free energy analyses were used to better understand the structure-activity connections and mechanism of action of the aromatase inhibitors. Two types of satisfactory 3D-QSAR (CoMFA and CoMSIA) models were generated, to predict the inhibitory activities of the novel inhibitors. Molecular docking studies were also carried out to find their binding sites and types of their interactions with the aromatase enzyme. Additionally, molecular dynamics simulations were performed to explore the most likely binding modes of compounds 5b,c with CYP19A1.
Collapse
Affiliation(s)
- Ulviye
Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Jaime Mella
- Institute
of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaíso, Av. Great Britain, 1111 Valparaíso, Chile
| | - Marco Mellado
- Institute
of Chemistry, Faculty of Sciences, Pontificia
Universidad Católica de Valparaíso. Av. Universidad 330, Curauma, 0000 Valparaíso, Chile
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
36
|
Synthesis, X-ray Single-Crystal Analysis, and Anticancer Activity Evaluation of New Alkylsulfanyl-Pyridazino[4,5-b]indole Compounds as Multitarget Inhibitors of EGFR and Its Downstream PI3K-AKT Pathway. CRYSTALS 2022. [DOI: 10.3390/cryst12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The alkylation of 3,5-dihydro-4H-pyridazino[4,5-b]indole-4-thione with benzyl bromide, ethyl chloroacetate, and allyl bromide in the presence of potassium carbonate (K2CO3) yielded new alkylsulfanylpyridazino[4,5-b]indole derivatives (i.e., compounds 4–6). Hydrazinolysis of ester 6 resulted in hydrazide 7. The structure of compound 6 was verified by X-ray single-crystal analysis. Among the synthesized compounds, compound 6 exhibited the most promising cytotoxicity toward MCF-7 cells with an IC50 value of 12 µM. It showed potential inhibition activity toward EGFR, PI3K, and AKT in MCF-7 cells, with 0.26-, 0.49-, and 0.31-fold reductions in concentration compared to an untreated control. Additionally, it showed apoptosis-inducing activity in MCF-7 cells (47.98-fold); overall apoptosis increased to 38.87% compared to 0.81% in the untreated control, which disrupted the cell cycle at pre-G1 and S phases. Moreover, compound 6 exhibited good binding affinities toward the tested proteins (EGFR, PI3K, and AKT) and had binding energies ranging from −15.87 to −24.87 Kcal/mol. It also formed good interactions with essential amino acids inside the binding sites. Hence, compound 6 is recommended as an anti-breast cancer chemotherapeutic due to its effects on the EGFR-PI3K-AKT pathway.
Collapse
|
37
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
38
|
Green Process for the Synthesis of 3-Amino-2-methyl-quinazolin-4(3H)-one Synthones and Amides Thereof:DNA Photo-Disruptive and Molecular Docking Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10020384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eleven 3-amino-2-methyl-quinazolin-4(3H)-ones have been synthesized, in good to excellent yields, via their corresponding benzoxazinones using an efficient tandem microwave-assisted green process. Representative acetamides have been thermally derived from their functional free 3-amino group, whereas for the synthesis of various arylamides, a novel green microwave-assisted protocol has been developed, which involved the attack of hydrazides on benzoxazinones. Eight out of the eleven 3-amino-2-methyl-quinazolin-4(3H)-ones were found photo-active towards plasmid DNA under UVB, and four under UVA irradiation. Amongst all acetamides, only the 6-nitro derivative retained activity both under UVB and UVA irradiation, whereas the 6-bromo-substituted one was active only under UVB. 3-arylamido-6-bromo derivatives exhibited dramatically decreased photo-activity; however, all 3-arylamido-6-nitro compounds developed extraordinary activity, even at concentrations as low as 1μM, which was enhanced compared to their parent 3-amino-2-methyl-6-nitro-quinazolinone. Molecular docking studies were indicative of satisfactory binding to DNA and correlated to the presented photo-activity. Since quinazolinones are known “privileged” pharmacophores for anticancer and antimicrobial activities, the present study gives information on turning “on” and “off” photosensitization on various derivatives which are often used as synthones for drug development, when chromophores and auxochromes are incorporated or being functionalized. Thus, certain compounds may lead to the development of novel photo-chemo or photodynamic therapeutics.
Collapse
|
39
|
The Antiproliferative and Apoptotic Effects of a Novel Quinazoline Carrying Substituted-Sulfonamides: In Vitro and Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030981. [PMID: 35164248 PMCID: PMC8838787 DOI: 10.3390/molecules27030981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/26/2023]
Abstract
In order to investigate for a new effective and safe anticancer drug, we synthesized a novel series of quinazoline containing biologically active substituted-sulfonamide moiety at 3- position 4a-n. The structure of the newly prepared compounds was proved by microanalysis, IR, 1H-NMR, 13C-NMR and mass spectral data. All the synthesized compounds were evaluated for their in vitro cytotoxic activity in numerous cancer cell lines including A549, HepG-2, LoVo and MCF-7 and normal HUVEC cell line. The two most active compounds 4d and 4f were then tested for their apoptosis induction using DNA content and Annexin V-FITC/PI staining. Moreover, apoptosis initiation was also confirmed using RT-PCR and Western blot. To further understand the binding preferences of quinazoline sulfonamides, docking simulations were used. Among the fourteen new synthesized compounds, we found that compounds 4d and 4f exerted the strongest cytotoxicity against MCF-7 cells with an IC50 value of 2.5 and 5 μM, respectively. Flow cytometry data revealed the ability of compounds 4d and 4f to mediate apoptosis and arrest cell cycle growth at G1 phase. Furthermore, RT-PCR and Western blot results suggested that both 4d and 4f activates apoptotic cell death pathway in MCF-7 cells. Molecular docking assessments indicated that compounds 4d and 4f fit perfectly into Bcl2's active site. Based on the biological properties, we conclude that both compounds 4d and 4f could be used as a new type of anticancer agent, which provides a scientific basis for further research into the treatment of cancer.
Collapse
|
40
|
Goda MS, Nafie MS, Awad BM, Abdel-Kader MS, Ibrahim AK, Badr JM, Eltamany EE. In Vitro and In Vivo Studies of Anti-Lung Cancer Activity of Artemesia judaica L. Crude Extract Combined with LC-MS/MS Metabolic Profiling, Docking Simulation and HPLC-DAD Quantification. Antioxidants (Basel) 2021; 11:17. [PMID: 35052522 PMCID: PMC8773337 DOI: 10.3390/antiox11010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisia judaica L. (Family: Asteraceae) exhibited antioxidant, anti-inflammatory, and antiapoptotic effects. The in vitro cytotoxic activity of A. judaica ethanolic extract was screened against a panel of cancer cell lines. The results revealed its cytotoxic activity against a lung cancer (A549) cell line with a promising IC50 of 14.2 μg/mL compared to doxorubicin as a standard. This was confirmed through the downregulation of antiapoptotic genes, the upregulation of proapoptotic genes, and the cell cycle arrest at the G2/M phase. Further in vivo study showed that a solid tumor mass was significantly reduced, with a tumor inhibition ratio of 54% relative to doxorubicin therapy in a Xenograft model. From a chemical point of view, various classes of natural products have been identified by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The docking study of the detected metabolites approved their cytotoxic activity through their virtual binding affinity towards the cyclin-dependent kinase 2 (CDK-2) and epidermal growth factor receptor (EGFR) active sites. Finally, A. judaica is a fruitful source of polyphenols that are well-known for their antioxidant and cytotoxic activities. As such, the previously reported polyphenols with anti-lung cancer activity were quantified by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Rutin, quercetin, kaempferol, and apigenin were detected at concentrations of 6 mg/gm, 0.4 mg/gm, 0.36 mg/gm, and 3.9 mg/gm of plant dry extract, respectively. It is worth noting that kaempferol and rutin are reported for the first time. Herein, A. judaica L. may serve as an adjuvant therapy or a promising source of leading structures in drug discovery for lung cancer treatment.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Basma M. Awad
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| |
Collapse
|
41
|
Osmaniye D, Görgülü Ş, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and biological evaluation of novel 1,3,
4‐oxadiazole
derivatives as anticancer agents and potential
EGFR
inhibitors. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM) Eskişehir Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Anadolu University Eskişehir Turkey
| |
Collapse
|