1
|
Sharma A, Kumar N, Gulati HK, Rana R, Jyoti, Khanna A, Muskan, Singh JV, Bedi PMS. Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: an update review (2021-2023). Mol Divers 2024; 28:4609-4633. [PMID: 38253844 DOI: 10.1007/s11030-023-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | |
Collapse
|
2
|
Bernardoni BL, D'Agostino I, Scianò F, La Motta C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature. Expert Opin Ther Pat 2024; 34:1085-1103. [PMID: 39365044 DOI: 10.1080/13543776.2024.2412573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Aldose reductase (AKR1B1, EC: 1.1.1.21) is a recognized target for the treatment of long-term diabetic complications since its activation in hyperglycemia and role in the polyol pathway. In particular, the tissue-specificity of AKR1B1 expression makes the design of the traditional Aldose Reductase Inhibitors (ARIs) and the more recent Aldose Reductase Differential Inhibitors (ARDIs) exploitable strategies to treat pathologies resulting from diabetic conditions. AREAS COVERED A brief overview of the roles and functions of AKR1B1 along with known ARIs and ARDIs was provided. Then, the design of the latest inhibitors in the scientific scenario was discussed, aiming at introducing the research achievement in the field of intellectual properties. Patents dealing with AKR1B1 and diabetes filed in the 2019-2023 period were collected and analyzed. Reaxys, Espacenet, SciFindern, and Google Patents were surveyed, using 'aldose reductase' and 'inhibitor' as the reference keywords. The search results were then filtered by PRISMA protocol, thus obtaining 16 records to review. EXPERT OPINION Although fewer in number than in the early 2000s, patent applications are still being filed in the field of ARIs, with a large number of Chinese inventors reporting new synthetic ARIs in favor of the repositioning approach.
Collapse
Affiliation(s)
| | | | - Fabio Scianò
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
3
|
Pandey N, Kumari N, Roy P, Mondal SK, Thakur A, Sun CC, Ghosh A. Tuning Caco-2 permeability by cocrystallization: Insights from molecular dynamics simulation. Int J Pharm 2024; 650:123666. [PMID: 38065346 DOI: 10.1016/j.ijpharm.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.
Collapse
Affiliation(s)
- Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Nimmy Kumari
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Parag Roy
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Susanta Kumar Mondal
- TCG Life Sciences Pvt. Ltd, Block-EP & GP, BIPL, Tower-B, Salt Lake, Sector-V, Kolkata, 700091, India
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, United States.
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
4
|
Singh G, Kumar R, D S D, Chaudhary M, Kaur C, Khurrana N. Thiazolidinedione as a Promising Medicinal Scaffold for the Treatment of Type 2 Diabetes. Curr Diabetes Rev 2024; 20:e201023222411. [PMID: 37867272 DOI: 10.2174/0115733998254798231005095627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Thiazolidinediones, also known as glitazones, are considered as biologically active scaffold and a well-established class of anti-diabetic agents for the treatment of type 2 diabetes mellitus. Thiazolidinediones act by reducing insulin resistance through elevated peripheral glucose disposal and glucose production. These molecules activate peroxisome proliferated activated receptor (PPARγ), one of the sub-types of PPARs, and a diverse group of its hybrid have also shown numerous therapeutic activities along with antidiabetic activity. OBJECTIVE The objective of this review was to collect and summarize the research related to the medicinal potential, structure-activity relationship and safety aspects of thiazolidinedione analogues designed and investigated in type 2 diabetes during the last two decades. METHODS The mentioned objective was achieved by collecting and reviewing the research manuscripts, review articles, and patents from PubMed, Science Direct, Embase, google scholar and journals related to the topic from different publishers like Wiley, Springer, Elsevier, Taylor and Francis, Indian and International government patent sites etc. Results: The thiazolidinedione scaffold has been a focus of research in the design and synthesis of novel derivatives for the management of type 2 diabetes, specifically in the case of insulin resistance. The complications like fluid retention, idiosyncratic hepatotoxicity, weight gain and congestive heart failure in the case of trosiglitazone, and pioglitazone have restricted their use. The newer analogues have been synthesized by different research groups to attain better efficacy and less side effects. CONCLUSION Thus, the potential of thiazolidinediones in terms of their chemical evolution, action on nuclear receptors, aldose reductase and free fatty acid receptor 1 is well established. The newer TZD analogues with better safety profiles and tolerability will soon be available in the market for common use without further delay.
Collapse
Affiliation(s)
- Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Desna D S
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurrana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
5
|
Kumar H, Sharma A, Kumar D, Marwaha MG, Dhanawat M, Aggarwal N, Marwaha RK. Synthesis, biological evaluation and in silico studies of some new analogues of 3,5-vdisubstituted thiazolidin-2,4-dione. Future Med Chem 2023; 15:2257-2268. [PMID: 37982252 DOI: 10.4155/fmc-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Background: A new series of 3,5-disubstituted thiazolidin-2,4-dione molecules were derived and characterized using various spectral techniques (1H NMR, IR, carbon, hydrogen, nitrogen, etc.) and physicochemical parameters. Materials & methods: The molecules were derived using Knoevenagel condensation followed by Mannich reaction and further synthesized analogues were screened for their antioxidant and antimicrobial potential using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method and serial tube dilution method, respectively, along with in silico studies (docking and absorption, distribution, metabolism and excretion parameters) to explore the drug-receptor interaction and druglikeness. Results & conclusion: In antimicrobial screening, the analogs MP2, MM6, MM7 and MM8 displayed promising activity while molecule MM4 exhibited better antioxidant potential in the series. In molecular docking analysis, the best-fitted analogs, namely, MM6 and MM7, showed good interactions.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Aastha Sharma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak, 124001, India
| | - Meenakshi Dhanawat
- Àmity institute of Pharmacy, Amity University Haryana, Gurugram, 122105, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
6
|
Gowdru Srinivasa M, B C R, Prabhu A, Rani V, Ghate SD, Kumar B R P. Development of novel thiazolidine-2,4-dione derivatives as PPAR-γ agonists through design, synthesis, computational docking, MD simulation, and comprehensive in vitro and in vivo evaluation. RSC Med Chem 2023; 14:2401-2416. [PMID: 37974963 PMCID: PMC10650958 DOI: 10.1039/d3md00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
The present study was conducted to develop new novel 2,4-thiazolidinedione derivatives (3h-3j) as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity. The objective was to overcome the adverse effects of existing thiazolidinediones while maintaining their pharmacological benefits. The synthesized compounds were elucidated based on FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Molecular docking was utilized to investigate the interaction binding modes, binding free energy, and amino acids engaged in the compounds' interactions with the target protein. Subsequently, molecular dynamics modelling was used to assess the stability of the top-docked complexes and an assay was utilized to assess the cytotoxicity of the compounds to C2C12 myoblasts. Compounds 3h-3j exhibited PPAR-γ modulatory activity and demonstrated significant hypoglycaemic effects when compared to the reference drug pioglitazone. The new compounds were evaluated for their in vivo blood glucose-lowering potential by using a dexamethasone-induced diabetic rat model. All the compounds showed a hypoglycaemic effect of 108.04 ± 4.39, 112.55 ± 6.10, and 117.48 ± 43.93, respectively, along with pioglitazone (153.93 ± 4.61) compared to the diabetic control. Additionally, all the compounds significantly reduced AST and ALT levels and did not cause liver damage.
Collapse
Affiliation(s)
- Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Revanasiddappa B C
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University) Deralakatte Mangalore Karnataka - 575 018 India
| | - Prashantha Kumar B R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India
| |
Collapse
|
7
|
Gautam P, Bisht P, Gautam A, Gupta GD, Singh R, Verma SK. A comprehension on structure guided alignment dependent 3D-QSAR modelling, and molecular dynamics simulation on 2,4-thiazolidinediones as aldose reductase inhibitors for the management of diabetic complications. J Biomol Struct Dyn 2023:1-20. [PMID: 37904329 DOI: 10.1080/07391102.2023.2275190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
Aldose reductase is an oxo-reductase enzyme belonging to the aldo-keto reductase class. Compounds having thiazolidine-2,4-dione scaffold are reported as potential aldose reductase inhibitors for diabetic complications. The present work uses structure-guided alignment-dependent Gaussian field- and atom-based 3D-QSAR on a dataset of 84 molecules. 3D-QSAR studies on two sets of dataset alignment have been carried out to understand the favourable and unfavourable structural features influencing the affinity of these inhibitors towards the enzyme. Using common pharmacophore hypotheses, the five-point pharmacophores for aldose reductase favourable features were generated. The molecular dynamics simulations (up to 100 ns) were performed for the potent molecule from each alignment set (compounds 24 and 65) compared to reference standard tolrestat and epalrestat to study target-ligand complexes' binding energy and stability. Compound 65 was most stable with better interactions in the aldose reductase binding pocket than tolrestat. The MM-PBSA study suggests compound 65 possessed better binding energy than reference standard tolrestat, i.e. -87.437 ± 19.728 and -73.424 ± 12.502 kJ/mol, respectively. The generated 3D-QSAR models provide information about structure-activity relationships and ligand-target binding energy. Target-specific stability data from MD simulation would be helpful for rational compound design with better aldose reductase activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyadarshi Gautam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Priya Bisht
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | | | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
8
|
Yadav PR, Basha SH. Impact of Fe + 2 ions on structural integrity of A0A6P1CI42_RHITR NifA protein from Rhizobium tropici strain CIAT 899. J Biomol Struct Dyn 2023; 42:10429-10438. [PMID: 37691419 DOI: 10.1080/07391102.2023.2256883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
A0A6P1CI42_RHITR, a protein originating from Rhizobium tropici strain CIAT 899, has emerged as a key player in leguminous plant symbiosis and nitrogen fixation processes. Understanding the intricate details of its structure and function holds immense significance for unraveling the molecular mechanisms underlying its biological activities. In this study, we employed molecular modeling and molecular dynamics (MD) simulations to investigate the A0A6P1CI42_RHITR protein, with a specific emphasis on the influence of Fe-atoms, linker structural integrity, and conformational changes within the GAF domain. Our findings unveiled noteworthy conformational changes in the A0A6P1CI42_RHITR protein, particularly within the GAF domain, when Fe-atoms were present compared to its apo form. Significant conformational rearrangements after an initial 20 ns, accompanied by the opening of the ligand substrate accommodating loop in the GAF domain influenced by Fe-atoms was observed. At the residue level, the investigation revealed substantial activity variations in individual residues, particularly in those contributing to the GAF domain from positions 51 to 223. Intriguingly, the presence of Fe-atoms led to controlled movement of conserved cysteine residues at positions 467 and 472, indicating a correlation between interlinker domain motion and the activity of the GAF domain loop responsible for substrate accommodation. Moreover, in the presence of Fe-atoms, the distance between Cys467 and Cys472 residues was maintained, ensuring the overall structural integrity of the interdomain loop necessary for protein activation. Conversely, in the apo form, a sudden flip motion of cysteine residues' thiol groups was observed, leading to a loss of structural integration. Overall, our study utilizing molecular modeling and MD simulations offers valuable insights into the structural dynamics and functional implications of the A0A6P1CI42_RHITR protein.Communicated by Ramaswamy H. Sarma.
Collapse
|
9
|
Kumar H, Kumar D, Kumar P, Thareja S, Marwaha MG, Navik U, Marwaha RK. Synthesis, biological evaluation and in-silico ADME studies of novel series of thiazolidin-2,4-dione derivatives as antimicrobial, antioxidant and anticancer agents. BMC Chem 2022; 16:68. [PMID: 36109764 PMCID: PMC9479363 DOI: 10.1186/s13065-022-00861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background A novel series of thiazolidine-2,4-dione molecules was derived and their chemical structures were established using physiochemical parameters and spectral techniques (1H-NMR, IR, MS etc.). The synthesized molecule were then evaluated for their antioxidant, anticancer and antimicrobial potential. Results and discussion Serial tube dilution method was employed to evaluate the antimicrobial potential against selected fungal and bacterial strains by taking fluconazole and cefadroxil as reference antifungal and antibacterial drugs respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity was used to assess the antioxidant potential of the synthesized analogues. Further, the anticancer potential of the selected molecules was assessed against DU-145 cancer cell lines using MTT assay. The drug-likeness was also evaluated by studying in-silico ADME parameters of the synthesized analogues. Conclusion In antioxidant evaluation studies, the analogue H5 with IC50 = 14.85 μg/mL was found to be the most active molecule. The antimicrobial evaluation outcomes suggested that the molecules H5, H13, H15 and H18 possessed moderate to promising activity against the selected species of microbial strains having MIC range 7.3 µM to 26.3 µM. The results of anticancer evaluation revealed that all the screened derivatives possess mild anticancer potential. The in-silico ADME studies revealed that all the compounds were found to be drug-like.
Collapse
|
10
|
Bailly C. Moving toward a new horizon for the aldose reductase inhibitor epalrestat to treat drug-resistant cancer. Eur J Pharmacol 2022; 931:175191. [PMID: 35964660 DOI: 10.1016/j.ejphar.2022.175191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Epalrestat (EPA) is a potent inhibitor of aldose reductases AKR1B1 and AKR1B10, used for decades in Japan for the treatment of diabetic peripheral neuropathy. This orally-active, brain-permeable small molecule, with a relatively rare and essential 2-thioxo-4-thiazolidinone motif, functions as a regulator intracellular carbonyl species. The repurposing of EPA for the treatment of pediatric rare diseases, brain disorders and cancer has been proposed. A detailed analysis of the mechanism of action, and the benefit of EPA to combat advanced malignancies is offered here. EPA has revealed marked anticancer activities, alone and in combination with cytotoxic chemotherapy and targeted therapeutics, in experimental models of liver, colon, and breast cancers. Through inhibition of AKR1B1 and/or AKR1B10 and blockade of the epithelial-mesenchymal transition, EPA largely enhances the sensitivity of cancer cells to drugs like doxorubicin and sorafenib. EPA has revealed a major anticancer effect in an experimental model of basal-like breast cancer and clinical trials have been developed in patients with triple-negative breast cancer. The repurposing of the drug to treat chemo-resistant solid tumors seems promising, but more studies are needed to define the best trajectory for the positioning of EPA in oncology.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
11
|
Hussain A, Altamimi MA, Afzal O, Altamimi ASA, Ali A, Ali A, Martinez F, Mohd Siddique MU, Acree WE, Jouyban A. Preferential Solvation Study of the Synthesized Aldose Reductase Inhibitor (SE415) in the {PEG 400 (1) + Water (2)} Cosolvent Mixture and GastroPlus-Based Prediction. ACS OMEGA 2022; 7:1197-1210. [PMID: 35036782 PMCID: PMC8757459 DOI: 10.1021/acsomega.1c05788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
(Z)-N-Benzyl-2-{2,4-dioxo-5-(4-prop-2-yl-1-yloxyl)benzylidene)thiazolin-3-yl)}acetamide (SE415) is a novel aldose reductase inhibitor used in the management of diabetes mellitus (DM) and associated complications. Herein, the drug was solubilized (mole fraction solubility) in a "PEG 400 (polyethylene glycol 400) + water" mixture of various ratios at 298.15 K. We reported the preferential solvation of SE415 by PEG 400 using Kirkwood-Buff integrals, the thermodynamic functional parameter, in vitro dissolution, and GastroPlus-based predictions for in vivo performance. The result of Hansen solubility parameter analysis suggested PEG 400 as a suitable solvent for SE415 solubilization at 298.0 K, followed by prediction of several physicochemical properties. In the preferential solvation study, the molar volume, Hildebrand solubility parameters, and the molecular radius of SE415 were estimated as 258.4 cm3·mol-1, 27.62 MPa1/2, and 0.468 nm, respectively, using Fedors' method. The inverse Kirkwood-Buff integrals indicated that the preferential solvation of SE415 by PEG 400 occurred in all studied ratios of the (PEG 400 + water) mixtures. The maximum value (δx 1,3 = 1.21 × 10-2) of the preferential solvation of SE415 by PEG 400 was achieved at x 1 = 0.15. Then, using GastroPlus software, the maximum dissolution, improved in vivo oral absorption, and high regional compartmental absorption (total 99.0%) of SE415 in humans were predicted. Finally, the solubility data were correlated/predicted using various cosolvency models with satisfactory results. Thus, the binary cosolvent system can be a promising approach for enhanced oral absorption in controlling DM and associated complications in humans.
Collapse
Affiliation(s)
- Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fleming Martinez
- Grupo
de Investigaciones Farmacéutico-Fisicoquímicas, Departamento
de Farmacia, Universidad Nacional de Colombia,
Sede Bogotá, Cra
30 No. 45-03, Bogotá D. C. 111321, Colombia
| | - Mohd Usman Mohd Siddique
- Department
of Pharmaceutical Chemistry, Shri Vile Parley
Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharastra, India
| | - William E. Acree
- Department
of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Abolghasem Jouyban
- Faculty
of Pharmacy, Near East University, P.O. BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
12
|
Bayrak C, Yildizhan G, Kilinc N, Durdagi S, Menzek A. Synthesis and Aldose Reductase Inhibition Effects of Novel N-Benzyl-4-Methoxyaniline Derivatives. Chem Biodivers 2021; 19:e202100530. [PMID: 34889038 DOI: 10.1002/cbdv.202100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022]
Abstract
In the current study, starting from 4-methoxyaniline, four Schiff bases were synthesized from benzaldehydes with Br and OMe. Corresponding N-benzylanilines and their derivatives were obtained from reductions (by NaBH4 ) and substitutions (by acyl and tosyl chlorides) of these bases, respectively. The inhibitory effects of the sixteen compounds, twelve of which were novel compounds are examined. Then, we conducted molecular docking and binary QSAR studies to determine inhibitory-enzyme interactions of compounds that show an inhibitory effect. Our results reveal that methoxyanilline-derived compounds show good biological activities. The most active compound (22) has IC50 values of 2.83 μM. These novel AR enzyme inhibitors may open new avenues for better AR inhibitors in the future.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey.,Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, Agri, 04400, -Turkey
| | - Gulsah Yildizhan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, 76000, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, 34747-, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240-, Turkey
| |
Collapse
|