1
|
Shang N, Zhu L, Li Y, Song C, Liu X. Targeting CDK1 and copper homeostasis in breast cancer via a nanopolymer drug delivery system. Cell Biol Toxicol 2024; 41:16. [PMID: 39724454 PMCID: PMC11671568 DOI: 10.1007/s10565-024-09958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis. Through a comprehensive approach involving bioinformatics analyses, in vitro experiments, and in vivo models, the study identified CDK1 as a significant factor in BRCA progression under copper homeostasis. MBVP-Gel, a novel thermosensitive hydrogel incorporating NPs, was developed to enhance the delivery of chemotherapy drugs and regulate copper homeostasis in breast cancer treatment. The MBVP-Gel, formulated with copper chelation and VCR NPs, effectively suppressed CDK1 expression, thereby restraining BRCA cell growth and metastasis while enhancing the therapeutic impact of VCR. This investigation offers fresh insights and experimental validation on the interaction between copper homeostasis and BRCA, providing a valuable foundation for refining future treatment strategies. These findings underscore the potential advantages of targeting copper homeostasis and CDK1 in enhancing BRCA therapy, setting the stage for individualized interventions and improved patient consequences.
Collapse
Affiliation(s)
- Nan Shang
- Department of Urinary Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Lisi Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Chengyang Song
- Department of Thoracic and Cardiac Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
4
|
Wang K, Song LH, Liang QL, Zhang Y, Ma XL, Wang Q, Zhang HY, Jiang CN, Wei JH, Huang RZ. Discovery of novel sulfonamide chromone-oxime derivatives as potent indoleamine 2,3-dioxygenase 1 inhibitors. Eur J Med Chem 2023; 254:115349. [PMID: 37060754 DOI: 10.1016/j.ejmech.2023.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
A series of chromone-oxime derivatives containing piperazine sulfonamide moieties were designed, synthesized and evaluated for their inhibitory activities against IDO1. These compounds displayed moderate to good inhibitory activity against IDO1 with IC50 values in low micromolar range. Among them, compound 10m bound effectively to IDO1 with good inhibitory activities (hIDO1 IC50 = 0.64 μM, HeLa IDO1 IC50 = 1.04 μM) and were selected for further investigation. Surface plasmon resonance analysis confirmed the direct interaction between compound 10m and IDO1 protein. Molecular docking study of the most active compound 10m revealed key interactions between 10m and IDO1 in which the chromone-oxime moiety coordinated to the heme iron and formed several hydrogen bonds with the porphyrin ring of heme and ALA264, consistent with the observation by UV-visible spectra that 10m induced a Soret peak shift from 403 to 421 nm. Moreover, compound 10m exhibited no cytotoxicity at its effective concentration in MTT assay. Consistently, in vivo assays results demonstrated that 10m displayed potent antitumor activity with low toxicity in CT26 tumor-bearing Balb/c mice, in comparison with 1-methyl-l-tryptophan (1-MT) and 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L). In brief, the results suggested that chromone-oxime derivatives containing sulfonamide moieties might serve as IDO1 inhibitors for the development of new antitumor agents.
Collapse
Affiliation(s)
- Ke Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qiao-Ling Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Xian-Li Ma
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Hui-Yong Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Cai-Na Jiang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
5
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
6
|
Xu GQ, Gong XQ, Zhu YY, Yao XJ, Peng LZ, Sun G, Yang JX, Mao LF. Novel 1,2,3-Triazole Erlotinib Derivatives as Potent IDO1 Inhibitors: Design, Drug-Target Interactions Prediction, Synthesis, Biological Evaluation, Molecular Docking and ADME Properties Studies. Front Pharmacol 2022; 13:854965. [PMID: 35677437 PMCID: PMC9168369 DOI: 10.3389/fphar.2022.854965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a predominant role in cancer immunotherapy which catalyzes the initial and rate limiting steps of the kynurenine pathway as a key enzyme. To explore novel IDO1 inhibitors, five derivatives of erlotinib-linked 1,2,3-triazole compounds were designed by using a structure-based drug design strategy. Drug-target interactions (DTI) were predicted by DeePurpose, an easy-to-use deep learning library that contains more than 50 algorithms. The DTI prediction results suggested that the designed molecules have potential inhibitory activities for IDO1. Chemical syntheses and bioassays showed that the compounds exhibited remarkable inhibitory activities against IDO1, among them, compound e was the most potent with an IC50 value of 0.32 ± 0.07 μM in the Hela cell assay. The docking model and ADME analysis exhibited that the effective interactions of these compounds with heme iron and better drug-likeness ensured the IDO1 inhibitory activities. The studies suggested that compound e was a novel and interesting IDO1 inhibitor for further development.
Collapse
Affiliation(s)
- Gui-Qing Xu
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiao-Qing Gong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ying-Ying Zhu
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiao-Jun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Li-Zeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ge Sun
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Xue Yang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.,School of Nursing, Henan University of Science and Technology, Luoyang, China
| | - Long-Fei Mao
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
7
|
Discovery and biological evaluation of tanshinone derivatives as potent dual inhibitors of indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase. Eur J Med Chem 2022; 235:114294. [DOI: 10.1016/j.ejmech.2022.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
|