1
|
Lv L, Maimaitiming M, Yang J, Xia S, Li X, Wang P, Liu Z, Wang CY. Quinazolinone Derivative MR2938 Protects DSS-Induced Barrier Dysfunction in Mice Through Regulating Gut Microbiota. Pharmaceuticals (Basel) 2025; 18:123. [PMID: 39861184 PMCID: PMC11768254 DOI: 10.3390/ph18010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by colorectal immune infiltration and significant microbiota compositional changes. Gut microbiota homeostasis is necessary to maintain the healthy state of humans. MR2938, a quinazolin-4(3H)-one derivative derived from the marine natural product penipanoid C, alleviated DSS-induced colitis in a dose-dependent manner. Herein, we aimed to investigate the impact of MR2938 on the gut microbiota in dextran sodium sulfate (DSS)-induced colitis in mice and to elucidate the role of the gut microbiota in the therapeutic mechanism of MR2938 for alleviating colitis. Methods: Acute colitis was induced with DSS in mice. Mice were administered with 100 mg/kg or 50 mg/kg of MR2938. Cecal content was also preserved in liquid nitrogen and subsequently analyzed following 16S RNA sequencing. Antibiotic cocktail-induced microbiome depletion was performed to further investigate the relationship between MR2938 and gut microbiota. The inflammatory factor levels were performed by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Alcian blue staining and immunofluorescence were used to estimate the intestinal barrier. Results: The 16S rRNA sequencing revealed microbiota modulation by MR2938. Compared with the model group, the 100 mg/kg MR2938 group was associated with higher abundances of Entercoccus and a lower abundance of Staphylococcus, while the 50 mg/kg MR2938 group was associated with higher abundances of Lactobacillus and a lower abundance of Staphylococcus. The antibiotic-mediated microbiota depletion experiments demonstrated that the gut microbiota primarily contributed to barrier function protection, with little impact on inflammatory factor levels during the MR2938 treatment. Conclusions: These findings suggest that intestinal flora play a crucial role in MR2938's therapeutic mechanism for alleviating colitis.
Collapse
Affiliation(s)
- Ling Lv
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mireguli Maimaitiming
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jichen Yang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shuli Xia
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xin Li
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Pingyuan Wang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhiqing Liu
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China (Z.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Wu J, Huang X, Lu S, Wang Z, Mao L, Li S. Synthesis of Novel Gefitinib-Conjugated 1,2,3-Triazole Derivatives and Their Effect of Inducing DNA Damage and Apoptosis in Tumor Cells. Molecules 2024; 29:5438. [PMID: 39598828 PMCID: PMC11597353 DOI: 10.3390/molecules29225438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Compounds with rigid planar structures can insert into tumor cell DNA, thereby inducing DNA damage in tumor cells. In this study, quinazoline, a compound with a planar structure, was used as the core scaffold. A rigid planar 1,2,3-triazole moiety was introduced into its structure, and its activity was tested on HepG2 liver cancer cells. The results showed that most compounds exhibited inhibitory effects on HepG2 cells, and the IC50 values of the most effective compounds were 3.08 ± 0.37 μM and 3.60 ± 0.53 μM. We found that the designed compounds significantly upregulated the expression of γ-H2AX in tumor cells, inducing DNA damage while reducing PARP levels, thereby weakening the DNA damage repair capacity of tumor cells and leading to apoptosis. Additionally, these compounds inhibited the migration and invasion of HepG2 cells. One of the compounds was found to be low in toxicity in mice, suggesting its potential as a targeted DNA anti-tumor drug.
Collapse
Affiliation(s)
| | | | | | | | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (J.W.)
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (J.W.)
| |
Collapse
|
3
|
Morgan I, Rennert R, Berger R, Jelača S, Maksimović-Ivanić D, Dunđerović D, Mijatović S, Kaluđerović GN, Wessjohann LA. The impact of 9-azaglycophymine and phenylguanidine derivatives on the proliferation of various breast cancer cell lines in vitro and in vivo. Sci Rep 2024; 14:28126. [PMID: 39548116 PMCID: PMC11568214 DOI: 10.1038/s41598-024-71624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024] Open
Abstract
Quinazolinones, particularly 9-azaglycophymines, and closely related derivatives and precursors were tested in vitro against various breast cancer cell lines representing the major types of breast tumors. Among the 49 compounds tested, azaglycophymine derivative 19 with an electron-withdrawing substituent demonstrated the most significant anti-proliferative effects, with IC50 values of around 4 µM. Extensive cell-based investigations revealed that compound 19 induced caspase-dependent apoptosis in HCC1937 (human TNBC), BT-474 (human HER2+/HR+), and 4T1 (mouse TNBC) cells. In contrast, in MDA-MB-468 (human TNBC) and MCF-7 (human HR+) cells, the cell death was induced via a non-apoptotic pathway. The in vivo efficacy of compound 19 was validated using a syngeneic orthotopic 4T1 model in BALB/c mice, resulting in significant reduction of 4T1 breast tumor growth upon intraperitoneal (i.p.) application of doses of 5 or 20 mg/kg. These findings highlight the potential of compound 19 as a promising scaffold for the development of new therapeutic agents for various types of breast cancer and a first structure-activity insight.
Collapse
Affiliation(s)
- Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Robert Berger
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- , Berlin, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000, Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217, Merseburg, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Emami L, Hassani M, Mardaneh P, Zare F, Saeedi M, Emami M, Khabnadideh S, Sadeghian S. 6-Bromo quinazoline derivatives as cytotoxic agents: design, synthesis, molecular docking and MD simulation. BMC Chem 2024; 18:125. [PMID: 38965630 PMCID: PMC11225515 DOI: 10.1186/s13065-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Based on unselectively, several side effects and drug resistance of available anticancer agents, the development and research for novel anticancer agents is necessary. In this study, a new series of quinazoline-4(3H)-one derivatives having a thiol group at position 2 of the quinazoline ring (8a-8 h) were designed and synthesized as potential anticancer agents. The Chemical structures of all compounds were characterized by 1H-NMR, 13C-NMR, and Mass spectroscopy. The antiproliferative activity of all derivatives were determined against two cancer cell lines (MCF-7 and SW480) and one normal cell lines (MRC-5) by the MTT method. Cisplatin, Erlotinib and Doxorubicin were used as positive controls. The results of in vitro screening showed that 8a with an aliphatic linker to SH group was the most potent compound with IC50 values of 15.85 ± 3.32 and 17.85 ± 0.92 µM against MCF-7 and SW480 cell lines, respectively. 8a indicated significantly better potency compared to Erlotinib in the MCF-7 cell line. The cytotoxic results obtained from testing compound 8a on the normal cell line, revealing an IC50 value of 84.20 ± 1.72 µM, provide compelling evidence of its selectivity in distinguishing between tumorigenic and non-tumorigenic cell lines. Structure-activity relationship indicated that the variation in the anticancer activities of quinazoline-4(3H)-one derivatives was affected by different substitutions on the SH position. Molecular docking and MD simulation were carried out for consideration of the binding affinity of compounds against EGFR and EGFR-mutated. The binding energy of compounds 8a and 8c were calculated at -6.7 and - 5.3 kcal.mol- 1, respectively. Compounds 8a and 8c were found to establish hydrogen bonds and some other important interactions with key residue. The DFT analysis was also performed at the B3LYP/6-31 + G(d, p) level for compounds 8a, 8c and Erlotinib. Compound 8a was thermodynamically more stable than 8c. Also, the calculated theoretical and experimental data for the IR spectrum were in agreement. The obtained results delineated that the 8a can be considered an appropriate pharmacophore to develop as an anti-proliferative agent.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mardaneh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Saeedi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhang H, Li M, Zhou X, Tang L, Chen G, Zhang Y. Design, synthesis of combretastatin A-4 piperazine derivatives as potential antitumor agents by inhibiting tubulin polymerization and inducing autophagy in HCT116 cells. Eur J Med Chem 2024; 272:116497. [PMID: 38759453 DOI: 10.1016/j.ejmech.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 μM and 0.253 μM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.
Collapse
Affiliation(s)
- Hangqi Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Ming Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xueming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Li Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China.
| | - Yongmin Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
6
|
Le HT, Do KM, Nguyen QP, Doan CNM, Nguyen NA, Phan TT, Tran XTC, Ha QTK, Tran DQ, Morita H, Bui HTB. Syntheses and Cytotoxicities of Quinazolinone-Based Conjugates. Chem Pharm Bull (Tokyo) 2024; 72:61-67. [PMID: 38220213 DOI: 10.1248/cpb.c23-00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Two novel series of quinazolinone-based hybrids, including quinazolinone-1,3,4-oxadiazoles (10a-l) and quinazolinone-1,3,4-oxadiazole-benzimidazoles (8a-e), were designed and synthesized and their cytotoxic activities against three human cancer cell lines, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7), were evaluated. The cytotoxic assays revealed that 10i with a lipophilic 4-fluoro-phenyl moiety at the C-2 position of the quinazolinone ring displayed good cytotoxicities against the A549 and MCF-7 cell lines, while 8b-d with the thioether-linked benzimidazole moiety incorporated on the right side of the oxadiazole ring induced comparable stronger activities toward the MCF-7 cell line, relative to the simple two-heterocycle-containing hybrid 10i. These novel quinazolinone-based hybrids could be considered as lead compounds that merit further optimization and development as anti-cancer agents.
Collapse
Affiliation(s)
- Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University
- Faculty of Pharmacy and Nursing, Tay Do University
| | | | - Nhi Ai Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Tai Thi Phan
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Xuyen Thi Cam Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Quy Thi Kim Ha
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | | | - Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University
| |
Collapse
|
7
|
Galarreta-Rodriguez I, Etxebeste-Mitxeltorena M, Moreno E, Plano D, Sanmartín C, Megahed S, Feliu N, Parak WJ, Garaio E, Gil de Muro I, Lezama L, Ruiz de Larramendi I, Insausti M. Preparation of Selenium-Based Drug-Modified Polymeric Ligand-Functionalised Fe 3O 4 Nanoparticles as Multimodal Drug Carrier and Magnetic Hyperthermia Inductor. Pharmaceuticals (Basel) 2023; 16:949. [PMID: 37513861 PMCID: PMC10385492 DOI: 10.3390/ph16070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, much effort has been invested into developing multifunctional drug delivery systems to overcome the drawbacks of conventional carriers. Magnetic nanoparticles are not generally used as carriers but can be functionalised with several different biomolecules and their size can be tailored to present a hyperthermia response, allowing for the design of multifunctional systems which can be active in therapies. In this work, we have designed a drug carrier nanosystem based on Fe3O4 nanoparticles with large heating power and 4-amino-2-pentylselenoquinazoline as an attached drug that exhibits oxidative properties and high selectivity against a variety of cancer malignant cells. For this propose, two samples composed of homogeneous Fe3O4 nanoparticles (NPs) with different sizes, shapes, and magnetic properties have been synthesised and characterised. The surface modification of the prepared Fe3O4 nanoparticles has been developed using copolymers composed of poly(ethylene-alt-maleic anhydride), dodecylamine, polyethylene glycol and the drug 4-amino-2-pentylselenoquinazoline. The obtained nanosystems were properly characterised. Their in vitro efficacy in colon cancer cells and as magnetic hyperthermia inductors was analysed, thereby leaving the door open for their potential application as multimodal agents.
Collapse
Affiliation(s)
- Itziar Galarreta-Rodriguez
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Mikel Etxebeste-Mitxeltorena
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Esther Moreno
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Fachbereich Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Neus Feliu
- Center for Applied Nanotechnology CAN, Fraunhofer Institute for Applied Polymer Research IAP, 20146 Hamburg, Germany
| | | | - Eneko Garaio
- Departamento de Ciencias, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
| | - Izaskun Gil de Muro
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Luis Lezama
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Maite Insausti
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
8
|
Fan Y, Luo F, Su M, Li Q, Zhong T, Xiong L, Li M, Yuan M, Wang D. Structure optimization, synthesis, and biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H)-one derivatives as potential multi-targeted anticancer agents via Aurora A/ PI3K/BRD4 inhibition. Bioorg Chem 2023; 132:106352. [PMID: 36682147 DOI: 10.1016/j.bioorg.2023.106352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023]
Abstract
Aurora A (Aurora kinase A), a critical regulator of cell mitosis, is frequently overexpressed in many malignant cancers, and has been considered as a promising drug target for cancer therapy. Likewise, Phosphatidylinositol 3-kinase alpha (PI3Kα) is also regarded as one of the most important targets in cancer therapy by mediating the cell growth and angiogenesis of various human cancers. In addition, Bromodomain-containing protein 4 (BRD4) modulates oncogene expressions of Myc, Aurora kinase and various RTKs. Recently, accumulating evidences indicated that hyperactivated or abnormally expressed Aurora A, PI3Kα or BRD4 are closely associated with drug resistance and poor prognosis of non-small cell lung cancer (NSCLC). Hence, simultaneous inhibition of Aurora A, PI3Kα, and BRD4 is expected to be a new strategy for NSCLC therapy. In this study, we performed further structure optimization of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H) -one based on previous study to obtain a series of derivatives for discovering potential Aurora A, PI3Kα and BRD4 multi-targeted inhibitors. MTT assay showed that most of the newly synthesized compounds exhibited an evident anticancer activity against the NSCLC cells. Among them, the IC50 values of the most potent compound 9a were 0.83, 0.26 and 1.02 μM against A549, HCC827 and H1975 cells, respectively. In addition, 9a markedly inhibited the Aurora A and PI3Kα kinase activities with IC50 values of 10.19 nM and 13.12 nM. Compound 9a induced G2/M phase arrests and apoptosis of HCC827 cells by simultaneous inhibition of Aurora A/PI3K/ BRD4 signaling pathways. Collectively, our studies suggested that 9a might be a potential multi-targeted inhibitor for NSCLC therapy.
Collapse
Affiliation(s)
- Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Mingzhi Su
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Meitao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
9
|
Jayaram A, Govindan K, Kannan VR, Thavasianandam Seenivasan V, Chen NQ, Lin WY. Iodine-Promoted Oxidative Cyclization of Acylated and Alkylated Derivatives from Epoxides toward the Synthesis of Aza Heterocycles. J Org Chem 2023; 88:1749-1761. [PMID: 36649653 DOI: 10.1021/acs.joc.2c02802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new method for directly synthesizing acylated and alkylated quinazoline derivatives by the epoxide ring-opening reaction in the presence of I2/DMSO with 2-aminobenzamide is described herein. The developed mild protocol is efficient and displays a wide variety of functional group tolerance and substrate-controlled high selectivity, and the application of a continuous flow technique allows for faster reaction time and higher yields. Moreover, the robustness of the method is applicable in gram-scale synthesis.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Vijaya Raghavan Kannan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | | | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
10
|
Yan ZQ, Ding SY, Chen P, Liu HP, Chang ML, Shi SY. A water-soluble polysaccharide from Eucommia folium: the structural characterization and anti-tumor activity in vivo. Glycoconj J 2022; 39:759-772. [PMID: 36342595 DOI: 10.1007/s10719-022-10086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
In this study, a water-soluble polysaccharide from Eucommia folium was extracted by hot water and purified using Sephadex G-200 gel columns. The results showed that the purified fraction (EFP) has a molecular weight of 9.98 × 105 Da and consisted of rhamnose, arabinose, galactose, glucose, mannose, xylose, galacturonic acid, and glucuronic acid (molar ratio: 0.226: 1.739: 2.183: 1: 0.155: 0.321: 0.358: 0.047). The combination of infrared spectroscopy and NMR analysis proved that EFP is an acidic polysaccharide whose main chain consists of α-L-Araf-(1 → , → 3,5)-α-Araf-(1 → , → 3)-β-Galp-(1 → , → 3,6)-β-Glcp-(1 → , → 2)-α-D-Manp-(1 → , → 4)-α-GalpA-(1 → , → 2,4)-α-Rhap-(1 → . In addition, the in vivo antitumoral activity of EFP was studied using a H22 tumor-bearing mice model. EFP effectively inhibited tumor growth in mice following intragastric administration. By Combining with the results of the apoptosis assay and JC-1 staining analysis, we confirmed that EFP induces apoptosis through the mitochondrial pathway. Furthermore, cell cycle analysis demonstrated that EFP blocks the cell cycle at S phase.
Collapse
Affiliation(s)
- Zhi-Qian Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China
| | - Su-Yun Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China
| | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China.
| | - Meng-Li Chang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China
| | - Shu-Yuan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin, 300457, People's Republic of China
| |
Collapse
|
11
|
Design and synthesis of novel quinazolinyl-bisspirooxindoles as potent anti-tubercular agents: an ultrasound-promoted methodology. Mol Divers 2022:10.1007/s11030-022-10500-x. [PMID: 35933454 DOI: 10.1007/s11030-022-10500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
The essential need for the potent anti-tubercular (anti-TB) agents with high selectivity and safety profile prompted us to synthesize a new series of quinazolinyl-bisspirooxindoles. The title compounds were synthesized by one-pot multicomponent [3 + 2] cycloaddition reaction under ultrasonication. Further, in vitro anti-TB activity was evaluated against Mycobacterium tuberculosis H37Rv. Among the screened compounds, two compounds (4q and 4x) showed potent activity with MIC value 1.56 µg/mL and four compounds exhibited significant activity (MIC = 3.125 µg/mL), and also cytotoxicity studies against RAW 264.7 cell lines reveal that most active compounds were less toxic to humans. In addition, in order to demonstrate the inhibitory properties, molecular docking studies were carried out and the results showed that the target compounds have good binding energy and better binding affinity within the active pocket, thus these compounds may consider to be as potent inhibitors toward selective targets.
Collapse
|
12
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
13
|
Veena K, Raghu M, Yogesh Kumar K, Dahlous KA, Bahajjaj AAA, Mani G, Jeon BH, Prashanth M. Development of penipanoid C-inspired 2-benzoyl-1-methyl-2,3-dihydroquinazolin-4(1H)-one derivatives as potential EGFR inhibitors: Synthesis, anticancer evaluation and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
15
|
Mirgany TO, Abdalla AN, Arifuzzaman M, Motiur Rahman AFM, Al-Salem HS. Quinazolin-4(3 H)-one based potential multiple tyrosine kinase inhibitors with excellent cytotoxicity. J Enzyme Inhib Med Chem 2021; 36:2055-2067. [PMID: 34551654 PMCID: PMC8462848 DOI: 10.1080/14756366.2021.1972992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 − 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.
Collapse
Affiliation(s)
- Tebyan O Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Md Arifuzzaman
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|