1
|
Shi YQ, Sun ZH, Wang ZZ, Su CY, Zhang W, Yu LY, Xu Y, Gao YL, Wang HB, Tian JW, Li CM. A novel role for microtubule affinity-regulating kinases in neuropathic pain. Br J Pharmacol 2024; 181:2012-2032. [PMID: 38112022 DOI: 10.1111/bph.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects millions of patients, but there are currently few viable therapeutic options available. Microtubule affinity-regulating kinases (MARKs) regulate the dynamics of microtubules and participate in synaptic remodelling. It is unclear whether these changes are involved in the central sensitization of neuropathic pain. This study examined the role of MARK1 or MARK2 in regulating neurosynaptic plasticity induced by neuropathic pain. EXPERIMENTAL APPROACH A rat spinal nerve ligation (SNL) model was established to induce neuropathic pain. The role of MARKs in nociceptive regulation was assessed by genetically knocking down MARK1 or MARK2 in amygdala and systemic administration of PCC0105003, a novel small molecule MARK inhibitor. Cognitive function, anxiety-like behaviours and motor coordination capability were also examined in SNL rats. Synaptic remodelling-associated signalling changes were detected with electrophysiological recording, Golgi-Cox staining, western blotting and qRT-PCR. KEY RESULTS MARK1 and MARK2 expression levels in amygdala and spinal dorsal horn were elevated in SNL rats. MARK1 or MARK2 knockdown in amygdala and PCC0105003 treatment partially attenuated pain-like behaviours along with improving cognitive deficit, anxiogenic-like behaviours and motor coordination in SNL rats. Inhibition of MARKs signalling reversed synaptic plasticity at the functional and structural levels by suppressing NR2B/GluR1 and EB3/Drebrin signalling pathways both in amygdala and spinal dorsal horn. CONCLUSION AND IMPLICATIONS These results suggest that MARKs-mediated synaptic remodelling plays a key role in the pathogenesis of neuropathic pain and that pharmacological inhibitors of MARKs such as PCC0105003 could represent a novel therapeutic strategy for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yao-Qin Shi
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhi-Hong Sun
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhe-Zhe Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Yu Su
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Wei Zhang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Lin-Yao Yu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yang Xu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yong-Lin Gao
- College of Life Sciences, Yantai University, Yantai, China
| | - Hong-Bo Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Jing-Wei Tian
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Mei Li
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
2
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Hu Z, Wang W, Yang H, Zhao F, Sha C, Mi W, Yin S, Wang H, Tian J, Ye L. Metabolism, Disposition, Excretion, and Potential Transporter Inhibition of 7-16, an Improving 5-HT 2A Receptor Antagonist and Inverse Agonist for Parkinson's Disease. Molecules 2024; 29:2184. [PMID: 38792047 PMCID: PMC11124362 DOI: 10.3390/molecules29102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.
Collapse
Affiliation(s)
- Zhengping Hu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Huijie Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Fengjuan Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Chunjie Sha
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Liang Ye
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Ye L, Yang Y, Li C, Zhang J, Wang W, Ma M, Xu H, Zhang W, Zou F, Hu Z, Wang H, Tian J. Synthesis and evaluation of piperazinotriazoles. Discovery of a potent and orally bioavailable neurokinin-3 receptor inhibitor. Eur J Med Chem 2023; 257:115486. [PMID: 37247507 DOI: 10.1016/j.ejmech.2023.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
The neurokinin-3 receptor (NK3R) is one of three receptors that recognize neurokinins. The finding that pharmacological blockade of neurokinin B (NKB) signaling with an oral NK3R antagonist can significantly improve hot flash symptoms independent of any hormonal effect fits strongly suggest that NK3R is a viable drug target and that drugs targeting this receptor could be novel pharmacotherapies. Currently no NK3R ligands have been approved for the treatment of human disorders. Herein, we designed and synthesized a series of novel imidazolepiperazine derivatives (16a-16x, 20a-20f, 29a-29m) and performed molecular docking to confirm the design, among which the target compound 16x exhibited promising inhibitory activity against NK3R (IC50 = 430.60 nM) with excellent membrane permeability (Papp, A-B = 37.6 × 10-6 cm/s, ER < 1) and oral bioavailability (F% = 93.6%). Our in vivo studies demonstrated that 16x was orally active, efficacious, and well-tolerated in ovariectomy (OVX) model to suppress blood luteinizing hormone levels, which suggests that 16x is a viable lead compound for further optimization and development.
Collapse
Affiliation(s)
- Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, PR China.
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, Shangdong, 264005, PR China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mingxu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hengwei Xu
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, PR China
| | - Wenjing Zhang
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, PR China
| | - Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhengping Hu
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
5
|
9-Cyclopropylmethoxy-dihydrotetrabenazine and its stereoisomers as vesicular monoamine transporter-2 inhibitors. Future Med Chem 2022; 14:991-1003. [PMID: 35638444 DOI: 10.4155/fmc-2021-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To separate and evaluate 9-cyclopropylmethoxy-dihydrotetrabenazine (13a) and its stereoisomers for their high affinity for vesicular monoamine transporter-2 (VMAT2). Method: Stereoisomers of 13a were separated and configurations were ascertained by chiral chromatography and crystal diffraction combined with 1H-1H NOESY assay. Possible binding modes of eight stereoisomers and VMAT2 were explored by molecular docking assays. The VMAT2 affinity of the stereoisomers, inhibition in vivo and pharmacokinetics in rats were evaluated. Results: Three stereoisomers were obtained: P1, P2 and P3, and all had similar VMAT2 binding modes. P2 [(2R, 3R, 11bR)-13a] showed the highest potential VMAT2 binding activity (Ki = 0.75 nM), decreased locomotor activity in rats and had an oral absolute bioavailability of 92.0%. Conclusion: P2 has good efficacy and pharmacokinetic properties and warrants further development to treat tardive dyskinesia.
Collapse
|
6
|
Wang W, Du G, Lin S, Liu J, Yang H, Yu D, Ye L, Zou F, Wang H, Zhang R, Tian J. (+)-9-Trifluoroethoxy-α-Dihydrotetrabenazine as a Highly Potent Vesicular Monoamine Transporter 2 Inhibitor for Tardive Dyskinesia. Front Pharmacol 2021; 12:770377. [PMID: 34950030 PMCID: PMC8689140 DOI: 10.3389/fphar.2021.770377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Valbenazine and deutetrabenazine are the only two therapeutic drugs approved for tardive dyskinesia based on blocking the action of vesicular monoamine transporter 2 (VMAT2). But there exist demethylated inactive metabolism at the nine position for both them resulting in low availability, and CYP2D6 plays a major role in this metabolism resulting in the genetic polymorphism issue. 9-trifluoroethoxy-dihydrotetrabenazine (13e) was identified as a promising lead compound for treating tardive dyskinesia. In this study, we separated 13e via chiral chromatography and acquired R,R,R-13e [(+)-13e] and S,S,S-13e [(−)-13e], and we investigated their VMAT2-inhibitory activity and examined the related pharmacodynamics and pharmacokinetics properties using in vitro and in vivo models (+)-13e displayed high affinity for VMAT2 (Ki = 1.48 nM) and strongly inhibited [3H]DA uptake (IC50 = 6.11 nM) in striatal synaptosomes. Conversely, its enantiomer was inactive. In vivo, (+)-13e decreased locomotion in rats in a dose-dependent manner. The treatment had faster, stronger, and longer-lasting effects than valbenazine at an equivalent dose. Mono-oxidation was the main metabolic pathway in the liver microsomes and in dog plasma after oral administration, and glucuronide conjugation of mono-oxidized and/or demethylated products and direct glucuronide conjugation were also major metabolic pathways in dog plasma. O-detrifluoroethylation of (+)-13e did not occur. Furthermore, CYP3A4 was identified as the primary isoenzyme responsible for mono-oxidation and demethylation metabolism, and CYP2C8 was a secondary isoenzyme (+)-13e displayed high permeability across the Caco-2 cell monolayer, and it was not a P-glycoprotein substrate as demonstrated by its high oral absolute bioavailability (75.9%) in dogs. Thus, our study findings highlighted the potential efficacy and safety of (+)-13e in the treatment of tardive dyskinesia. These results should promote its clinical development.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Guangying Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Shilan Lin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Liu
- New Drug Discovery and Research Department, R&D Center, Luye Pharma Group Ltd., Yantai, China
| | - Huijie Yang
- New Drug Discovery and Research Department, R&D Center, Luye Pharma Group Ltd., Yantai, China
| | - Dawei Yu
- New Drug Discovery and Research Department, R&D Center, Luye Pharma Group Ltd., Yantai, China
| | - Liang Ye
- Department of Clinical Medicine, Binzhou Medical College, Yantai, China
| | - Fangxia Zou
- New Drug Discovery and Research Department, R&D Center, Luye Pharma Group Ltd., Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Zhang
- New Drug Discovery and Research Department, R&D Center, Luye Pharma Group Ltd., Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|