1
|
De Falco A, Alfano AI, Cutarella L, Mori M, Brindisi M. Harder than Metal: Challenging Antimicrobial Resistance with Metallo-β-lactamase Inhibitors. J Med Chem 2025; 68:10556-10576. [PMID: 40446161 DOI: 10.1021/acs.jmedchem.5c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
The spread of antimicrobial resistance (AMR) represents a major global health challenge, weakening the efficacy of antibiotics such as β-lactams, which are, nowadays, the most widely used drugs for treating bacterial infections. Among the different resistance mechanisms, the production of β-lactamases, particularly metallo-β-lactamases (MBLs), significantly compromises the activity of these antibiotics. Despite progress in developing serine-β-lactamase inhibitors (SBLi), no MBL inhibitors (MBLi) are currently available in clinical practice. This Perspective provides an outlook on AMR mechanisms, with a focus on the expression of MBL enzymes, and showcases the main classes of MBLi proposed to date, which mainly act through coordination of the zinc ion(s) populating the active site of the MBL class of enzymes. Furthermore, the Perspective describes current strategies aimed at overcoming the limited cellular permeability of MBLi, one of the major hurdles preventing their translation into clinical studies.
Collapse
Affiliation(s)
- Antonietta De Falco
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Cutarella
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
2
|
Gulyás KV, Zhou L, Salamonsen D, Prester A, Bartels K, Bosman R, Haffke P, Li J, Tamási V, Deufel F, Thoma J, Andersson Rasmussen A, Csala M, Schroder Leiros HK, Xu Z, Widersten M, Rohde H, Schulz EC, Zhu W, Erdélyi M. Dynamically chiral phosphonic acid-type metallo-β-lactamase inhibitors. Commun Chem 2025; 8:119. [PMID: 40253435 PMCID: PMC12009420 DOI: 10.1038/s42004-025-01510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/02/2025] [Indexed: 04/21/2025] Open
Abstract
Antibiotic resistance is a growing global health threat that risks the lives of millions. Among the resistance mechanisms, that mediated by metallo-β-lactamases is of particular concern as these bacterial enzymes dismantle most β-lactam antibiotics, which are our widest applied and cheapest to produce antibiotic agents. So far, no clinically applicable metallo-β-lactamase inhibitors are available. Aiming to adapt to structural variations, we introduce the inhibitor concept: dynamically chiral phosphonic acids. We demonstrate that they are straightforward to synthesize, penetrate bacterial membranes, inhibit the metallo-β-lactamase enzymes NDM-1, VIM-2 and GIM-1, and are non-toxic to human cells. Mimicking the transition state of β-lactam hydrolysis, they target the Zn ions of the metallo-β-lactamase active site. As a unique feature, both of their stereoisomers bind metallo-β-lactamases, which provides them unparalleled adaptability to the structural diversity of these enzymes, and may allow them to hamper bacteria's ability for resistance development.
Collapse
Affiliation(s)
- Kinga Virág Gulyás
- Department of Chemistry - BMC, Organic Chemistry and the Uppsala Antibiotic Center; Uppsala University, Uppsala, Sweden
| | - Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Salamonsen
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andreas Prester
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kim Bartels
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Robert Bosman
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Paul Haffke
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jintian Li
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Fritz Deufel
- Department of Chemistry - BMC, Organic Chemistry and the Uppsala Antibiotic Center; Uppsala University, Uppsala, Sweden
| | - Johannes Thoma
- Department of Chemistry & Molecular Biology, Center for Antibiotic Resistance Research, CARe, University of Gothenburg, Gothenburg, Sweden
| | | | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mikael Widersten
- Department of Chemistry - BMC, Organic Chemistry and the Uppsala Antibiotic Center; Uppsala University, Uppsala, Sweden
| | - Holger Rohde
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Eike C Schulz
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Max-Planck-Institute for Structure and Dynamics of Matter, Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Máté Erdélyi
- Department of Chemistry - BMC, Organic Chemistry and the Uppsala Antibiotic Center; Uppsala University, Uppsala, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Peng B, Li H, Peng XX. Metabolic state-driven nutrient-based approach to combat bacterial antibiotic resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:24. [PMID: 40185857 PMCID: PMC11971349 DOI: 10.1038/s44259-025-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/03/2025] [Indexed: 04/07/2025]
Abstract
To combat antibiotic resistance, one innovative approach, known as the metabolic state-driven approach, exploits the fact that exogenous nutrient metabolites can stimulate uptake of antibiotics. The most effective nutrient metabolites are identified by comparing metabolic states between antibiotic-sensitive and -resistant bacteria. When bacteria are exposed to the specific nutrient metabolites, they undergo a form of metabolic reprogramming. This review summarizes the recent progress on the metabolic state-driven approach.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, PR China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, PR China.
| |
Collapse
|
4
|
Liu W, Guo Y, Zhang C, Liu C, Chen S, Li X, Qiu J, Wan S. Development of molecular Trojan horses targeting New Delhi metallo-β-lactamase-1 for the restoration of meropenem susceptibility in drug-resistant bacteria. Eur J Med Chem 2025; 285:117243. [PMID: 39798399 DOI: 10.1016/j.ejmech.2025.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
The emergence of New Delhi metallo-β-lactamase-1 (NDM-1) poses a significant threat to the clinical application of antibiotics, as it possesses the ability to hydrolyze nearly all β-lactam antibiotics. Regrettably, there are currently no clinical drugs targeting NDM-1, making it imperative to develop highly potent and minimally toxic NDM-1 inhibitors. Herein, a series of molecular Trojan horses targeting NDM-1 were synthesized by introducing ebselen into 7-aminocephalosporanic acid derivatives via a C-Se bond. Representative compound 18b exhibited potent inhibitory activity against NDM-1, with an IC50 value of 7.03 μM, and combining with meropenem (Mem) decreased the minimum inhibitory concentration (MIC) of Mem by 4-32-fold in NDM-1 expressing bacteria. Mechanistically, 18b released the ebselen moiety at the active site of NDM-1, forming a Se-S bond with Cys208 to achieve targeted drug delivery of ebselen. Importantly, 18b demonstrated potent inhibition of resistant bacterial growth and replication in mice when administered in combination with Mem. These results suggest that 18b is a promising candidate for treating infections caused by resistant bacteria expressing NDM-1.
Collapse
Affiliation(s)
- Wandong Liu
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China
| | - Yan Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Zhang
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China
| | - Chenyu Liu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, 100872, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, 100872, China
| | - Xiaoyang Li
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, China.
| |
Collapse
|
5
|
Aljohni MS, Harun-Ur-Rashid M, Selim S. Emerging threats: Antimicrobial resistance in extended-spectrum beta-lactamase and carbapenem-resistant Escherichia coli. Microb Pathog 2025; 200:107275. [PMID: 39798725 DOI: 10.1016/j.micpath.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Antimicrobial resistance (AMR) in Escherichia coli strains, particularly those producing Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase (CR-Ec), represents a serious global health threat. These resistant strains have been associated with increased morbidity, mortality, and healthcare costs, as they limit the effectiveness of standard antibiotic therapies. The prevalence of ESBL- and CR-Ec-producing strains continues to rise, driven by the overuse and misuse of antibiotics in healthcare and agricultural settings, and facilitated by global interconnectedness through international travel, trade, and food distribution. This review article examines the molecular mechanisms behind ESBL and CR resistance, focusing on the key genes involved in these processes, such as blaCTX-M, blaKPC, and blaNDM, and the clinical challenges posed by these strains. Additionally, the public health impact, including the spread of infections in hospital and community environments, is highlighted. The discussion emphasizes the urgent need for improved diagnostic tools, robust surveillance systems, and innovative therapeutic strategies. Emerging treatments, including phage therapy and novel antibiotic combinations, show promise in addressing these challenges and offer potential breakthroughs in combating resistant strains. Lastly, the review calls for stronger antimicrobial stewardship and policy reforms to mitigate the spread of resistant E. coli strains and protect global public health. Effective intervention at multiple levels, from diagnostics to policy, is critical to controlling the threat posed by AMR.
Collapse
Affiliation(s)
- Mamdouh S Aljohni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
6
|
Ciardullo G, Prejanò M, Parise A, Russo N, Marino T. The Effect of Chalcogen-Chalcogen Bond Formation in the New Delhi Metallo-β-Lactamase 1 Enzyme to Counteract Antibiotic Resistance. J Chem Theory Comput 2025; 21:1422-1431. [PMID: 39582151 DOI: 10.1021/acs.jctc.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an enzyme involved in the drug resistance of many bacteria against most of the widely adopted antibiotics, such as penicillins, cephalosporins, and carbapenems. Consequently, inhibiting NDM-1 swiftly has gained significant interest as a strategy to counteract this bacterial defense mechanism, thereby restoring the effectiveness of antibiotics. Among the inhibitors tested against the enzyme, ebselen (EbSe) showed particularly promising results. This molecule, renowned for its numerous benefits to the human body, targets the enzyme's active site at Cys208 with its selenium atom, facilitating the expulsion of the catalytic zinc ion from the active pocket. Since the inhibitory mechanism of EbSe remains poorly understood, gaining detailed information about it is highly desirable. In the present work, density functional theory calculations and μs-long molecular dynamics simulations are carried out to investigate the reaction mechanism of EbSe with NDM-1, unveiling the structural implications of the inhibition. A large model of the NDM-1 active site is built to investigate the different mechanistic proposals for the SeEbSe-SCys208 bond formation. Deeper insights into Lys211 are also provided to consolidate its role during the inhibition process. Furthermore, the chemical reaction with the ebsulfur (EbS) molecule is also investigated to compare its behavior with that of the periodic relative selenium. Molecular dynamics simulations, besides evidencing the role of the L3 and L10 loops in the occurrence of the inhibition, corroborate the Zn ion release from the active site as a result of the complete disruption of its coordination sphere caused by the creation of the SeEbSe-SCys208 covalent bond.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
- Consiglio Nazionale delle ricerche (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| |
Collapse
|
7
|
Wang N, Yu H, Zhu Z, Wang H, Wei Y, Wang Q, Zhou Y, Fang T, Zhang Y, Cui M, Ma H, Deng X, Wang J, Xia J, Wu S, Teng Z. Novel methyldithiocarbazate derivatives as NDM-1 inhibitors to combat multidrug-resistant bacterial infection with β-lactams. Bioorg Chem 2025; 154:108104. [PMID: 39740308 DOI: 10.1016/j.bioorg.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells. In this study, we aimed to overcome these limitations by employing a scaffold hopping strategy, abandoning the original core structure. We designed and synthesized 21 compounds and discovered that Compound A8 could effectively restore the antibacterial activity of MEM against NDM-1-positive Escherichia coli (E. coli). Compound A8 restored the ability of MEM to penetrate the cell wall of gram-negative bacteria, leading to oxidative stress-induced disarray within bacterial cells. This disruption ultimately led to the impairment of bacterial cell membrane integrity and permeability, consequently amplifying the synergistic antimicrobial efficacy of the combined treatment. Furthermore, compared with Zndm19, Compound A8 demonstrated broader therapeutic applications in the Galleria mellonella infection model and the murine peritonitis infection model. Molecular docking, site-directed mutagenesis, and fluorescence quenching assays confirmed that Compound A8 could directly interact with NDM-1, thereby further inhibiting its hydrolytic activity. These findings elucidate the antimicrobial mechanism of novel methyl dithiocarbamate derivatives and provide new insights for the development of new NDM-1 inhibitors.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hui Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Double Crane Runchuang Technology Co., Ltd, Beijing, China
| | - Heng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yunfei Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Wang
- College of Life Science, Jilin Agricultural University, 130118 Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Minhe Cui
- Jilin Mushuo Breeding Co., Ltd, Changchun 130052, Jilin, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, 130118 Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zihao Teng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
9
|
Guo Y, Liu H, Yang M, Ding R, Gao Y, Niu X, Deng X, Wang J, Feng H, Qiu J. Novel metallo-β-lactamases inhibitors restore the susceptibility of carbapenems to New Delhi metallo-lactamase-1 (NDM-1)-harbouring bacteria. Br J Pharmacol 2024; 181:54-69. [PMID: 37539785 DOI: 10.1111/bph.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The production of metallo-β-lactamases is a major mechanisms adopted by bacterial pathogens to resist carbapenems. Repurposing approved drugs to restore the efficacy of carbapenems represents an efficient and cost-effective approach to fight infections caused by carbapenem resistant pathogens. EXPERIMENTAL APPROACH The nitrocefin hydrolysis assay was employed to screen potential New Delhi metallo-lactamase-1 (NDM-1) inhibitors from a commercially available U.S. Food and Drug Administration (FDA) approved drug library. The mechanism of inhibition was clarified by metal restoration, inductively coupled plasma mass spectrometry (ICP-MS) and molecular dynamics simulation. The in vitro synergistic antibacterial effect of the identified inhibitors with meropenem was determined by the checkerboard minimum inhibitory concentration (MIC) assay, time-dependent killing assay and combined disc test. Three mouse infection models were used to further evaluate the in vivo therapeutic efficacy of combined therapy. KEY RESULTS Twelve FDA-approved compounds were initially screened to inhibit the ability of NDM-1 to hydrolyse nitrocefin. Among these compounds, dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid were demonstrated to inhibit all tested metallo-β-lactamases and showed an in vitro synergistic bactericidal effect with meropenem against metallo-β-lactamases-producing bacteria. Dexrazoxane, embelin and candesartan cilexetil are metal ion chelating agents, while the inhibition of NDM-1 by nordihydroguaiaretic acid involves its direct binding to the active region of NDM-1. Furthermore, these four drugs dramatically rescued the treatment efficacy of meropenem in three infection models. CONCLUSIONS AND IMPLICATIONS Our observations indicated that dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid are promising carbapenem adjuvants against metallo-β-lactamases-positive carbapenem resistant bacterial pathogens.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengge Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Yan YH, Zhang TT, Li R, Wang SY, Wei LL, Wang XY, Zhu KR, Li SR, Liang GQ, Yang ZB, Yang LL, Qin S, Li GB. Discovery of 2-Aminothiazole-4-carboxylic Acids as Broad-Spectrum Metallo-β-lactamase Inhibitors by Mimicking Carbapenem Hydrolysate Binding. J Med Chem 2023; 66:13746-13767. [PMID: 37791640 DOI: 10.1021/acs.jmedchem.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic β-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates. We here report the development of 2-aminothiazole-4-carboxylic acids (AtCs) as broad-spectrum MBL inhibitors by mimicking the anchor pharmacophore features of carbapenem hydrolysate binding. Several AtCs manifested potent activity against B1, B2, and B3 MBLs. Crystallographic analyses revealed a common binding mode of AtCs with B1, B2, and B3 MBLs, resembling binding observed in the MBL-carbapenem product complexes. AtCs restored Meropenem activity against MBL-producing isolates. In the murine sepsis model, AtCs exhibited favorable synergistic efficacy with Meropenem, along with acceptable pharmacokinetics and safety profiles. This work offers promising lead compounds and a structural basis for the development of potential drug candidates to combat MBL-mediated antimicrobial resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting-Ting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Si-Yao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liu-Liu Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shan-Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Qing Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zeng-Bao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
S S, N H, Fasim A, More SS, Das Mitra S. Identification of a potential inhibitor for New Delhi metallo-β-lactamase 1 (NDM-1) from FDA approved chemical library- a drug repurposing approach to combat carbapenem resistance. J Biomol Struct Dyn 2023; 41:7700-7711. [PMID: 36165602 DOI: 10.1080/07391102.2022.2123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Superbugs producing New Delhi metallo-β-lactamase 1 (NDM-1) enzyme is a growing crisis, that is adversely affecting the global health care system. NDM-1 empowers the bacteria to inactivate entire arsenal of β-lactam antibiotics including carbapenem (the last resort antibiotic) and remains ineffective to all the available β lactamase inhibitors used in the clinics. Limited therapeutic option available for rapidly disseminating NDM-1 producing bacteria makes it imperative to identify a potential inhibitor for NDM-1 enzyme. With drug repurposing approach, in this study, we used virtual screening of available Food and Drug Administration (FDA) approved chemical library (ZINC12 database) and captured 'adapalene' (FDA drug) as a potent inhibitor candidate for NDM-1 enzyme. Active site docking with NDM-1, showed adapalene with binding energy -9.21 kcal/mol and interacting with key amino acid residues (Asp124, His122, His189, His250, Cys208) in the active site of NDM-1. Further, molecular dynamic simulation of NDM-1 docked with the adapalene at 100 ns displayed a stable conformation dynamic, with relative RMSD and RMSF in the acceptable range. Subsequently, in vitro enzyme assays using recombinant NDM-1 protein demonstrated inhibition of NDM-1 by adapalene. Further, the combination of adapalene plus meropenem (carbapenem antibiotic) showed synergistic effect against the NDM-1 producing carbapenem (meropenem) resistant clinical isolates (Escherichia coli and Klebsiella pneumoniae). Overall, our data indicated that adapalene can be a potential inhibitor candidate for NDM-1 enzyme that can contribute to the development of a suitable adjuvant to save the activity of carbapenem antibiotic against infections caused by NDM-1 positive gram-negative bacteria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shailaja S
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Harshitha N
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Aneesa Fasim
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sunil S More
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Susweta Das Mitra
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Papastergiou T, Azé J, Bringay S, Louet M, Poncelet P, Rosales-Hurtado M, Vo-Hoang Y, Licznar-Fajardo P, Docquier JD, Gavara L. Discovering NDM-1 inhibitors using molecular substructure embeddings representations. J Integr Bioinform 2023; 0:jib-2022-0050. [PMID: 37498676 PMCID: PMC10389050 DOI: 10.1515/jib-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.
Collapse
Affiliation(s)
- Thomas Papastergiou
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | - Jérôme Azé
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Sandra Bringay
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
- AMIS, Paul Valery University, 34199 Montpellier, France
| | - Maxime Louet
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | - Pascal Poncelet
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
| | | | - Yen Vo-Hoang
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | | | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Laurent Gavara
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| |
Collapse
|
13
|
The activity and mechanism of vidofludimus as a potent enzyme inhibitor against NDM-1-positive E. coli. Eur J Med Chem 2023; 250:115225. [PMID: 36870273 DOI: 10.1016/j.ejmech.2023.115225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the most important and prevalent enzyme among all metallo-β-lactamases. NDM-1 can hydrolyze almost all-available β-lactam antibiotics including carbapenems, resulting in multidrug resistance, which poses an increasing clinical threat. However, there is no NDM-1 inhibitor approved for clinical treatment. Therefore, identifying a novel and potential enzyme inhibitor against NDM-1-mediated infections is an urgent need. In this study, vidofludimus was identified as a potential NDM-1 inhibitor by structure-based virtual screening and an enzyme activity inhibition assay. Vidofludimus significantly inhibited NDM-1 hydrolysis activity with a significant dose-dependent effect. When the vidofludimus concentration was 10 μg/ml, the inhibition rate and 50% inhibitory concentration were 93.3% and 13.8 ± 0.5 μM, respectively. In vitro, vidofludimus effectively restored the antibacterial activity of meropenem against NDM-1-positive Escherichia coli (E. coli), and the minimum inhibitory concentration of meropenem was decreased from 64 μg/ml to 4 μg/ml, a 16-fold reduction. The combination of vidofludimus and meropenem showed a significant synergistic effect with a fractional inhibitory concentration index of 0.125 and almost all the NDM-1-positive E. coli were killed within 12 h. Furthermore, the synergistic therapeutic effect of vidofludimus and meropenem in vivo was evaluated in mice infected with NDM-1 positive E. coli. Compared with the control treatment, vidofludimus combined with meropenem significantly improved the survival rate of mice infected with NDM-1-positive E. coli (P < 0.05), decreased the white blood cell count, the bacterial burden and inflammatory response induced by NDM-1-positive E. coli (P < 0.05), and alleviated histopathological damage in infected mice. It was demonstrated by molecular dynamic simulation, site-directed mutagenesis and biomolecular interaction that vidofludimus could interact directly with the key amino acids (Met67, His120, His122 and His250) and Zn2+ in the active site of NDM-1, thereby competitively inhibiting the hydrolysis activity of NDM-1 on meropenem. In summary, vidofludimus holds promise as anNDM-1 inhibitor, and the combination of vidofludimus and meropenem has potential as a therapeutic strategy for NDM-1-mediated infections.
Collapse
|
14
|
Kong L, Zhang Y, Yang L, Yan Y, Cheng M, Wang X, Zhai L, Yang K. Synthesis and Inhibitory Activity of Oxazolethioacetamides against Metallo‐β‐Lactamase. ChemistrySelect 2023. [DOI: 10.1002/slct.202204108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lingyan Kong
- The College of Life Sciences Northwest University Xi'an 710069, Shaanxi Province P. R. China
| | - Yilin Zhang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Liwen Yang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Yong Yan
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Min Cheng
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Xuejun Wang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Le Zhai
- Engineering Research Center of Advanced Ferroelectric Functional Materials, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering Baoji University of Arts and Sciences Baoji 721013, Shaanxi Province P. R. China
| | - Kewu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an 710127, Shaanxi Province P. R. China
| |
Collapse
|
15
|
Heydarian N, Wouters CL, Neel A, Ferrell M, Panlilio H, Haight T, Gu T, Rice CV. Eradicating Biofilms of Carbapenem-Resistant Enterobacteriaceae by Simultaneously Dispersing the Biomass and Killing Planktonic Bacteria with PEGylated Branched Polyethyleneimine. ChemMedChem 2023; 18:e202200428. [PMID: 36542457 PMCID: PMC9899318 DOI: 10.1002/cmdc.202200428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and β-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Cassandra L. Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Andrew Neel
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tingting Gu
- Department of Biology, 730 Van Vleet Oval, Room 314, University of Oklahoma, Norman, OK 73019, USA
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
16
|
Bright Esegbuyota I, Hope O, Oyama G. Occurrence of New Delhi Metallo-Beta-Lactamase 1 Producing Enterococcus Species in Oghara Water Nexus: An Emerging Environmental Implications of Resistance Dynamics. Microbiol Insights 2022; 15:11786361221133731. [PMID: 36325110 PMCID: PMC9619852 DOI: 10.1177/11786361221133731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Various members of the enteric bacteria in recent times are evolving diverse survival mechanisms for antibiotic therapy resulting in failure of treatment in infection and disease cases. The Enterococcus species are potential strains implicated in gastrointestinal tract infection and are recently evolving in the resistance mechanism. The study evaluates the occurrence of New Delhi Metallo-beta-lactamase 1 (NDM-1) amongst Enterococcus species using the phenotypic and genomic characterization of environmental strains in the Oghara water nexus. Presumptive isolates of Enterococcus species were retrieved from various sampled water sources and confirmed using polymerase chain reaction (PCR). Antibiotic susceptibility testing was conducted on confirmed isolates using Kirby-Bauer disk diffusion methods. The result reveals 63 genus isolates confirmed Enterococcus species, of which 42 (67%) were Enterococcus faecium, 15 (23%) were Enterococcus faecalis, and 6 (10%) were other Enterococcus species. Fourteen among the E. faecalis isolates show resistance to Ertapenem-EDTA, while 17 (44.8%) of the E. faecium show resistance to Ertapenem-EDTA to presumptively reveal their NDM-1 phenotype. The PCR detection of the NDM-1 gene further confirmed 23 (36.5%) isolates as positive genotypes amongst the isolates that previously showed presumptive NDM-1 phenotype. It was also observed that 10 (15.9%) of Enterococcus faecium members harbored the NDM-1 genotype, whereas 8 (12.7%) members of the Enterococcus faecalis harbored the NDM-1 genotype. The observation of such resistance determinants necessitates a call for the adroit application of relevant therapeutics in the management of related infections and an environmental health caution to prevent the spread of such resistance potential enteric bacteria pathogens.
Collapse
Affiliation(s)
- Igere Bright Esegbuyota
- Biotechnology and Emerging
Environmental Infections Pathogens Research Group (BEEIPREG), Department of
Microbiology and Biotechnology, Western Delta University, Oghara, Delta State,
Nigeria,Department of Microbiology and
Biotechnology, Western Delta University Oghara, PMB 10 Delta State, Nigeria
| | - Onohuean Hope
- Biomolecules, Metagenomics, Endocrine
and Tropical Disease Research Group (BMETDREG), Kampala International University,
Western Campus, Ishaka-Bushenyi, Uganda,Biopharmaceutics Unit, Department of
Pharmacology and Toxicology, School of Pharmacy, Kampala International University
Uganda, Ishaka, Uganda,Onohuean Hope, School of Pharmacy
Ishaka-Bushenyi, Kampala International University Western Campus,
Ishaka-Bushenyi, Western-Campus, 256, Uganda.
| | - Gxalo Oyama
- Aspen Pharmacare South Africa, 7
Fairclough Road, Korsten, Port Elizabeth 6020, Gqeberha, Eastern Cape
| |
Collapse
|
17
|
Design, Synthesis, and Biological Evaluation of New 1H-Imidazole-2-Carboxylic Acid Derivatives as Metallo-β-Lactamase Inhibitors. Bioorg Med Chem 2022; 72:116993. [PMID: 36084491 DOI: 10.1016/j.bmc.2022.116993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
As one of important mechanisms to β-lactam antimicrobial resistance, metallo-β-lactamases (MBLs) have been receiving increasing worldwide attentions. Ambler subclass B1 MBLs are most clinically relevant, because they can hydrolyze almost all β-lactams with the exception of monobactams. However, it is still lacking of clinically useful drugs to combat MBL-medicated resistance. We previously identified 1H-imidazole-2-carboxylic acid as a core metal-binding pharmacophore (MBP) to target multiple B1 MBLs. Herein, we report structural optimization of 1H-imidazole-2-carboxylic acid and substituents. Structure-activity relationship (SAR) analyses revealed that replacement of 1H-imidazole-2-carboxylic acid with other structurally highly similar MBPs excepting thiazole-4-carboxylic acid resulted in decreased MBL inhibition. Further SAR studies identified more potent inhibitors to MBLs, of which 28 manifested IC50 values of 0.018 µM for both VIM-2 and VIM-5. The microbiological tests demonstrated that the most tested compounds showed improved synergistic effects; some compounds at 1 µg/ml were able to reduce meropenem MIC by at least 16-fold, which will be worth further development of new potent inhibitors particularly targeting VIM-type MBLs.
Collapse
|
18
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|