1
|
Luo H, Hu Z, Shi J, Lou Y, Shi Z, Jin X, Chen J, Liu X, Huang Q. Synthesis of imidazopyridines via NaIO 4/TBHP-promoted (3 + 2) cycloaddition and biological evaluation as anticancer agents. RSC Adv 2025; 15:15497-15504. [PMID: 40365224 PMCID: PMC12067191 DOI: 10.1039/d5ra01949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
A novel and simple NaIO4/TBHP-promoted (3 + 2) cycloaddition reaction of propargyl alcohols and 2-aminopyridines was discovered for the synthesis of imidazo[1,2-a]pyridines. This protocol exhibits a broad substrate scope for both propargyl alcohols and 2-aminopyridines, with high functional group tolerance, leading to the formation of various C3-carbonylated imidazopyridines in moderate yields. More importantly, these synthesized compounds were evaluated for their antiproliferation activity against MOLM-13 and MV4-11 cells, indicating that 3n, 5a and 5d possessed good bioactivity. Molecular docking analysis showed the strong interaction between 5a, 5d and FLT3 kinase, which have practical values in the development of kinase inhibitors.
Collapse
Affiliation(s)
- Huiping Luo
- School of Pharmacy, Zunyi Medical University Zunyi Guizhou 563006 China
| | - Zhengyu Hu
- The First Clinical Institute, Zunyi Medical University Zunyi 563006 China
| | - Jihai Shi
- School of Pharmacy, Zunyi Medical University Zunyi Guizhou 563006 China
| | - Yongxin Lou
- School of Preclinical Medicine, Zunyi Medical University Zunyi Guizhou 563006 China
| | - Zhonghua Shi
- School of Pharmacy, Zunyi Medical University Zunyi Guizhou 563006 China
| | - Xin Jin
- School of Pharmacy, Zunyi Medical University Zunyi Guizhou 563006 China
| | - Jia Chen
- The First Clinical Institute, Zunyi Medical University Zunyi 563006 China
| | - Xing Liu
- Kweichow Moutai Hospital Zunyi Guizhou 563006 China
| | - Qiang Huang
- School of Pharmacy, Zunyi Medical University Zunyi Guizhou 563006 China
| |
Collapse
|
2
|
Jiang Y, Wang Y, Su F, Hou Y, Liao W, Li B, Mao W. Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics. Eur J Med Chem 2025; 286:117287. [PMID: 39832390 DOI: 10.1016/j.ejmech.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yutong Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Baichuan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Chen L, Lu H, Ballout F, El-Rifai W, Chen Z, Gokulan RC, McDonald OG, Peng D. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors. Int J Mol Sci 2025; 26:1992. [PMID: 40076620 PMCID: PMC11900214 DOI: 10.3390/ijms26051992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Ravindran Caspa Gokulan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
5
|
Halder P, Rai A, Talukdar V, Das P, Lakkaniga NR. Pyrazolopyridine-based kinase inhibitors for anti-cancer targeted therapy. RSC Med Chem 2024; 15:1452-1470. [PMID: 38784451 PMCID: PMC11110789 DOI: 10.1039/d4md00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
The need for effective cancer treatments continues to be a challenge for the biomedical research community. In this case, the advent of targeted therapy has significantly improved therapeutic outcomes. Drug discovery and development efforts targeting kinases have resulted in the approval of several small-molecule anti-cancer drugs based on ATP-mimicking heterocyclic cores. Pyrazolopyridines are a group of privileged heterocyclic cores in kinase drug discovery, which are present in several inhibitors that have been developed against various cancers. Notably, selpercatinib, glumetinib, camonsertib and olverembatinib have either received approval or are in late-phase clinical studies. This review presents the success stories employing pyrazolopyridine scaffolds as hinge-binding cores to address various challenges in kinase-targeted drug discovery research.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Anubhav Rai
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
6
|
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, Doshier C, Patel V, Post GR, De Loose A, Rodriguez A, Shultz LD, Zhan F, Yoon D, Frett B, Kendrick S. Bifunctional Inhibitor Reveals NEK2 as a Therapeutic Target and Regulator of Oncogenic Pathways in Lymphoma. Mol Cancer Ther 2024; 23:316-329. [PMID: 37816504 PMCID: PMC10932871 DOI: 10.1158/1535-7163.mct-23-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.
Collapse
Affiliation(s)
- Mason McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kennith Swafford
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sydnye L. Shuttleworth
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baku Acharya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin Naceanceno
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claire Doshier
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vijay Patel
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annick De Loose
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Wang X, DeFilippis RA, Leung YK, Shah NP, Li HY. N-(3-Methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine is an inhibitor of the FLT3-ITD and BCR-ABL pathways, and potently inhibits FLT3-ITD/D835Y and FLT3-ITD/F691L secondary mutants. Bioorg Chem 2024; 143:106966. [PMID: 37995643 PMCID: PMC11586108 DOI: 10.1016/j.bioorg.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Activating mutations within FLT3 make up 30 % of all newly diagnosed acute myeloid leukemia (AML) cases, with the most common mutation being an internal tandem duplication (FLT3-ITD) in the juxtamembrane region (25 %). Currently, two generations of FLT3 kinase inhibitors have been developed, with three inhibitors clinically approved. However, treatment of FLT3-ITD mutated AML is limited due to the emergence of secondary clinical resistance, caused by multiple mechanism including on-target FLT3 secondary mutations - FLT3-ITD/D835Y and FLT3-ITD/F691L being the most common, as well as the off-target activation of alternative pathways including the BCR-ABL pathway. Through the screening of imidazo[1,2-a]pyridine derivatives, N-(3-methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine (compound 1) was identified as an inhibitor of both the FLT3-ITD and BCR-ABL pathways. Compound 1 potently inhibits clinically related leukemia cell lines driven by FLT3-ITD, FLT3-ITD/D835Y, FLT3-ITD/F691L, or BCR-ABL. Studies indicate that it mediates proapoptotic effects on cells by inhibiting FLT3 and BCR-ABL pathways, and other possible targets. Compound 1 is more potent against FLT3-ITD than BCR-ABL, and it may have other possible targets; however, compound 1 is first step for further optimization for the development of a balanced FLT3-ITD/BCR-ABL dual inhibitor for the treatment of relapsed FLT3-ITD mutated AML with multiple secondary clinical resistant subtypes such as FLT3-ITD/D835Y, FLT3-ITD/F691L, and cells co-expressing FLT3-ITD and BCR-ABL.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
8
|
Wang X, DeFilippis RA, Weldemichael T, Gunaganti N, Tran P, Leung YK, Shah NP, Li HY. An imidazo[1,2-a]pyridine-pyridine derivative potently inhibits FLT3-ITD and FLT3-ITD secondary mutants, including gilteritinib-resistant FLT3-ITD/F691L. Eur J Med Chem 2024; 264:115977. [PMID: 38056299 PMCID: PMC11590664 DOI: 10.1016/j.ejmech.2023.115977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
FLT3 activating mutations are detected in approximately 30 % of newly diagnosed acute myeloid leukemia (AML) cases, most commonly consisting of internal tandem duplication (ITD) mutations in the juxtamembrane region. Recently, several FLT3 inhibitors have demonstrated clinical activity and three are currently approved - midostaurin, quizartinib, and gilteritinib. Midostaurin is a first-generation FLT3 inhibitor with minimal activity as monotherapy. Midostaurin lacks selectivity and is only approved by the USFDA for use in combination with other chemotherapy agents. The second-generation inhibitors quizartinib and gilteritinib display improved specificity and selectivity, and have been approved for use as monotherapy. However, their clinical efficacies are limited in part due to the emergence of drug-resistant FLT3 secondary mutations in the tyrosine kinase domain at positions D835 and F691. Therefore, in order to overcome drug resistance and further improve outcomes, new compounds targeting FLT3-ITD with secondary mutants are urgently needed. In this study, through the structural modification of a reported compound Ling-5e, we identified compound 24 as a FLT3 inhibitor that is equally potent against FLT3-ITD and the clinically relevant mutants FLT3-ITD/D835Y, and FLT3-ITD/F691L. Its inhibitory effects were demonstrated in both cell viability assays and western blots analyses. When tested against cell lines lacking activating mutations in FLT3, no non-specific cytotoxicity effect was observed. Interestingly, molecular docking results showed that compound 24 may adopt different binding conformations with FLT3-F691L compared to FLT3, which may explain its retained activity against FLT3-ITD/F691L. In summary, compound 24 has inhibition potency on FLT3 comparable to gilteritinib, but a more balanced inhibition on FLT3 secondary mutations, especially FLT3-ITD/F691L which is gilteritinib resistant. Compound 24 may serve as a promising lead for the drug development of either primary or relapsed AML with FLT3 secondary mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Tsigereda Weldemichael
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Phuc Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Peytam F, Emamgholipour Z, Mousavi A, Moradi M, Foroumadi R, Firoozpour L, Divsalar F, Safavi M, Foroumadi A. Imidazopyridine-based kinase inhibitors as potential anticancer agents: A review. Bioorg Chem 2023; 140:106831. [PMID: 37683538 DOI: 10.1016/j.bioorg.2023.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Considering the fundamental role of protein kinases in the mechanism of protein phosphorylation in critical cellular processes, their dysregulation, especially in cancers, has underscored their therapeutic relevance. Imidazopyridines represent versatile scaffolds found in abundant bioactive compounds. Given their structural features, imidazopyridines have possessed pivotal potency to interact with different protein kinases, inspiring researchers to carry out numerous structural variations. In this comprehensive review, we encompass an extensive survey of the design and biological evaluations of imidazopyridine-based small molecules as potential agents targeting diverse kinases for anticancer applications. We describe the structural elements critical to inhibitory potency, elucidating their key structure-activity relationships (SAR) and mode of actions, where available. We classify these compounds into two groups: Serine/threonine and Tyrosine inhibitors. By highlighting the promising role of imidazopyridines in kinase inhibition, we aim to facilitate the design and development of more effective, targeted compounds for cancer treatment.
Collapse
Affiliation(s)
- Fariba Peytam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ghelli Luserna di Rorà A, Jandoubi M, Martinelli G, Simonetti G. Targeting Proliferation Signals and the Cell Cycle Machinery in Acute Leukemias: Novel Molecules on the Horizon. Molecules 2023; 28:molecules28031224. [PMID: 36770891 PMCID: PMC9920029 DOI: 10.3390/molecules28031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, 56017 San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Correspondence:
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| |
Collapse
|
11
|
Overcoming Resistance: FLT3 Inhibitors Past, Present, Future and the Challenge of Cure. Cancers (Basel) 2022; 14:cancers14174315. [PMID: 36077850 PMCID: PMC9454516 DOI: 10.3390/cancers14174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
FLT3 ITD and TKD mutations occur in 20% and 10% of Acute Myeloid Leukemia (AML), respectively, and they represent the target of the first approved anti-leukemic therapies in the 2000s. Type I and type II FLT3 inhibitors (FLT3i) are active against FLT3 TKD/ITD and FLT3 ITD mutations alone respectively, but they still fail remissions in 30-40% of patients due to primary and secondary mechanisms of resistance, with variable relapse rate of 30-50%, influenced by NPM status and FLT3 allelic ratio. Mechanisms of resistance to FLT3i have recently been analyzed through NGS and single cell assays that have identified and elucidated the polyclonal nature of relapse in clinical and preclinical studies, summarized here. Knowledge of tumor escape pathways has helped in the identification of new targeted drugs to overcome resistance. Immunotherapy and combination or sequential use of BCL2 inhibitors and experimental drugs including aurora kinases, menin and JAK2 inhibitors will be the goal of present and future clinical trials, especially in patients with FLT3-mutated (FLT3mut) AML who are not eligible for allogeneic transplantation.
Collapse
|
12
|
Zhou S, Yang B, Xu Y, Gu A, Peng J, Fu J. Understanding gilteritinib resistance to FLT3-F691L mutation through an integrated computational strategy. J Mol Model 2022; 28:247. [PMID: 35932378 DOI: 10.1007/s00894-022-05254-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) serves as an important drug target for acute myeloid leukemia (AML), and gene mutations of FLT3 have been closely associated with AML patients with an incidence rate of ~ 30%. However, the mechanism of the clinically relevant F691L gatekeeper mutation conferred resistance to the drug gilteritinib remained poorly understood. In this study, multiple microsecond molecular dynamics (MD) simulations, end-point free energy calculations, and dynamic correlated and network analyses were performed to investigate the molecular basis of gilteritinib resistance to the FLT3-F691L mutation. The simulations revealed that the resistant mutation largely induced the conformational changes of the activation loop (A-loop), the phosphate-binding loop, and the helix αC of the FLT3 protein. The binding abilities of the gilteritinib to the wild-type and the F691L mutant were different through the binding free energy prediction. The simulation results further indicated that the driving force to determine the binding affinity of gilteritinib was derived from the differences in the energy terms of electrostatic and van der Waals interactions. Moreover, the per-residue free energy decomposition suggested that the four residues (Phe803, Gly831, Leu832, and Ala833) located at the A-loop of FLT3 had a significant impact on the binding affinity of gilteritinib to the F691L mutant. This study may provide useful information for the design of novel FLT3 inhibitors specially targeting the F691L gatekeeper mutant.
Collapse
Affiliation(s)
- Shibo Zhou
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Bo Yang
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Yufeng Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Aihua Gu
- Department of Medicine, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Juan Peng
- Department of Ultrasonography, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Jinfeng Fu
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
13
|
Ran F, Liu Y, Xu Z, Meng C, Yang D, Qian J, Deng X, Zhang Y, Ling Y. Recent development of BTK-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2022; 233:114232. [PMID: 35247756 DOI: 10.1016/j.ejmech.2022.114232] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising target in the treatment of various cancers. Despite the early success of BTK inhibitors in the clinic, these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of anticancer drugs. In this review, we highlight the scientific background and theoretical basis for developing BTK-based dual inhibitors, as well as the status of these agents in preclinical and clinical studies, and discuss further options in this field. We posit that these advances in BTK-based dual inhibitors confirm their feasibility for the treatment of refractory tumors, including those with drug resistance, and provide a framework for future drug design in this field. Accordingly, we anticipate increasingly rapid progress in the development of novel potent dual inhibitors and advanced clinical research on BTK-based dual inhibitors.
Collapse
Affiliation(s)
- Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Xuexian Deng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|