1
|
Çapan İ, Al M, Gümüş M, Açik L, Aydin B, Çelik AB, Gülüm L, Sert Y, Yenilmez EN, Koca İ, Tutar Y. Design, Synthesis, and Evaluation of Benzimidazole-Carbazole Hybrids Targeting Heat Shock Proteins-Mediated Apoptosis in Breast and Colon Cancer Cells. Drug Dev Res 2025; 86:e70092. [PMID: 40344426 DOI: 10.1002/ddr.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Heat shock proteins (HSPs), particularly HSP70 and HSP90, are pivotal molecular chaperones implicated in cancer progression and resistance mechanisms. Dual inhibition of these chaperones represents a promising therapeutic approach. Here, we report the design and synthesis of a novel series of benzimidazole-carbazole hybrids aimed at targeting HSP70/90. Leveraging the kinase inhibitory properties of benzimidazole and the DNA interfering and apoptotic potential of carbazole, these hybrids were evaluated for their anticancer activity against breast (MCF-7) and colon (HCT-116) cancer cell lines. The most active compounds demonstrated submicromolar IC50 values and induced apoptosis through mitochondrial dysfunction and cytoskeletal disruption, confirmed via flow cytometry and fluorescence microscopy. Molecular docking revealed high binding affinities to HSP70 (PDB: 1S3X) and HSP90 (PDB: 1YC4), correlating with experimental outcomes. Furthermore, DNA interaction studies confirmed the compounds' ability to induce structural destabilization and fragmentation, providing insight into their mechanism of action. These findings highlight the potential of benzimidazole-carbazole hybrids as promising HSP inhibitors for overcoming cancer resistance.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Sente Kimya Research and Development Inc, Ankara, Turkey
| | - Mervenur Al
- Department of Basic Medical Sciences, Division of Medicinal Biochemistry, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Leyla Açik
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Betül Aydin
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Ayşe Büşranur Çelik
- Division of Molecular Biology and Genetics, Faculty of Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul, Turkey
| | - Levent Gülüm
- Department of Crop and Animal Production, Mudurnu Süreyya Astarcı Vocational School, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Ezgi Nurdan Yenilmez
- Vocational School of Health Services, Division of Medical Techniques and Services, Demiroglu Science University, Istanbul, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Yusuf Tutar
- Department of Basic Medical Sciences, Division of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
2
|
Romero IE, Vallejos MM, Barata-Vallejo S, Bonesi SM, Postigo A. Syntheses of Carbazoles by Photosensitized Electrocyclization of Triarylamines. Effect of Inductive Electron-Withdrawing Groups on the Photocyclization. Chemistry 2025; 31:e202500133. [PMID: 39932003 DOI: 10.1002/chem.202500133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
The acetone-sensitized [6π]-electrocyclization of unsubstituted, mono-, and disubstituted triarylamines (TAAs: substituents H, CH₃, CH₃O, Cl, CnF₂n+1; n=1, 3, 4, 6, 8, 10) under 310 nm light led to the formation of endo- and exo-carbazoles in high yields; particularly, TAAs substituted with inductive electron-withdrawing groups (Cl, CnF2n+1) exhibit remarkable endo-selectivity towards cyclization. For TAAs substituted with both inductive electron- withdrawing and donating groups, the photocyclization towards endo carbazoles is dictated by the presence of the electron-withdrawing groups. Chemical yields (%), quantum yields of conversion (φR), apparent cyclization rate constants (kcyc), and Hammett plots correlations are illustrated for all substituted TAAs in acetone. Photophysical studies reveal that TAAs substituted with resonance electron-withdrawing groups (OAc, NO2, CHO) do not undergo electrocyclization in acetone at 310 nm due to formation of charge-transfer states that vastly deactivate the triplet reactive manifold, paralleling the behavior observed in MeCN as solvent. Absorption and emission spectra, Stokes shifts, and singlet excited state energies are illustrated for substituted TAAs and carbazoles. In-silico studies support the high stereoselectivity observed for the preferred endo- photosensitized [6π]-electrocyclization of Cl- and perfluoroalkyl-substituted TAAs.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, CP 1113, Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR). Argentina, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Margarita M Vallejos
- Departamento de Química, IQUIBA-NEA, Universidad Nacional del Nordeste, CONICET, FACENA, Av. Libertad 5460, Corrientes, 3400, Argentina
| | - Sebastian Barata-Vallejo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, CP 1113, Buenos Aires, Argentina
- Istituto per la Sintesi Organica e la Fotoreattività ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR). Argentina, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, CP 1113, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Ceramella J, Rosano C, Iacopetta D, Ben Toumia I, Chekir-Ghedira L, Maatouk M, Mariconda A, Longo P, Dallemagne P, Rochais C, Sinicropi MS. Anti-Breast Cancer Properties and In Vivo Safety Profile of a Bis-Carbazole Derivative. Pharmaceutics 2025; 17:415. [PMID: 40284411 PMCID: PMC12030284 DOI: 10.3390/pharmaceutics17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Carbazoles represent one of the most important classes of nitrogen-based tricyclic aromatic heterocycles and are present in natural sources and chemically obtained drugs. Recently, several research groups disclosed their large biological and chemical applications in different fields, leading to an increased interest towards this class of molecules. Some of the obtained derivatives have been successfully employed in the clinical treatment of different tumor types, but the onset of heavy side effects impaired their efficacy and discouraged their use. Pursuing the aim of obtaining carbazoles with less negative features, a lot of chemically modified compounds have been produced and evaluated. Objectives/Methods: In this paper, we describe the in vitro and in vivo evaluation of a bis-carbazole derivative with strong anticancer properties against two breast cancer cell lines. Results: This compound has been found to impact the cell cytoskeleton dynamics, triggering the activation of some key proteins playing a role in the intrinsic and extrinsic apoptotic pathways. Equally important, this derivative has been found to be selective for cancer cells and has shown a safe profile in Balb/c-treated mice. Conclusions: Overall, the disclosed outcomes represent an important landmark for encouraging further studies directed toward the potentiation of this lead to be potentially exploited in both preclinical and clinical applications.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy; (C.R.); (I.B.T.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Iméne Ben Toumia
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy; (C.R.); (I.B.T.)
- Laboratory of Bioactive Natural Substances and Biotechnology, Faculty of Dentistry of Monastir, University of Monastir, Monastir 5000, Tunisia; (L.C.-G.); (M.M.)
- Laboratory of Molecular and Cellular Biology, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Leila Chekir-Ghedira
- Laboratory of Bioactive Natural Substances and Biotechnology, Faculty of Dentistry of Monastir, University of Monastir, Monastir 5000, Tunisia; (L.C.-G.); (M.M.)
| | - Mouna Maatouk
- Laboratory of Bioactive Natural Substances and Biotechnology, Faculty of Dentistry of Monastir, University of Monastir, Monastir 5000, Tunisia; (L.C.-G.); (M.M.)
| | - Annaluisa Mariconda
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy;
| | - Pasquale Longo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Patrick Dallemagne
- Université Caen Normandie, Normandie University, CERMN UR4258, F-14000 Caen, France; (P.D.); (C.R.)
| | - Christophe Rochais
- Université Caen Normandie, Normandie University, CERMN UR4258, F-14000 Caen, France; (P.D.); (C.R.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| |
Collapse
|
5
|
Waghmare PS, Chabukswar AR, Raut KG, Giri PT. A Review on Carbazole and Its Derivatives as Anticancer Agents From 2013 to 2024. Chirality 2025; 37:e70021. [PMID: 39887861 DOI: 10.1002/chir.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Carbazole, a natural alkaloid, has been recognized as an effective anticancer agent for over 40 years. However, only a limited number of carbazole-based compounds have received FDA approval for cancer treatment. Current cancer therapies are often associated with significant side effects, causing physical, emotional, and financial burdens for patients. Additionally, despite advancements, cancer prevention and treatment remain challenging due to suboptimal clinical outcomes. The development of new drugs is crucial for achieving safer and more effective cancer therapies. This review focuses on various carbazole derivatives and hybrid composites, highlighting their interactions with distinct receptors and their mechanisms of anticancer action, along with a general structure-activity relationship (SAR). It also emphasizes carbazole-based compounds employed in chemoprevention, which aim to delay or prevent malignant progression. By covering carbazole derivatives and their anticancer potential from 2013 to the present, along with their current clinical status, this study offers valuable insights and updates for researchers in the field.
Collapse
Affiliation(s)
- Priyanka Sanjay Waghmare
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Anuruddha Rajaram Chabukswar
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Kunal Ganesh Raut
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Pooja Tanaji Giri
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
6
|
Agneswaran R, Mohanakrishnan AK. Synthesis of di/tri-substituted carbazoles involving Pd-mediated Sonogashira coupling of indolyltriflates with aryl acetylenes. Org Biomol Chem 2024; 22:9063-9071. [PMID: 39440595 DOI: 10.1039/d4ob01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, we present our preliminary findings on the synthesis of carbazole derivatives involving the Sonogashira coupling reaction of 2-(trimethylamino)methylindolyltriflates with aryl acetylenes followed by isomerization, thermal electrocyclization and 1,3-H shift, furnishing the respective di- and tri-substituted carbazoles.
Collapse
Affiliation(s)
- Rudrasenan Agneswaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | |
Collapse
|
7
|
Kaur R, Dilip H, Kirubakaran S, Babu SA. Synthesis of biaryl-based carbazoles via C-H functionalization and exploration of their anticancer activities. Org Biomol Chem 2024; 22:8916-8944. [PMID: 39404867 DOI: 10.1039/d4ob01392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The synthesis of a library of new biaryl-based carbazoles via bidentate directing group-assisted C-H functionalization and preliminary screening of the anticancer properties of biaryl-based carbazoles is reported. While various classes of modified carbazoles are known for their applications in materials and medicinal chemistry, to our knowledge, the biological activities of designed biaryl-based carbazoles have been rarely known. Given the prominence of carbazoles in research in medicinal chemistry, we envisioned the scope for new scaffolds of carbazole-based biaryl structures. We screened the synthesized biaryl-based carbazoles for their anticancer properties against various cancer cell lines such as HeLa (cervical cancer), HCT116 (colon cancer), MDA-MB-231 and MDA-MB-468 (breast cancer). In addition, the hits were also tested in the human embryonic kidney cell line HEK293T to assess their impact on the viability of normal human cells in the presence of these compounds. In this preliminary study, we identified some of the biaryl-based carbazoles as lead compounds with anticancer activities.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| | - Haritha Dilip
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| |
Collapse
|
8
|
Zhou Z, Huang X, Wei QY, Wang YL, Wu B, Yang JM. Access to Piperazine-Fused Pyrrolocarbazoles Enabled by Acid-Catalyzed Stereoselective Hydroarylation of Ynamide-Indoles and Subsequent Diels-Alder Reactions/Aromatizations. Org Lett 2024; 26:7273-7278. [PMID: 39133635 DOI: 10.1021/acs.orglett.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pyrrolocarbazole skeletons are well known to possess a variety of biological activities that might be therapeutically useful in the treatment of cancers. Herein, an acid-catalyzed stereoselective hydroarylation/Diels-Alder cycloaddition/aromatization of ynamide-indoles is described. We newly designed and synthesized a variety of piperazine-fused pyrrolocarbazole derivatives that could be further applied to the synthesis of potent Wee1 inhibitors.
Collapse
Affiliation(s)
- Ze Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Qing-Yi Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Yi-Lin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Zhang J, Tian J, Wang C, Wang T, Gong J, Hu L. Structure-activity relationship study of new carbazole sulfonamide derivatives as anticancer agents with dual-target mechanism. Eur J Med Chem 2024; 273:116509. [PMID: 38781920 DOI: 10.1016/j.ejmech.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
A series of novel carbazole sulfonamide derivatives were synthesized and evaluated for antiproliferative activity. Among them, compounds 7 and 15 showed strong potency (IC50 values of 0.81-31.19 nM) against five different cancer cells including multidrug-resistant MCF7/ADR cells. Compound 15 displayed a high cancer cell selectivity (IC50(L02)/average IC50: SI = 7.7). The l-valine prodrug 7a and the phosphate prodrug 15a exerted rohust in vivo antitumor efficacies and accepted safety prolifes. Further mechanism studies revealed that 7 and 15 directly bind to the colchicine site in tubulin to block tubulin polymerization, promote microtubule fragmentation at the cellular level, and induce apoptosis with G2/M cell cycle arrest. These compounds also inhibit HEMC-1 cells migration and vascular tube formation. Additionally, compound 7 displayed a selective inhibition of Topo I. Collectively, these studies suggest that 7 and 15 represents a promising new generation of tubulin inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junyi Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Tian
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Pan X, Dong B, Wu Y, Gao B, Song C. Synthesis of Functionalized 4-Hydroxy Carbazoles and Carbazole Alkaloids via Ring Expansion of Indole Cyclopentanone. J Org Chem 2024; 89:8845-8850. [PMID: 38814829 DOI: 10.1021/acs.joc.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The exploration of a ring expansion reaction from indole cyclopentanone to generate a range of diversely functionalized 4-hydroxyl carbazole frameworks, representing the core structure of numerous carbazole alkaloids, has been conducted under mild reaction conditions. This approach exhibits broad functional group tolerance and moderate to good yields. The practical applicability of this strategy has been demonstrated through the concise syntheses of carbazomycins A, D, and G.
Collapse
Affiliation(s)
- Xiaolong Pan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Boyang Dong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yangang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Beiling Gao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chuanjun Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Shagufta, Ahmad I, Nelson DJ, Hussain MI, Nasar NA. Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update. RSC Med Chem 2024; 15:1877-1898. [PMID: 38911170 PMCID: PMC11187546 DOI: 10.1039/d3md00632h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Cancer is a complex disease and the second leading cause of death globally, and breast cancer is still a leading cause of cancer death in women. Tamoxifen is the most commonly used drug for breast cancer (ER-positive) treatment and chemoprevention, saving the lives of millions of patients every year. In addition, the tamoxifen template has been explored extensively for the development of selective estrogen receptor modulators (SERMs) applicable in breast cancer, osteoporosis, and postmenopausal symptom treatment. Numerous anticancer drugs, including tamoxifen, are in use, but the complexity and heterogeneous nature of cancer complicate the effect of conventional targeted drugs, leading to adverse reactions and resistance. One of the significant approaches to overcome these shortcomings is drug hybrids, generated by covalently linking two or more active pharmacophores. These drug hybrids are remarkably effective in acting on multiple drug targets with higher selectivity and specificity. In recent years, several tamoxifen hybrids have been discovered as potential candidates for cancer treatment. The review highlights the recent progress in developing anticancer hybrids, including organometallic, fluorescent, photocaged, and novel ligand-based tamoxifen hybrids. It also demonstrates the significance of merging various pharmacophores with tamoxifen to produce more potent, precise, and effective anticancer agents. The study offers valuable knowledge to researchers working on cancer research with the hope of enhancing drug potency and reducing drug toxicity to improve cancer patients' lives.
Collapse
Affiliation(s)
- Shagufta
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Donna J Nelson
- Department of Chemistry and Biochemistry, The University of Oklahoma Norman Oklahoma USA
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
12
|
Romero IE, Barata-Vallejo S, Bonesi SM, Postigo A. Perfluoroalkylation of Triarylamines by EDA Complexes and Ulterior Sensitized [6π]-Electrocyclization to Perfluoroalkylated Endo-Carbazoles. Mechanistic and Photophysical Studies. Chemistry 2024; 30:e202400905. [PMID: 38536766 DOI: 10.1002/chem.202400905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 04/18/2024]
Abstract
Blue LEDs-irradiation of a mixture of N,N,N',N'-tetramethylethylenediamine (TMEDA) and perfluoroalkyl iodides (RF-I) - Electron Donor Acceptor (EDA)-complex - in the presence of triphenylamines (TPAs) in an aqueous solvent mixture afforded mono-perfluoroalkylated triphenylamines (RF-TPA) in good yields. These RF-TPA were further subjected to acetone-sensitized [6π]-electrocyclization at 315 nm-irradiation affording exclusively perfluoroalkylated endo-carbazole derivatives (RF-CBz) in quantitative yields. Mechanistic studies and photophysical properties of products are studied.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Sebastian Barata-Vallejo
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
- Istituto per la Sintesi Organica e la Fotoreattività ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Sergio M Bonesi
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono. (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 954, Buenos Aires, CP 1113, Argentina
| |
Collapse
|
13
|
Hassanin NM, Ali TE, Assiri MA, Abdel-Kariem SM. Novel carbazolyl-thiazolyl-chromone and carbazolyl-thiazolyl-pyrazole hybrids: synthesis, cytotoxicity evaluation and molecular docking studies. RSC Adv 2024; 14:17245-17260. [PMID: 38808237 PMCID: PMC11132180 DOI: 10.1039/d4ra03188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
A simple synthetic method was performed to design a novel series of polycyclic systems consisting of carbazole-thiazolidinone-chromone hybrids 4a-e and carbazole-thiazolidinone-pyrazole hybrids 5a-e in excellent yields. The methodology depended on the one-pot four-component reaction of 3-amino-9-ethylcarbazole, substituted isothiocyanates, ethyl bromoacetate and 6-methyl-3-formylchromone in ethanol under ultrasound waves at 50 °C to give the carbazole-thiazolidinone-chromone hybrids 4a-e. The latter isolated products were treated with hydrazine hydrate in ethanol under ultrasound waves at 50 °C affording the corresponding carbazole-thiazolidinone-pyrazole hybrids 5a-e. Spectral and analytical data confirmed the structures of all the synthesized compounds. The target compounds were screened for their in vitro anticancer activities against HCT116, PC3 and HepG2 cancer cell lines using the standard SRB method. Fortunately, both compounds 5dand5e were the most active against all cancer cell lines compared with doxorubicin and can be promising anticancer agents. Both bioactive products 5band5e were studied by the molecular docking to see how they bind with VEGFR-2 receptor. The results indicated that those compounds exhibited high affinities towards VEGFR-2 and established remarkably similar interactions to those of the powerful VEGFR-2-KDR.
Collapse
Affiliation(s)
- Noha M Hassanin
- Department of Chemistry, Faculty of Education, Ain Shams University Cairo Egypt
| | - Tarik E Ali
- Central Labs, King Khalid University, AlQuraa Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, AlQuraa Abha Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, AlQuraa Abha Saudi Arabia
| | | |
Collapse
|
14
|
Feng GC, Li JC, Huang X, Liu JK, Wu B, Yang JM. Cascade hydroarylation/Diels-Alder cycloaddition of alkynylindoles with electron-deficient alkynes and alkenes. Chem Commun (Camb) 2024; 60:328-331. [PMID: 38063477 DOI: 10.1039/d3cc05210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Herein, a novel cascade gold(I)-catalyzed hydroarylation of alkynylindoles and subsequent Diels-Alder cycloaddition with electron-deficient alkynes and alkenes is described. A variety of azepino-fused hydrocarbazoles and carbazoles were obtained in moderate to excellent yields. Key features of this methodology are low catalyst loadings, high regioselectivity, broad functional group tolerances, access to important heterocycles, and 100% atom economy.
Collapse
Affiliation(s)
- Guang-Chao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jun-Chi Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
15
|
Nguyen HT, Nguyen PN, Van Le T, Nguyen TH, Nguyen LD, Tran PH. Synthesis of benzo[ a]carbazole derivatives via intramolecular cyclization using Brønsted acidic carbonaceous material as the catalyst. RSC Adv 2023; 13:28623-28631. [PMID: 37780732 PMCID: PMC10540035 DOI: 10.1039/d3ra04943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
In this work, a new procedure for the synthesis of benzo[a]carbazole from 1,3-diketones, primary amines, phenylglyoxal monohydrate, and malononitrile employing a solid acidic catalyst has been developed. The multicomponent reaction provided 3-cyanoacetamide pyrrole as an intermediate and then the formation of benzo[a]carbazole via intramolecular ring closure. The reaction was carried out for 2 h at 240 °C, resulting in the desired product with 73% yield. Acidic sites on the solid acid catalyst, made from rice husk-derived amorphous carbon with a sulfonic acid core (AC-SO3H), provided the best activity. Acidic sites on the surface of the catalyst, including carboxylic, phenolic, and sulfonic acids, were 4.606 mmol g-1 of the total acidity. AC-SO3H demonstrated low cost, low toxicity, porosity, stability, and flexibility of tuning and reusability.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phat Ngoc Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Tan Van Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Linh Dieu Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
16
|
Strzyga-Łach P, Chrzanowska A, Kiernozek-Kalińska E, Żyżyńska-Granica B, Podsadni K, Podsadni P, Bielenica A. Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells. Arch Pharm (Weinheim) 2023; 356:e2300105. [PMID: 37401845 DOI: 10.1002/ardp.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Katarzyna Podsadni
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Çapan İ, Hawash M, Jaradat N, Sert Y, Servi R, Koca İ. Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chem 2023; 17:60. [PMID: 37328860 DOI: 10.1186/s13065-023-00961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Material and Material Processing Technologies, Gazi University, Technical Sciences Vocational College, 06560, Ankara, Turkey.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine
| | - Yusuf Sert
- Yozgat Bozok University, Sorgun Vocational School, Yozgat, Turkey
| | - Refik Servi
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
18
|
Li J, Yang Y, Han X, Li J, Tian M, Qi W, An H, Wu C, Zhang Y, Han S, Duan L, Wang W, Zhang W. Oral Delivery of Anti-Parasitic Agent-Loaded PLGA Nanoparticles: Enhanced Liver Targeting and Improved Therapeutic Effect on Hepatic Alveolar Echinococcosis. Int J Nanomedicine 2023; 18:3069-3085. [PMID: 37312930 PMCID: PMC10259527 DOI: 10.2147/ijn.s397526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Background Alveolar echinococcosis (AE) is a lethal parasitic disease caused by infection with the metacestode of the dog/fox tapeworm Echinococcus multilocularis, which primarily affects the liver. Although continued efforts have been made to find new drugs against this orphan and neglected disease, the current treatment options remain limited, with drug delivery considered a likely barrier for successful treatment. Methods Nanoparticles (NPs) have gained much attention in the field of drug delivery due to their potential to improve delivery efficiency and targetability. In this study, biocompatible PLGA nanoparticles encapsulating a novel carbazole aminoalcohol anti-AE agent (H1402) were prepared to promote the delivery of the parent drug to liver tissue for treating hepatic AE. Results H1402-loaded nanoparticles (H1402-NPs) had a uniform spherical shape and a mean particle size of 55 nm. Compound H1402 was efficiently encapsulated into PLGA NPs with a maximal encapsulation efficiency of 82.1% and drug loading content of 8.2%. An in vitro uptake assay demonstrated that H1402-NPs rapidly penetrated the in vitro cultured pre-cyst wall and extensively accumulated in the pre-cysts of E. multilocularis within only 1 h. The biodistribution profile of H1402-NPs determined through ex vivo fluorescence imaging revealed significantly enhanced liver distribution compared to unencapsulated H1402, which translated to improved therapeutic efficacy and reduced systemic toxicity (especially hepatotoxicity and cytotoxicity) in a hepatic AE murine model. Following a 30-day oral regimen (100 mg/kg/day), H1402-NPs significantly reduced the parasitic burden in both the parasite mass (liver and metacestode total weight, 8.8%) and average metacestode size (89.9%) compared to unmedicated infected mice (both p-values < 0.05); the treatment outcome was more effective than those of albendazole- and free H1402-treated individuals. Conclusion Our findings demonstrate the advantages of encapsulating H1402 into PLGA nanoparticles and highlight the potential of H1402-NPs as a promising liver-targeting therapeutic strategy for hepatic AE.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xiumin Han
- Qinghai Provincial People’s Hospital, Xining, Qinghai, People’s Republic of China
| | - Jing Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Huniu An
- Qinghai Provincial People’s Hospital, Xining, Qinghai, People’s Republic of China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shuai Han
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
19
|
Cemaloğlu R, Asmafiliz N, Çoşut B, Kılıç Z, Sabah BN, Açık L, Mergen H, Hökelek T. Phosphorus-nitrogen compounds: Part 69—Unsymmetrical dispiro(N/N)cyclotriphosphazenes containing different pendant arms: syntheses, characterization, stereogenism, photophysical and bioactivity studies. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
20
|
Ceramella J, Iacopetta D, Caruso A, Mariconda A, Petrou A, Geronikaki A, Rosano C, Saturnino C, Catalano A, Longo P, Sinicropi MS. 5,8-Dimethyl-9H-carbazole Derivatives Blocking hTopo I Activity and Actin Dynamics. Pharmaceuticals (Basel) 2023; 16:ph16030353. [PMID: 36986453 PMCID: PMC10051477 DOI: 10.3390/ph16030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Over the years, carbazoles have been largely studied for their numerous biological properties, including antibacterial, antimalarial, antioxidant, antidiabetic, neuroprotective, anticancer, and many more. Some of them have gained great interest for their anticancer activity in breast cancer due to their capability in inhibiting essential DNA-dependent enzymes, namely topoisomerases I and II. With this in mind, we studied the anticancer activity of a series of carbazole derivatives against two breast cancer cell lines, namely the triple negative MDA-MB-231 and MCF-7 cells. Compounds 3 and 4 were found to be the most active towards the MDA-MB-231 cell line without interfering with the normal counterpart. Using docking simulations, we assessed the ability of these carbazole derivatives to bind human topoisomerases I and II and actin. In vitro specific assays confirmed that the lead compounds selectively inhibited the human topoisomerase I and interfered with the normal organization of the actin system, triggering apoptosis as a final effect. Thus, compounds 3 and 4 are strong candidates for further drug development in multi-targeted therapy for the treatment of triple negative breast cancer, for which safe therapeutic regimens are not yet available.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: ; Tel.: +39-0984-493200
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
21
|
Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023; 14:218-238. [PMID: 36846377 PMCID: PMC9945856 DOI: 10.1039/d2md00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, breast cancer is still a leading cause of cancer death in women. Indeed, over the years, several anti-breast cancer drugs have been developed; however, the complex heterogeneous nature of breast cancer disease reduces the applicability of conventional targeted therapies with the upsurge in side effects and multi-drug resistance. Molecular hybrids generated by a combination of two or more active pharmacophores emerged as a promising approach in recent years for the design and synthesis of anti-breast cancer drugs. The hybrid anti-breast cancer molecules are well known for their several advantages compared to the parent moiety. These hybrid forms of anti-breast cancer molecules demonstrated remarkable effects in blocking different pathways contributing to the pathogenies of breast cancer and improved specificity. In addition, these hybrids are patient compliant with reduced side effects and multi-drug resistance. The literature revealed that molecular hybrids are applied to discover and develop novel hybrids for various complex diseases. This review article highlights the recent progress (∼2018-2022) in developing molecular hybrids, including linked, merged, and fused hybrids, as promising anti-breast cancer agents. Furthermore, their design principles, biological potential, and future perspective are discussed. The provided information will lead to the development of novel anti-breast cancer hybrids with excellent pharmacological profiles in the future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
22
|
Prabha K, Satheeshkumar R, Aathi MS, Chandrasekar C, Sukantha TA, Gnanamangai BM, Acevedo R, Sayin K, Prasad KJR. Eaton's reagent is an alternative of PPA: Solvent free synthesis, molecular docking and ADME studies of new angular and linear carbazole based naphtho naphthyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Gao Z, Chen Y, Nie Y, Chen K, Cao X, Ke S. Structural diversity-guided optimization of carbazole derivatives as potential cytotoxic agents. Front Chem 2023; 11:1104868. [PMID: 36742033 PMCID: PMC9890180 DOI: 10.3389/fchem.2023.1104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their in vitro cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines. The preliminary results indicated that compound 14a exhibited high inhibitory activities on 7901 and A875 cancer cells with the lowest IC50 of 11.8 ± 1.26 and 9.77 ± 8.32 μM, respectively, which might be the new lead compound for discovery of novel carbazole-type anticancer agents.
Collapse
Affiliation(s)
- Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan, China,National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yufei Nie
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Keming Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiufang Cao
- College of Science, Huazhong Agricultural University, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| |
Collapse
|
24
|
Medina JI, Cruz-Collazo A, Maldonado MDM, Matos Gascot T, Borrero-Garcia LD, Cooke M, Kazanietz MG, Hernandez O'Farril E, Vlaar CP, Dharmawardhane S. Characterization of Novel Derivatives of MBQ-167, an inhibitor of the GTP-binding proteins Rac/Cdc42. CANCER RESEARCH COMMUNICATIONS 2022; 2:1711-1726. [PMID: 36861094 PMCID: PMC9970268 DOI: 10.1158/2767-9764.crc-22-0303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.
Collapse
Affiliation(s)
- Julia I. Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Ailed Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Maria del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Tatiana Matos Gascot
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eliud Hernandez O'Farril
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
| | - Cornelis P. Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- MBQ Pharma, Inc., San Juan, Puerto Rico
- Corresponding Author: Suranganie Dharmawardhane, University of Puerto Rico, Medical Sciences Campus, School of Medicine, PO Box 365067, San Juan, PR 00936-5067. Phone: 787-758-2525, ext. 1623; E-mail:
| |
Collapse
|
25
|
El Ain MA, Puiatti M, Budén ME. CONSTRUCTION OF 3,3´‐BICARBAZOLES AND INDOLOCARBAZOLES BY USING VISIBLE LIGHT. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- María Alexia El Ain
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas: Universidad Nacional de Cordoba Facultad de Ciencias Quimicas Organic Chemistry ARGENTINA
| | - Marcelo Puiatti
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas: Universidad Nacional de Cordoba Facultad de Ciencias Quimicas Organic Chemistry ARGENTINA
| | - María Eugenia Budén
- INFIQC: Instituto de Investigaciones en Fisicoquimca de Cordoba Departamento de Química Orgánica Haya de La Torre y Medina Allende 5016 Córdoba ARGENTINA
| |
Collapse
|
26
|
Ma F, Wu XT, Miao LW, Sun F, Jiang YJ, Chen P. Metal‐Free One‐Pot Synthesis of Tri‐ and Difluoromethylated Bis(carbazolyl)methanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Hassan RA, Hamed MI, Abdou AM, El-Dash Y. Novel antiproliferative agents bearing substituted thieno[2,3-d]pyrimidine scaffold as dual VEGFR-2 and BRAF kinases inhibitors and apoptosis inducers; design, synthesis and molecular docking. Bioorg Chem 2022; 125:105861. [DOI: 10.1016/j.bioorg.2022.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
28
|
Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y, Wang R, Fang Y, Jin Y, Zhang Z, Xie SS, Liu J. Design, Synthesis and Anti-Tumor Activity Evaluation of Novel 3,4-(Methylenedioxy)cinnamic Acid Amide-Dithiocarbamate Derivatives. Chem Biodivers 2022; 19:e202200439. [PMID: 35703003 DOI: 10.1002/cbdv.202200439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
The fragments, 3,4-(methylenedioxy)cinnamic acid amide and dithiocarbamates, have received increasing attention because of their multiple pharmacological activities in recent years, especially in anti-tumor. We synthesized 17 novel 3,4-(methylenedioxy)cinnamic acid amide-dithiocarbamate derivatives based on the principle of pharmacophore assembly and discovered that compound 4a7 displayed the most potent antiproliferative activity against HeLa cells with IC50 value of 1.01 μM. Further mechanistic studies revealed that 4a7 triggered apoptosis in HeLa cells via activating mitochondria-mediated intrinsic pathways and effectively inhibited colony formation. Also, 4a7 had the ability to arrest cell cycle in the G2/M phase as well as to inhibit the migration in HeLa cells. More importantly, acute toxicity experiments showed that 4a7 had good safety in vivo. All the results suggested that compound 4a7 might serve as a promising lead compound that merited further attention in future anti-tumor drug discovery.
Collapse
Affiliation(s)
- Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Duanyuan Cao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Jinchong Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Zhipeng Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, P. R. China
| |
Collapse
|
29
|
Romero IE, Lantaño B, Postigo A, Bonesi SM. Photoinduced [6π]-Electrocyclic Reaction of Mono-, Di-, and Trisubstituted Triphenylamines in Acetonitrile. A Steady-State Investigation. J Org Chem 2022; 87:13439-13454. [PMID: 35675160 DOI: 10.1021/acs.joc.2c00756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct irradiation of mono-, di-, and trisubstituted triphenylamine derivatives in acetonitrile as solvent with light of 254 nm has been systematically investigated, revealing that the exo/endo carbazole derivatives were formed as the main photoproducts from modest to good yields for triphenylamines substituted with electron-donor and neutral substituents. The kinetic profiles of the photoreaction were also recorded, and the consumption rate constants (k) were measured. These kinetic parameters show dependence on the nature of the substituents, and linear Hammett correlations were carried out to showcase the substituent effect. On the other hand, the spectroscopic behavior of the electron-rich substituted triphenylamines has been analyzed, suggesting that the fluorescence emission spectra display a mirror image of the lower energy absorption bands, while for those amines bearing electron-acceptor groups the formation of charge-transfer complexes and their fluorescence emissions constitute the main deactivation pathway of the photoreaction.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
30
|
Kaur R, Banga S, Babu SA. Construction of carbazole-based unnatural amino acid scaffolds via Pd(II)-catalyzed C(sp 3)-H functionalization. Org Biomol Chem 2022; 20:4391-4414. [PMID: 35583129 DOI: 10.1039/d2ob00658h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of carbazole-based unnatural α-amino acid and non-α-amino acid derivatives via a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided β-C(sp3)-H activation/functionalization method. Various N-phthaloyl, DL-, L- and D-carboxamides derived from their corresponding α-amino acids, non-α-amino acids and aliphatic carboxamides were subjected to the β-C(sp3)-H functionalization with 3-iodocarbazoles in the presence of a Pd(II) catalyst to afford the corresponding carbazole moiety installed unnatural amino acid derivatives and aliphatic carboxamides. Carbazole motif-containing racemic (DL) and enantiopure (L and D) amino acid derivatives including phenylalanine, norvaline, leucine, norleucine and 2-aminooctanoic acid with anti-stereochemistry and various non-α-amino acid derivatives including GABA have been synthesized. Removal of the 8-aminoquinoline directing group, deprotection of the phthalimide moiety and the preparation of carbazole amino acid derivatives containing free amino- and carboxylate groups are shown. The carbazole motif is prevalent in alkaloids and biologically active molecules and functional materials. Thus, this work on the synthesis of carbazole-based unnatural amino acid derivatives would enrich the libraries of unnatural amino acid derivatives and carbazoles.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Shefali Banga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
31
|
Kaur M, Kumar R. A Minireview on Cadogan cyclization reactions leading to diverse azaheterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manpreet Kaur
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda 151401 Bathinda INDIA
| | - Raj Kumar
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda, Bathinda 151401 Bathinda INDIA
| |
Collapse
|