1
|
Alomari KB, Alrefaei AF, Almughathawi R, Halawani NM, Alqarni SA, Alharbi A, Katouah HA, El-Metwaly NM. New Benzothiazole-Thiadiazole-Based Ketones as Potential Antiviral and Anticancer Agents: Synthesis, DFT, and Molecular Docking Studies. Chem Biol Drug Des 2025; 105:e70073. [PMID: 39988945 DOI: 10.1111/cbdd.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Various substituted benzothiazole-thiadiazole-based ketones 4a-i and 6a-c were synthesized and characterized by the IR, NMR, and MS spectral data. The DFT study of the synthesized ketones 4 and 6 displayed matched configurations of their HOMO and LUMO, with the exception of the nitrophenyl derivatives, whose HOMO extended over the entire molecule. Meanwhile, the antiproliferative effectiveness of the produced ketones was evaluated against diverse cell lines and compared with the reference drug Erlotinib. The ketones exhibited variable inhibitory effects, for example, the ketone 6a has the most potent activity versus Panc-1 (IC50 = 9.34 ± 0.18 μM), whereas 4i showed proper effectiveness against HepG2 (IC50 = 10.91 ± 0.23 μM), and ketone 4a exhibited strong activity against MCF-7 cells (IC50 = 5.66 ± 0.16 μM). Moreover, the H5N1 antiviral efficacy was assessed via a plaque reduction assay, using amantadine as a reference drug. Ketones 2a, 4e, and 4g displayed 100% inhibition, while ketone 4e has the lowest toxic concentration (TC50 61 μg/μL). Furthermore, the molecular docking results revealed that ketone 4e had the highest binding score owing to several interactions with amino acids of 1JU6 residues. Finally, SwissADME analysis of the synthesized ketones provides key insights into their pharmacokinetic properties.
Collapse
Affiliation(s)
- Khadra B Alomari
- Jazan University, Department of Physical Sciences, Chemistry Division, Jazan, Kingdom of Saudi Arabia
| | - Abdulmajeed F Alrefaei
- Department of Biology/Genetic and Molecular Biology Central Laboratory (GMCL), Jamoum University College Umm Al-Qura University, Makkah, Saudi Arabia
| | - Renad Almughathawi
- Department of Physics, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Nuha M Halawani
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Sara A Alqarni
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa Alharbi
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Hanadi A Katouah
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Gallego RA, Edwards MP, Montgomery TP. An update on lipophilic efficiency as an important metric in drug design. Expert Opin Drug Discov 2024; 19:917-931. [PMID: 38919130 DOI: 10.1080/17460441.2024.2368744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Lipophilic efficiency (LipE) and lipophilic metabolic efficiency (LipMetE) are valuable tools that can be utilized as part of a multiparameter optimization process to advance a hit to a clinical quality compound. AREAS COVERED This review covers recent, effective use cases of LipE and LipMetE that have been published in the literature over the past 5 years. These use cases resulted in the delivery of high-quality molecules that were brought forward to in vivo work and/or to clinical studies. The authors discuss best-practices for using LipE and LipMetE analysis, combined with lipophilicity-focused compound design strategies, to increase the speed and effectiveness of the hit to clinical quality compound optimization process. EXPERT OPINION It has become well established that increasing LipE and LipMetE within a series of analogs facilitates the improvement of broad selectivity, clearance, solubility, and permeability and, through this optimization, also facilitates the achievement of desired pharmacokinetic properties, efficacy, and tolerability. Within this article, we discuss lipophilic efficiency-focused optimization as a tool to yield high-quality potential clinical candidates. It is suggested that LipE/LipMetE-focused optimization can facilitate and accelerate the drug-discovery process.
Collapse
|
3
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F, He G. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis 2023; 14:851. [PMID: 38129399 PMCID: PMC10739961 DOI: 10.1038/s41419-023-06370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanghui Zhu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linghong Guo
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Fengbo Wu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Gu He
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
5
|
Hao Y, Ma J, Wang J, Yu X, Li Z, Wu S, Tian S, Ma H, He S, Zhang X. Synthesis and evaluation of dihydrofuro[2,3-b]pyridine derivatives as potent IRAK4 inhibitors. Eur J Med Chem 2023; 258:115616. [PMID: 37413880 DOI: 10.1016/j.ejmech.2023.115616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key regulator to control downstream NF-κB and MAPK signals in the innate immune response and has been proposed as a therapeutic target for the treatment of inflammatory and autoimmune diseases. Herein, a series of IRAK4 inhibitors based on a dihydrofuro[2,3-b]pyridine scaffold was developed. Structural modifications of the screening hit 16 (IC50 = 243 nM) led to IRAK4 inhibitors with improved potency but high clearance (Cl) and poor oral bioavailability, as exemplified by compound 21 (IC50 = 6.2 nM, Cl = 43 ml/min/kg, F = 1.6%, LLE = 5.4). Structure modification aimed at improving LLE and reducing clearance identified compound 38. Compound 38 showed significantly improved clearance while maintained excellent biochemical potency against IRAK4 (IC50 = 7.3 nM, Cl = 12 ml/min/kg, F = 21%, LLE = 6.0). Importantly, compound 38 had favorable in vitro safety and ADME profiles. Furthermore, compound 38 reduced the in vitro production of pro-inflammatory cytokines in both mouse iBMDMs and human PBMCs and was orally efficacious in the inhibition of serum TNF-α secretion in LPS-induced mouse model. These findings suggested that compound 38 has development potential as an IRAK4 inhibitor for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Yongjin Hao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jiawan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiaoliang Yu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China
| | - Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, PR China; Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, PR China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, PR China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
6
|
Hao Y, Wang J, Ma J, Yu X, Li Z, Wu S, Tian S, Ma H, He S, Zhang X. Design, synthesis, evaluation and optimization of potent IRAK4 inhibitors alleviating production of inflammatory cytokines in LPS-induced SIRS model. Bioorg Chem 2023; 137:106584. [PMID: 37163814 DOI: 10.1016/j.bioorg.2023.106584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Interleukin-1 receptor associated kinase-4 (IRAK4) has emerged as a therapeutic target for inflammatory and autoimmune diseases. Through reversing the amide of CA-4948 and computer aided structure-activity relationship (SAR) studies, a series of IRAK4 inhibitors with oxazolo[4,5-b]pyridine scaffold were identified. Compound 32 showed improved potency (IC50 = 43 nM) compared to CA-4948 (IC50 = 115 nM), but suffered from hERG inhibition (IC50 = 5.7 μM). Further optimization led to compound 42 with reduced inhibition of hERG (IC50 > 30 μM) and 13-fold higher activity (IC50 = 8.9 nM) than CA-4948. Importantly, compound 42 had favorable in vitro ADME and in vivo pharmacokinetic properties. Furthermore, compound 42 significantly reduced LPS-induced production of serum TNF-α and IL-6 cytokines in the mouse model. The overall profiles of compound 42 support it as a lead for the development of IRAK4 inhibitors for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Yongjin Hao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiawan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoliang Yu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, P. R. China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, P. R. China
| | - Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, P. R. China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, P. R. China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| |
Collapse
|
7
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
8
|
Chen L, Zhang X, Ou Y, Liu M, Yu D, Song Z, Niu L, Zhang L, Shi J. Advances in RIPK1 kinase inhibitors. Front Pharmacol 2022; 13:976435. [PMID: 36249746 PMCID: PMC9554302 DOI: 10.3389/fphar.2022.976435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
Programmed necrosis is a new modulated cell death mode with necrotizing morphological characteristics. Receptor interacting protein 1 (RIPK1) is a critical mediator of the programmed necrosis pathway that is involved in stroke, myocardial infarction, fatal systemic inflammatory response syndrome, Alzheimer's disease, and malignancy. At present, the reported inhibitors are divided into four categories. The first category is the type I ATP-competitive kinase inhibitors that targets the area occupied by the ATP adenylate ring; The second category is type Ⅱ ATP competitive kinase inhibitors targeting the DLG-out conformation of RIPK1; The third category is type Ⅲ kinase inhibitors that compete for binding to allosteric sites near ATP pockets; The last category is others. This paper reviews the structure, biological function, and recent research progress of receptor interaction protein-1 kinase inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yaqing Ou
- Department of Pharmacy, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Maoyu Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiheng Song
- Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Lihong Niu
- Institute of Laboratory Animal Sciences, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| |
Collapse
|
9
|
Cui B, Yan B, Wang K, Li L, Chen S, Zhang Z. Discovery of a New Class of Uracil Derivatives as Potential Mixed Lineage Kinase Domain-like Protein (MLKL) Inhibitors. J Med Chem 2022; 65:12747-12780. [PMID: 36136378 DOI: 10.1021/acs.jmedchem.2c00548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necroptosis is a form of programmed cell death. Mixed lineage kinase domain-like protein (MLKL) is the necroptosis executor, and it is involved in various diseases such as tissue damage and neurodegeneration-related diseases. Here, we report the development of novel MLKL inhibitors with a uracil nucleus through scaffold morphing from our previously reported xanthine MLKL inhibitor TC13172. After a rational structure-activity relationship study, we obtained the highly potent compounds 56 and 66. Mechanism studies revealed that these compounds partially inhibited MLKL oligomerization and significantly inhibited MLKL translocation to the membrane. Compared with TC13172, 56 and 66 have a different mode of action and, importantly, their reaction rate with glutathione is more than 150-fold lower. This reduction in potential off-target effects and cell toxicity makes this series an attractive starting point for further drug development for MLKL-related disease treatments.
Collapse
Affiliation(s)
- Bo Cui
- College of Life Sciences, Beijing Normal University, Beijing 100875, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Bo Yan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Kang Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| |
Collapse
|
10
|
Hao Y, Yang C, Shu C, Li Z, Xia K, Wu S, Ma H, Tian S, Ji Y, Li J, He S, Zhang X. Discovery, optimization and evaluation of isothiazolo[5,4-b]pyridine derivatives as RIPK1 inhibitors with potent in vivo anti-SIRS activity. Bioorg Chem 2022; 129:106051. [DOI: 10.1016/j.bioorg.2022.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
|
11
|
Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem 2022; 238:114464. [DOI: 10.1016/j.ejmech.2022.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
|