1
|
Wang Q, Xin BS, Kou WL, Gao LN, Zhang GX, Qiao YJ, Yao GD, Huang XX, Song SJ. Discovery of isopentenyl flavonoids with inhibitory activity against hepatocellular carcinoma cells based on DeepSAT. PHYTOCHEMISTRY 2025; 234:114437. [PMID: 39952575 DOI: 10.1016/j.phytochem.2025.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Isopentenyl flavonoids were isolated from Daphne giraldii Nitsche and their pharmacological activity was further studied to enrich its chemical composition. Seventeen isopentenyl flavonoids (1a/1b-3a/3b and 4-14), including thirteen undescribed compounds (1a/1b-3a/3b and 4-10), were obtained from D. giraldii under the guidance of HSQC-based DeepSAT. Their structures and configurations were established by comprehensive spectroscopic analysis, ECD, and GFN2NMR methods. Moreover, all compounds were evaluated for potential cytotoxicity against hepatocellular carcinoma HepG2 and Hep3B cell lines. Among them, undescribed compound 3 exhibited potent growth-inhibitory activities against HepG2 and Hep3B cells due to the presence of a unique isopentene group and pyran ring structure, with half-maximal inhibitory concentration values of IC50 = 17.55 ± 1.65 μM and IC50 = 1.12 ± 0.08 μM, respectively. Morphological and staining analyses suggested compound 11 induced apoptosis in HepG2 and Hep3B cells, indicating that the isopentene group at the C-8 position was the active group.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Wen-Long Kou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li-Na Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan-Jiao Qiao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai, Shandong, 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Usuda D, Kaneoka Y, Ono R, Kato M, Sugawara Y, Shimizu R, Inami T, Nakajima E, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Shimozawa S, Hotchi Y, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Nomura T, Sugita M. Current perspectives of viral hepatitis. World J Gastroenterol 2024; 30:2402-2417. [PMID: 38764770 PMCID: PMC11099385 DOI: 10.3748/wjg.v30.i18.2402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuki Kaneoka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Rikuo Ono
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Masashi Kato
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuto Sugawara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Runa Shimizu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomotari Inami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Eri Nakajima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
3
|
Matsuda M, Hirai-Yuki A, Kotani O, Kataoka M, Zheng X, Yamane D, Yokoyama M, Ishii K, Muramatsu M, Suzuki R. Loxapine inhibits replication of hepatitis A virus in vitro and in vivo by targeting viral protein 2C. PLoS Pathog 2024; 20:e1012091. [PMID: 38478584 PMCID: PMC10962851 DOI: 10.1371/journal.ppat.1012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/25/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024] Open
Abstract
No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.
Collapse
Affiliation(s)
- Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asuka Hirai-Yuki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute for Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Xin Zheng
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute for Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance, Radiation Safety, and Information System, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Yang BW, Yang S, Kim S, Baek AR, Sung B, Kim YH, Lee JT, Lee SY, Kim HK, Choi G, Park JA, Nam SW, Lee GH, Chang Y. Flavonoid-Conjugated Gadolinium Complexes as Anti-Inflammatory Theranostic Agents. Antioxidants (Basel) 2022; 11:antiox11122470. [PMID: 36552678 PMCID: PMC9774776 DOI: 10.3390/antiox11122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, we designed, synthesized, and evaluated gadolinium compounds conjugated with flavonoids as potential theranostic agents for the treatment of inflammation. These novel theranostic agents combine a molecular imaging agent and one of three flavonoids (galangin, chrysin, and 7-hydroxyflavone) as anti-inflammatory drugs as a single integrated platform. Using these agents, MR imaging showed contrast enhancement (>10 in CNR) at inflamed sites in an animal inflammation model, and subsequent MR imaging used to monitor the therapeutic efficacy of these integrated agents revealed changes in inflamed regions. The anti-inflammatory effects of these agents were demonstrated both in vitro and in vivo. Furthermore, the antioxidant efficacy of the agents was evaluated by measuring their reactive oxygen species scavenging properties. For example, Gd-galangin at 30 μM showed a three-fold higher ROS scavenging of DPPH. Taken together, our findings provide convincing evidence to indicate that flavonoid-conjugated gadolinium compounds can be used as potentially efficient theranostic agents for the treatment of inflammation.
Collapse
Affiliation(s)
- Byeong Woo Yang
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sohyeon Yang
- Department of Medical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ah Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Republic of Korea
| | - Jung Tae Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Sang Yun Lee
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Republic of Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Gang-Ho Lee
- Department of Chemistry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yongmin Chang
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Medical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-5471
| |
Collapse
|