1
|
Long J, Ye P, Yuan W, Yang Q, Wang Z, Xiao H, Xie Z, Lei X, Yang X, Deng X, Tang G. Research progress of flavonoids targeting estrogen receptor in the treatment of breast cancer. Bioorg Med Chem 2025; 120:118106. [PMID: 39938393 DOI: 10.1016/j.bmc.2025.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Breast cancer (BC) stands as the most prevalent malignancy among women. Targeting the estrogen receptor (ER) or ER pathway is one of the important approaches for ER+ BC treatment. As a class of phytoestrogens, flavonoids possess notable anti-tumor properties and hold immense potential in regulating ER signaling. In this review, we reported the recent advances in both in vitro and in vivo studies of flavonoids and their synthetic derivatives targeting the ER signaling pathway, including the target and mechanism of action of these molecules, as well as their structure-activity relationship. Based on the available literature, the beneficial effects of flavonoids as ER targeting agents are promising but they require further in vitro and in vivo studies to enable its translation from bench to bedside. This review will provide valuable guidance and insights for the future development of drugs targeting the ER pathway.
Collapse
Affiliation(s)
- Jianling Long
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pengju Ye
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qixian Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | | | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Bhatia N, Kumar S, Goyal LD, Thareja S. Optimizing selective estrogen receptor degraders for anticancer drug development. Future Med Chem 2025; 17:637-640. [PMID: 40008677 PMCID: PMC11938951 DOI: 10.1080/17568919.2025.2467615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Liu H, Zou Y, Zhang Q, Zhao J, Wu J, Li X, Cheng Y, Wei H, Li H, Cao S. Pharmacovigilance insights into medication-induced risk of dural arteriovenous fistula. Int J Surg 2025; 111:1847-1859. [PMID: 39764589 DOI: 10.1097/js9.0000000000002214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/10/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Dural arteriovenous fistulas (DAVFs) pose a significant health threat owing to their high misdiagnosis rate. Case reports suggest that DAVFs or related acute events may follow medication use; however, drug-related risk factors remain unclear. In clinical practice, the concomitant use of multiple drugs for therapy is known as "polypharmacy situations," further increasing the risk of drug-induced DAVF. Real-world studies linking medications and DAVF can alert clinicians to their possibilities and contribute to clinical decision-making and patient education. METHOD This study investigated adverse events spanning a decade from the FAERS database, employing pharmacovigilance analysis to systematically assess the risk of drug-induced DAVF. Furthermore, the clinical characteristics of these drug-related DAVFs, such as demographic information, complications, and outcomes, were characterized. RESULT This study generated a broad spectrum of drugs associated with DAVFs. A total of 355 DAVF events, involving 161 drugs across 73 categories, were compiled from millions of records. We identified eight classes of drugs for thorough investigation. Pharmacovigilance analysis revealed that tamoxifen, methylprednisolone, betamethasone, prednisone, rebif, ustekinumab, natalizumab, baclofen, dabigatran etexilate, and bupivacaine have the potential to induce DAVFs. Cerebrovascular thrombotic and embolic events emerge as the most prominent co-adverse events of drug-induced DAVFs. Analyses based on drug-disease targets suggested that the regulation of angiogenesis could be a potential mechanism in tamoxifen-induced DAVFs. Apart from medications with gender-specific prescription patterns, most medications exhibit a high risk of DAVF in adult male cohorts. Five patients with drug-related DAVFs experienced severe (fatal) outcomes, with four reports attributed to tamoxifen. CONCLUSION These findings highlight the diverse range of drugs implicated in the occurrence or progression of DAVF. Drugs such as tamoxifen, corticosteroids, multiple sclerosis medications, and oral anticoagulants require particular attention. Future research should focus on elucidating the underlying mechanisms and risk factors, such as thrombosis, contributing to drug-induced DAVF to inform preventive strategies and optimize patient care.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujia Zou
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiongchi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinghao Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingtao Wu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongzhong Cheng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyu Wei
- Department of Orthopedics, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Cao
- Department of Orthopedics, Civil Aviation General Hospital, Beijing, China
| |
Collapse
|
4
|
Wang X, Deng X, Xin L, Dong C, Hu G, Zhou HB. Pegylated NIR Fluorophore-Conjugated OBHSA Prodrug for ERα-Targeted Theranostics with Enhanced Imaging and Long-Term Retention. Molecules 2025; 30:305. [PMID: 39860175 PMCID: PMC11767339 DOI: 10.3390/molecules30020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach. A novel esterase-activated EPR strategy prodrug, OBHSA-PEG-DCM, was designed. This prodrug links OBHSA, a protein degrader capable of efficient ERα protein degradation, to the PEG-modified fluorescent group (dicyanomethylene-4H-pyran, DCM) via an ester bond. This integration facilitates targeted drug delivery and enhances the retention of the fluorescent group within the tumor, allowing distinct in vivo tumor imaging periods. Experimental results show that, benefiting from overexpressed esterase in cancer cells, OBHSA-PEG-DCM can be efficiently hydrolyzed, releasing OBHSA and pegylated DCM. OBHSA demonstrated potent inhibition against MCF-7 cells (IC50 = 1.09 μM). Simultaneously, pegylated DCM exhibited remarkable in vivo imaging capabilities, lasting up to 12 days in mice, due to the enhanced permeability and retention (EPR) effect. OBHSA-PEG-DCM holds promise as a theranostic agent for ERα-positive breast cancer, offering both therapeutic and diagnostic capabilities. Importantly, this study highlights the utility of pegylated NIR fluorophores for long-circulating drug delivery systems, addressing current challenges in achieving high-contrast tumor imaging and effective targeted drug release.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Dai R, Bao X, Liu C, Yin X, Zhu Z, Zheng Z, Wang B, Yang K, Wen H, Li W, Zhu H, Du Q, Liu J. Drug discovery of N-methyl-pyrazole derivatives as potent selective estrogen receptor degrader (SERD) for the treatment of breast cancer. Eur J Med Chem 2024; 279:116894. [PMID: 39357315 DOI: 10.1016/j.ejmech.2024.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Nowadays, ERα is considered to be a primary target for the treatment of breast cancer, and selective estrogen receptor degraders (SERDs) are emerging as promising antitumor agents. By analysing ERα-SERDs complexes, the pharmacophore features of SERDs and the crucial protein-ligand interactions were identified. Then, by utilizing the scaffold-hopping and bioisosteres strategy, 23 novel derivatives were designed, synthesized and biologically evaluated. Among these derivatives, A20 exhibited potent ERα binding affinity (IC50 = 24.0 nM), degradation ability (EC50 = 5.3 nM), excellent ER selectivity, and outstanding anti-proliferative effects on MCF-7 cells (IC50 = 0.28 nM). Further biological studies revealed that A20 could degrade ERα through proteasome-mediated pathway, suppress signal transduction of MCF-7 cells, and arrest the cell cycle in G1 phase. Moreover, A20 showed excellent antitumor effect (TGI = 92.98 %, 30 mg kg-1 day-1) in the MCF-7 xenograft model in vivo with good safety and favorable pharmacokinetics (F = 39.6 %), making it a promising candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueting Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xunkai Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Yonemori K, Boni V, Min KG, Meniawy TM, Lombard J, Kaufman PA, Richardson DL, Bender L, Okera M, Matsumoto K, Giridhar KV, García-Sáenz JA, Prenen H, de Speville Uribe BD, Dizon DS, Garcia-Corbacho J, Van Nieuwenhuysen E, Li Y, Estrem ST, Nguyen B, Bacchion F, Ismail-Khan R, Jhaveri K, Banda K. Imlunestrant, an oral selective estrogen receptor degrader, as monotherapy and combined with abemaciclib, in recurrent/advanced ER-positive endometrioid endometrial cancer: Results from the phase 1a/1b EMBER study. Gynecol Oncol 2024; 191:172-181. [PMID: 39442371 DOI: 10.1016/j.ygyno.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Imlunestrant is a next-generation oral selective estrogen receptor degrader designed to deliver continuous estrogen receptor (ER) target inhibition. EMBER is a phase 1a/b trial of imlunestrant, as monotherapy and combined with targeted therapy, in patients with ER+ advanced breast cancer or endometrioid endometrial cancer (EEC). This report focuses on patients with ER+ EEC. METHODS EMBER used an i3 + 3 dose-escalation design to determine the recommended phase 2 dose (RP2D) followed by dose-expansion cohorts (1:1 randomization): imlunestrant monotherapy and imlunestrant plus abemaciclib (150 mg twice daily). Eligible patients had measurable disease and progression or recurrence after platinum-containing chemotherapy. Prior fulvestrant or aromatase inhibitor was not allowed. Secondary endpoints included safety, pharmacokinetics and antitumor activity. RESULTS In total, 72 patients with a median of 2 prior anticancer therapies were treated. Among the 39 patients who received imlunestrant (400 mg [RP2D], n = 33; 800 mg, n = 6), the most common treatment-emergent adverse events (TEAEs) were grade 1-2 nausea (35.9 %), diarrhea (25.6 %), urinary tract infection (25.6 %), and abdominal pain (20.5 %). Overall response rate (ORR) was 10.3 %, clinical benefit rate (CBR) was 33.3 %, and median progression-free survival (mPFS) was 3.8 months (95 % CI, 1.8-6.7). Among the 33 patients who received imlunestrant (400 mg [RP2D], n = 29; 800 mg, n = 4) plus abemaciclib, the most common TEAEs were diarrhea (87.9 %), nausea (66.7 %), fatigue (48.5 %), and anemia (45.5 %). ORR was 18.2 %, CBR was 42.4 %, and mPFS was 6.8 months (95 % CI, 2.1-12). CONCLUSION Imlunestrant, as monotherapy and combined with abemaciclib, has a manageable safety profile with preliminary evidence of antitumor activity in patients with ER+ EEC.
Collapse
Affiliation(s)
- Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Valentina Boni
- START Madrid-CIOCC, Quironsalud Madrid University Hospital, Madrid, Spain
| | - Kim Gun Min
- Division of Medical Oncology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Tarek M Meniawy
- University of Western Australia and Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Janine Lombard
- Department of Medical Oncology, Calvary Mater Newcastle, Waratah, NSW, Australia
| | - Peter A Kaufman
- Larner College of Medicine, Division of Hematology/Oncology, University of Vermont Cancer Center, Burlington, VT, USA
| | - Debra L Richardson
- Stephenson Cancer Center and Sarah Cannon Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Bender
- Oncology Department, Institut de Cancérologie de Strasbourg, Strasbourg, France
| | - Meena Okera
- Adelaide Cancer Centre, Kurralta Park, SA, Australia
| | | | | | - José Angel García-Sáenz
- Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain; Spanish Breast Cancer Group, GEICAM, Madrid, Spain
| | - Hans Prenen
- University Hospital Antwerp, Edegem, Belgium
| | | | - Don S Dizon
- Legorreta Cancer Center at Brown University and Lifespan Cancer Institute, Providence, RI, USA
| | | | - Els Van Nieuwenhuysen
- Department of Gynaecological Oncology, Multidisciplinary Breast Center, University Hospitals Louvain, Campus Gasthuisberg, Leuven, Belgium
| | - Yujia Li
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Kalyan Banda
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Arif MN, Sarwar S, Firdous F, Saleem RSZ, Nadeem H, Alamro AA, Alghamdi AA, Alshammari AH, Farooq O, Khan RA, Faisal A. Discovery and prospects of new heterocyclic Isatin-hydrazide derivative with a novel role as estrogen receptor α degrader in breast cancer cells. Front Chem 2024; 12:1424637. [PMID: 39021389 PMCID: PMC11252035 DOI: 10.3389/fchem.2024.1424637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction: Isatin, a heterocycle scaffold, is the backbone of many anticancer drugs and has previously been reported to engage multiple cellular targets and mechanisms, including angiogenesis, cell cycle, checkpoint pathways and multiple kinases. Here, we report that a novel isatin derivative, 5i, degrades estrogen receptor alpha (ERα) in estrogen-dependent breast cancer cells. This effect of the isatin nucleus has not been previously reported. Tamoxifen and fulvestrant represent standard therapy options in estrogen-mediated disease but have their own limitations. Isatin-based triple angiokinase inhibitor BIBF1120 (Nintedanib) and multikinase inhibitor Sunitinib (Sutent) have been approved by the FDA. Methods: Keeping this in view, we synthesized a series of N'-(1-benzyl-2-oxo-1, 2-dihydro-3H-indol-3-ylidene) hydrazide derivatives and evaluated them in vitro for antiproliferative activities in MCF-7 (ER+) cell line. We further investigated the effect of the most potent compound (5i) on the Erα through Western Blot Analysis. We used in silico pharmacokinetics prediction tools, particularly pkCSM tool, to assess the activity profiles of the compounds. Results and discussion: Compound 5i showed the best antiproliferative activity (IC50 value; 9.29 ± 0.97 µM) in these cells. Furthermore, 5i downregulated ERα protein levels in a dose-dependent manner in MCF-7. A multifaceted analysis of physicochemical properties through Data Warrior software revealed some prominent drug-like features of the synthesized compounds. The docking studies predicted the binding of ligands (compounds) with the target protein (ERα). Finally, molecular dynamics (MD) simulations indicated stable behavior of the protein-ligand complex between ERα and its ligand 5i. Overall, these results suggest that the new isatin derivative 5i holds promise as a new ERα degrader.
Collapse
Affiliation(s)
- Muhammad Nouman Arif
- Pharmaceutical Chemistry Research Lab, Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Sarwar
- Cell Culture Laboratory, Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Defence Housing Authority, Lahore, Pakistan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Defence Housing Authority, Lahore, Pakistan
| | - Humaira Nadeem
- Pharmaceutical Chemistry Research Lab, Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmad Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Omer Farooq
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rashid Ali Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| |
Collapse
|
8
|
Apostolidou K, Zografos E, Papatheodoridi MA, Fiste O, Dimopoulos MA, Zagouri F. Oral SERDs alone or in combination with CDK 4/6 inhibitors in breast cancer: Current perspectives and clinical trials. Breast 2024; 75:103729. [PMID: 38599049 PMCID: PMC11011217 DOI: 10.1016/j.breast.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Over the past few decades, first-line therapy for treating advanced and metastatic HR+/HER2-breast cancer has transformed due to the introduction of adjuvant endocrine therapy with cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). However, there is an unmet need for novel classes of endocrine therapy with superior efficacy to improve treatment outcomes and overcome CDK4/6i resistance. New generation selective estrogen receptor degraders (SERDs), orally administered and with higher bioavailability, could potentially be the novel compounds to meet this emerging need. In this paper, we review accredited clinical studies on the combining effects of CDK4/6 inhibitors and oral SERDs, report efficacy of treatment data when available, and provide a framework for future research focusing on these promising agents.
Collapse
Affiliation(s)
- Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Oraianthi Fiste
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| |
Collapse
|
9
|
Chidambaram A, Prabhakaran R, Sivasamy S, Kanagasabai T, Thekkumalai M, Singh A, Tyagi MS, Dhandayuthapani S. Male Breast Cancer: Current Scenario and Future Perspectives. Technol Cancer Res Treat 2024; 23:15330338241261836. [PMID: 39043043 PMCID: PMC11271170 DOI: 10.1177/15330338241261836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Male breast cancer (MBC), one of the rare types of cancer among men where the global incidence rate is 1.8% of all breast cancers cases with a yearly increase in a pace of 1.1%. Since the last 10 years, the incidence has been increased from 7.2% to 10.3% and the mortality rate was decreased from 11% to 3.8%. Nevertheless, the rate of diagnoses has been expected to be around 2.6% in the near future, still there is a great lack in studies to characterize the MBC including the developed countries. Based on our search, it is evidenced from the literature that the number of risk factors for the cause of MBC are significant, which includes the increase in age, family genetic history, mutations in specific genes due to various environmental impacts, hormonal imbalance and unregulated expression receptors for specific hormones of high levels of estrogen or androgen receptors compared to females. MBCs are broadly classified into ductal and lobular carcinomas with further sub-types, with some of the symptoms including a lump or swelling in the breast, redness of flaky skin in the breast, irritation and nipple discharge that is similar to the female breast cancer (FBC). The most common diagnostic tools currently in use are the ultrasound guided sonography, mammography, and biopsies. Treatment modalities for MBC include surgery, radiotherapy, chemotherapy, hormonal therapy, and targeted therapies. However, the guidelines followed for the diagnosis and treatment modalities of MBC are mostly based on FBC that is due to the lack of prospective studies related to MBC. However, there are distinct clinical and molecular features of MBC, it is a need to develop different clinical methods with more multinational approaches to help oncologist to improve care for MBC patients.
Collapse
Affiliation(s)
- Anitha Chidambaram
- Department of Biochemistry, PRIST Deemed to be University, Thanjavur, TN, India
| | - Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Malarvili Thekkumalai
- Department of Biochemistry, Center for Distance Education, Bharathidasan University, Tiruchirappalli, TN, India
| | - Ankit Singh
- Department of Community Medicine, United Institute of Medical Sciences, Prayagraj, UP, India
| | - Mayurika S. Tyagi
- Department of Immuno Hematology and Blood Transfusion, Santosh Deemed to be University, Ghaziabad, UP, India
| | | |
Collapse
|
10
|
Sangwan K, Sharma V, Goyal PK. Pharmacological Profile of Novel Anti-cancer Drugs Approved by USFDA in 2022: A Review. Curr Mol Med 2024; 24:734-750. [PMID: 37350009 DOI: 10.2174/1566524023666230622151034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND For any drug molecule, it is mandatory to pass the drug approval process of the concerned regulatory authority, before being marketed. The Food and Drug Administration (FDA), throughout the year, approves several new drugs for safety and efficacy. In addition to new drug approvals, FDA also works on improving access to generic drugs, aimed to lower the cost of drugs for patients and improve access to treatments. In the year 2022 twelve new drug therapies were approved for managing varying cancers. METHODS This manuscript is focused to describe the pharmacological aspects including therapeutic uses, mechanisms of actions, pharmacokinetics, adverse effects, doses, indication for special cases, contraindications, etc., of novel FDA-approved anticancer drug therapies in the year 2022. RESULT FDA has approved about 29% (11 out of 37) novel drug therapies for varying types of cancers such as lung cancer, breast cancer, prostate cancer, melanoma, leukemia, etc. The Center for Drug Evaluation and Research CDER has reported that 90% of these anticancer drugs (e.g. Adagrasib, Futibatinib, Mirvetuximabsoravtansinegynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Olutasidenib, Pacritinib, Tebentafusp-tebn, Teclistamab-cqyv, and Tremelimumab-actl) as orphan drugs and recommended to treat rare or uncommon cancers such as non-small cell lung cancer, metastatic intrahepatic cholangio-carcinoma, epithelial ovarian cancer, follicular lymphoma, metastatic melanoma, metastatic uveal melanoma, etc. CDER has identified six anticancer drugs (e.g. Lutetium (177Lu)vipivotidetetraxetan, Mirvetuximabsoravtansine- gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Tebentafusp-tebn, Teclistamab-cqyv) as first-in-class drugs i.e. drugs having different mechanisms of action from the already existing ones. The newly approved anticancer drugs shall provide more efficient treatment options for cancer patients. Three FDA-approved anticancer drugs in the year 2023 are also briefly described in the manuscript. CONCLUSION This manuscript, describing the pharmacological aspects of eleven anticancer novel drug therapies approved by the FDA, shall serve as a helpful document for cancer patients, concerned academicians, researchers, and clinicians, especially oncologists.
Collapse
Affiliation(s)
- Kavita Sangwan
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Vipasha Sharma
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| |
Collapse
|
11
|
Bai C, Lv Y, Xiong S, Wu S, Qi L, Ren S, Zhu M, Dong H, Shen H, Li Z, Zhu Y, Ye H, Hao H, Xiao Y, Xiang H, Luo G. X-ray crystallography study and optimization of novel benzothiophene analogs as potent selective estrogen receptor covalent antagonists (SERCAs) with improved potency and safety profiles. Bioorg Chem 2023; 141:106919. [PMID: 37871388 DOI: 10.1016/j.bioorg.2023.106919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Endocrine therapy (ET) is a well-validated strategy for estrogen receptor α positive (ERα + ) breast cancer therapy. Despite the clinical success of current standard of care (SoC), endocrine-resistance inevitably emerges and remains a significant medical challenge. Herein, we describe the structural optimization and evaluation of a new series of selective estrogen receptor covalent antagonists (SERCAs) based on benzothiophene scaffold. Among them, compounds 15b and 39d were identified as two highly potent covalent antagonists, which exhibits superior antiproliferation activity than positive controls against MCF-7 cells and shows high selectivity over ERα negative (ERα-) cells. More importantly, their mode of covalent engagement at Cys530 residue was accurately illustrated by a cocrystal structure of 15b-bound ERαY537S (PDB ID: 7WNV) and intact mass spectrometry, respectively. Further in vivo studies demonstrated potent antitumor activity in MCF-7 xenograft mouse model and an improved safety profile. Collectively, these compounds could be promising candidates for future development of the next generation SERCAs for endocrine-resistant ERα + breast cancer.
Collapse
Affiliation(s)
- Chengfeng Bai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lv
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangjie Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Qi
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengnan Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiqi Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Hongtao Shen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yinxue Zhu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Wang X, Zhang Z, Shi C, Wang Y, Zhou T, Lin A. Clinical prospects and research strategies of long non-coding RNA encoding micropeptides. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:397-405. [PMID: 37643974 PMCID: PMC10495248 DOI: 10.3724/zdxbyxb-2023-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Long non-coding RNAs (lncRNAs) which are usually thought to have no protein coding ability, are widely involved in cell proliferation, signal transduction and other biological activities. However, recent studies have suggested that short open reading frames (sORFs) of some lncRNAs can encode small functional peptides (micropeptides). These micropeptides appear to play important roles in calcium homeostasis, embryonic development and tumorigenesis, suggesting their potential as therapeutic targets and diagnostic biomarkers. Currently, bioinformatic tools as well as experimental methods such as ribosome mapping and in vitro translation are applied to predict the coding potential of lncRNAs. Furthermore, mass spectrometry, specific antibodies and epitope tags are used for validating the expression of micropeptides. Here, we review the physiological and pathological functions of recently identified micropeptides as well as research strategies for predicting the coding potential of lncRNAs to facilitate the further research of lncRNA encoded micropeptides.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Zhen Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Chengyu Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Tianhua Zhou
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
13
|
Voltan G, Mazzeo P, Regazzo D, Scaroni C, Ceccato F. Role of Estrogen and Estrogen Receptor in GH-Secreting Adenomas. Int J Mol Sci 2023; 24:9920. [PMID: 37373068 DOI: 10.3390/ijms24129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Acromegaly is a rare disease with several systemic complications that may lead to increased overall morbidity and mortality. Despite several available treatments, ranging from transsphenoidal resection of GH-producing adenomas to different medical therapies, complete hormonal control is not achieved in some cases. Some decades ago, estrogens were first used to treat acromegaly, resulting in a significant decrease in IGF1 levels. However, due to the consequent side effects of the high dose utilized, this treatment was later abandoned. The evidence that estrogens are able to blunt GH activity also derives from the evidence that women with GH deficiency taking oral estro-progestins pills need higher doses of GH replacement therapy. In recent years, the role of estrogens and Selective Estrogens Receptor Modulators (SERMs) in acromegaly treatment has been re-evaluated, especially considering poor control of the disease under first- and second-line medical treatment. In this review, we analyze the state of the art concerning the impact of estrogen and SERMs on the GH/IGF1 axis, focusing on molecular pathways and the possible implications for acromegaly treatment.
Collapse
Affiliation(s)
- Giacomo Voltan
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Pierluigi Mazzeo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Daniela Regazzo
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Carla Scaroni
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| | - Filippo Ceccato
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Endocrinology Unit, Padova University Hospital, Via Ospedale Civile 105, 35128 Padova, Italy
| |
Collapse
|
14
|
Bhatia N, Thareja S. Elacestrant: a new FDA-approved SERD for the treatment of breast cancer. Med Oncol 2023; 40:180. [PMID: 37191763 DOI: 10.1007/s12032-023-02045-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Elacestrant (RAD-1901), a selective estrogen receptor degrader, was approved by USFDA on January 27, 2023, for the treatment of breast cancer. It has been developed by Menarini Group under the brand name Orserdu®. Elacestrant showed anticancer activity both in vitro and in vivo in ER+ HER2-positive breast cancer models. The present review delebrates the development stages of Elacestrant, with its medicinal chemistry, synthesis, mechanism of action, and pharmacokinetic studies. Clinical data and safety profile has also been discussed, including data from randomized trials.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|