1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Braconi L, Sosic A, Crocetti L. Recent breakthroughs in synthetic small molecules targeting SARS-CoV-2 M pro from 2022 to 2024. Bioorg Med Chem 2025; 128:118247. [PMID: 40413978 DOI: 10.1016/j.bmc.2025.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/07/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Among the identified targets for developing anti-coronavirus therapies, SARS-CoV-2 Mpro stands out as one of the most promising due to its crucial role in viral replication and its low mutability across various coronaviruses, making it a potential broad-spectrum target. Currently, although the approved drugs targeting Mpro are peptidomimetic inhibitors with an adequate efficacy, they exhibit relatively poor pharmacokinetic properties commonly associated with peptide-based compounds. On the contrary, using non-peptidic small-molecules Mpro inhibitors can offer many advantages, including reduced off-target toxicity, improved metabolic stability and drug-like properties more appropriate for oral administration. This topic has sparked interest in the scientific community, leading to the publication of numerous studies in recent years. In this review, we summarize the most recent progress over the past two years in the identification and development of synthetic small-molecule inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Laura Braconi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Kubyshkin V, Mykhailiuk PK. Proline Analogues in Drug Design: Current Trends and Future Prospects. J Med Chem 2024; 67:20022-20055. [PMID: 39605166 DOI: 10.1021/acs.jmedchem.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proline analogues are versatile chemical building blocks that enable modular construction of small-molecule drugs and pharmaceutical peptides. Over the past 15 years, the FDA has approved over 15 drugs containing proline analogues in their structures, five in the last three years alone (daridorexant, trofinetide, nirmatrelvir, rezafungin, danicopan). This perspective offers an analysis of the most common types of proline analogues currently trending in drug design. We focus on examples of fluoroprolines, α-methylproline, bicyclic proline analogues, and aminoprolines, while also highlighting proline analogues that remain underrepresented. We supplement our analysis with physicochemical information regarding the specific molecular properties of these moieties. Additionally, we discuss several intriguing cases where nonproline residues were replaced with proline analogues as a strategy to eliminate unwanted hydrogen bond donor sites. In conclusion, we present some suggestions for the future exploration of this promising class of molecular entities in drug discovery.
Collapse
|
4
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Zhang Y, Tian Y, Yan A. A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:531-563. [PMID: 39077983 DOI: 10.1080/1062936x.2024.2375513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024]
Abstract
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively characterize 889 compounds in our dataset. We constructed 24 classification models using machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost), and Deep Neural Networks (DNN). Among these models, the DNN- and ECFP_4-based Model 1D_2 achieved the most promising results, with a remarkable Matthews correlation coefficient (MCC) value of 0.796 in the 5-fold cross-validation and 0.722 on the test set. The application domains of the models were analysed using dSTD-PRO calculations. The collected 889 compounds were clustered by K-means algorithm, and the relationships between structural fragments and inhibitory activities of the highly active compounds were analysed for the 10 obtained subsets. In addition, based on 464 3CLpro inhibitors, 27 QSAR models were constructed using three machine learning algorithms with a minimum root mean square error (RMSE) of 0.509 on the test set. The applicability domains of the models and the structure-activity relationships responded from the descriptors were also analysed.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
6
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|