1
|
Elron E, Shohat M, Basel-Salmon L, Kahana S, Matar R, Klein K, Agmon-Fishman I, Gurevitch M, Berger R, Brabbing-Goldstein D, Levy M, Maya I. 2q13 Distal Microdeletion: Considering Evidence for an Emerging Syndrome Versus Susceptibility Locus: Twenty-Five New Cases and Review of the Literature. Am J Med Genet A 2025; 197:e63946. [PMID: 39587838 DOI: 10.1002/ajmg.a.63946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
This study investigates distal 2q13 microdeletion, presenting the largest cohort to date, including prenatal cases, alongside a comprehensive literature review. A retrospective analysis was conducted on distal 2q13 microdeletions from clinical charts and laboratory reports. The cohort was divided into "clinically indicated" and "not-clinically indicated" groups based on the reason for chromosomal microarray testing. Clinical cases from medical literature were reviewed and compared with our cohort. The study included 25 cases: 17 index patients and 8 family members, with 47% males and 53% females. Of these, 2 were postnatal and 15 were prenatal. In the "clinically indicated" group, 35% had abnormalities on prenatal ultrasound, while 65% in the "not-clinically indicated" group had no major anomalies. Inheritance was 50% paternal in the "clinically indicated" group, and in the "not-clinically indicated" group, 44% paternal, 22% maternal, and 33% de novo. Symptoms varied from asymptomatic to severe developmental issues. Literature review identified 51 postnatal cases, with intellectual disability, and dysmorphism being common features. Familial cases showed 20% de novo, 20% maternal, 21.5% paternal, and 40% unknown inheritance. Distal 2q13 microdeletion is linked to cognitive impairment risk and should be reported in test results based on parental preferences, requiring special considerations for clinical classification and reporting.
Collapse
Affiliation(s)
- Eyal Elron
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mordechai Shohat
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Maccabi Genetic Institute & Bioinformatics Unit, Sheba Cancer Research Center, Ramat Gan, Israel
| | - Lina Basel-Salmon
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Kahana
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Reut Matar
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Kochav Klein
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Ifaat Agmon-Fishman
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Merav Gurevitch
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Rachel Berger
- Maccabi Genetic Institute & Bioinformatics Unit, Sheba Cancer Research Center, Ramat Gan, Israel
| | | | - Michal Levy
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Idit Maya
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Hu H, Huang G, Hou R, Huang Y, Xu H, Liu Y, Liao X, Xu J, Jiang L, Wang D. Prenatal diagnosis and genetic analysis: rare familial chromosomal duplications larger than 5 Mb without disease phenotypes. Pediatr Res 2024:10.1038/s41390-024-03688-1. [PMID: 39528747 DOI: 10.1038/s41390-024-03688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This study aimed to identify large duplications (>5 Mb) that are harmless through long-term clinical follow-ups of fetuses and phenotype analyses of carrier family members. METHODS We retrospectively analyzed fetuses undergoing prenatal diagnosis and who had >5 Mb chromosomal duplications. Routine karyotyping and single-nucleotide polymorphism array analysis were performed to identify the source and location information of the duplicated segments. Genotype-phenotype analyses were conducted based on genetic information and phenotypes during postnatal follow-up. RESULTS Eight eligible cases were included. All fetuses carried maternal or paternal duplications ranging in length from 5.3 to 12.2 Mb. The locations were as follows: 2q32.3q33.1 (Chr2:192322509-199548704), 4q22.1 (Chr4: 88347368-93602855), 4q34.2q35.2 (Chr4:176956406-189189971), 4q34.3q35.2 (Chr4:180613345-189353740), 5p14.3p14.1 (Chr5:19093749-28557664), 10q22.2q23.2 (Chr10:77448435-88786593), 12q21.31q21.32 (Chr12:81983257-87322734), and 13q14.11q14.2 (Chr13: 40825382-47633710). Karyotyping revealed that these duplications occurred within their respective chromosomal regions, except in pedigrees 6 and 7. In the eight pedigrees, the coordinates and lengths of duplicated segments in family members were matched with those in fetuses. Neither the fetuses nor other carriers were clinically symptomatic. CONCLUSION Our findings revealed that the eight pedigrees carrying duplications >5 Mb were asymptomatic, providing new data to inform genetic counseling for the observed segments. IMPACT We focused on unrelated fetuses among eight pedigrees who carried duplications of different chromosomal segments. These duplications had been stably transmitted through 2 or 3 generations of normal individuals. Importantly, phenotypic abnormalities were lacking, which was unexpected given that the maximum segment size was approximately 12.2 Mb. We found that duplications in these regions were benign in the context of prenatal genetic counseling. These results provide a foundation for addressing genotype-phenotype correlations. To our knowledge, this is the first description of normal phenotypes in individuals with duplications in these regions.
Collapse
Affiliation(s)
- Huamei Hu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ge Huang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renke Hou
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulin Huang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huanhuan Xu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Liu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xueqian Liao
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juchun Xu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Dan Wang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
3
|
Chromosome 2q12.3-q13 copy number variants in patients with neurodevelopmental disorders: genotype-phenotype correlation and new hotspots. Psychiatr Genet 2022; 32:171-177. [PMID: 35837682 DOI: 10.1097/ypg.0000000000000319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The complex structure of the chromosome 2q12.3-q13 region provides a high chance of recombination events between various low copy repeats (LCRs). Copy number variants (CNV) in this region are present in both healthy populations and individuals affected with developmental delay, autism and congenital anomalies. Variable expressivity, reduced penetrance and limited characterization of the affected genes have complicated the classification of the CNVs clinical significance. METHODS Chromosomal microarray analysis data were reviewed for 10 298 patients with neurodevelopmental disorders referred to the UPMC Medical Genetics and Genomics Laboratories. A genotype-phenotype correlation was performed among the patients harboring the 2q12.3-q13 CNVs with overlapping genomic intervals. RESULTS We identified 17 (1 in ~600) individuals with rare CNVs in the 2q12.3-q13 region, including nine patients with deletions, seven individuals with duplications and one patient who had both a deletion and a duplication. Likely pathogenic CNVs with the breakpoints between LCRs encompassing the potential dosage-sensitive genes BCL2L11, BUB1, FBLN7 and TMEM87B were the most common. CNVs were also observed between LCRs surrounding the RANBP2 and LIMS1 genes. CONCLUSION Our study provides evidence for pathogenic CNV hotspots within the chromosome 2q12.3-q13 region. We suggest CNV classification based on the affected interval and the involvement of potential dosage-sensitive genes in these patients.
Collapse
|
4
|
Sun ML, Yue FG, Zhang XY, Jiang YT, Li LL, Zhang HG, Liu RZ. Molecular cytogenetic characterization of 2q deletion and Xq duplication associated with nasal bone dysplasia in prenatal diagnosis: A case report and literature review. Taiwan J Obstet Gynecol 2022; 61:163-169. [PMID: 35181032 DOI: 10.1016/j.tjog.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We report a prenatal case of male fetus with a 2q13 deletion and an Xq27.3q28 duplication, presenting nasal bone dysplasia by ultrasound examination. And we compare the similarities of clinical features of cases consisting of similar 2q deletion and Xq duplication. CASE REPORT A 30-year-old woman was referred for prenatal diagnosis and genetic counseling at 24 weeks of gestation. Prenatal ultrasound showed nasal bone dysplasia of the fetus. Amniocentesis revealed the karyotype of the fetus as 46, XY and the results of chromosomal microarray analysis was arr[GRCh37] 2q13(110467258-111370025)x1, arr[GRCh37]Xq27.3q28(144050780-149748782)x2. The parents both have normal karyotypes. The couple chose to continue the pregnancy and finally delivered a male infant at 39 weeks of gestation. His weight was 2850 g and length was 50 cm. Physical examination of the newborn revealed no apparent anomalies. Until the boy was one year old, there was no abnormalities in his growth and development. The long-term follow-up till adulthood for the healthy infant is necessary. CONCLUSION The development of CMA plays a critical role in prenatal diagnosis and genetic counseling for unidentified chromosomal anomalies. More clinical information and further studies of patients with these anomalies will identify the pathogenicity of the involving genes and improve the understanding of the phenotype-genotype correlation.
Collapse
Affiliation(s)
- Mei-Ling Sun
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Fa-Gui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Xin-Yue Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Yu-Ting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Lei-Lei Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Hong-Guo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China
| | - Rui-Zhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, PR China; Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
5
|
Bellil H, Molina-Gomes D, Quibel T, Roy S, Dard R, Vialard F, Herve B. Prenatal diagnosis of 2q13 duplications: The crucial role of the family survey in genetic counseling on novel copy number variations. Eur J Med Genet 2020; 63:103956. [PMID: 32439619 DOI: 10.1016/j.ejmg.2020.103956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
In recent years, the introduction of novel genome analysis technologies (such as array comparative genomic hybridization) has enabled the prenatal diagnosis of various recurrent copy number variations (CNVs). Some of these CNVs have been linked to a greater susceptibility of developmental and neuropsychiatric disorders; for example, recurrent duplication at the 2q13 locus is associated with developmental delay, dysmorphism and intellectual disability. However, this CNV has low penetrance and variable clinical expressivity. It also can be observed in healthy controls and can be transmitted by unaffected parents, making genetic counseling especially challenging. Here, we report on the inheritance of a 2q13 duplication in an asymptomatic family; the case highlights the role of the family survey in genetic counseling with regard to novel CNVs diagnosed before birth.
Collapse
Affiliation(s)
- Hela Bellil
- Genetics Department, CHI de Poissy St Germain en Laye, F-78300, Poissy, France; UFR Simone Veil-Santé, RHuMA, UVSQ, F-78180, Montigny le Bretonneux, France
| | - Denise Molina-Gomes
- Genetics Department, CHI de Poissy St Germain en Laye, F-78300, Poissy, France; UFR Simone Veil-Santé, RHuMA, UVSQ, F-78180, Montigny le Bretonneux, France
| | - Thibaud Quibel
- Service de Gynécologie Obstétrique, CHI de Poissy St Germain an Laye, F-78300, Poissy, France
| | - Sophie Roy
- Service de Gynécologie Obstétrique, CHI de Poissy St Germain an Laye, F-78300, Poissy, France
| | - Rodolphe Dard
- Genetics Department, CHI de Poissy St Germain en Laye, F-78300, Poissy, France; UFR Simone Veil-Santé, RHuMA, UVSQ, F-78180, Montigny le Bretonneux, France
| | - François Vialard
- Genetics Department, CHI de Poissy St Germain en Laye, F-78300, Poissy, France; UFR Simone Veil-Santé, RHuMA, UVSQ, F-78180, Montigny le Bretonneux, France; Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire D'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Bérénice Herve
- Genetics Department, CHI de Poissy St Germain en Laye, F-78300, Poissy, France; UFR Simone Veil-Santé, RHuMA, UVSQ, F-78180, Montigny le Bretonneux, France.
| |
Collapse
|
6
|
Wolfe K, McQuillin A, Alesi V, Boudry Labis E, Cutajar P, Dallapiccola B, Dentici ML, Dieux‐Coeslier A, Duban‐Bedu B, Duelund Hjortshøj T, Goel H, Loddo S, Morrogh D, Mosca‐Boidron A, Novelli A, Olivier‐Faivre L, Parker J, Parker MJ, Patch C, Pelling AL, Smol T, Tümer Z, Vanakker O, van Haeringen A, Vanlerberghe C, Strydom A, Skuse D, Bass N. Delineating the psychiatric and behavioral phenotype of recurrent 2q13 deletions and duplications. Am J Med Genet B Neuropsychiatr Genet 2018; 177:397-405. [PMID: 29603867 PMCID: PMC6001478 DOI: 10.1002/ajmg.b.32627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.
Collapse
Affiliation(s)
- Kate Wolfe
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Viola Alesi
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | | | - Peter Cutajar
- Nottinghamshire Healthcare NHS Foundation TrustNottinghamUnited Kingdom
| | - Bruno Dallapiccola
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Maria Lisa Dentici
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Anne Dieux‐Coeslier
- Service de génétique clinique, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | | | - Tina Duelund Hjortshøj
- Kennedy Center, Department of Clinical GeneticsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Himanshu Goel
- Hunter GeneticsWaratahNew South WalesAustralia
- University of NewcastleCallaghanNew South WalesAustralia
| | - Sara Loddo
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Deborah Morrogh
- North East Thames Regional Genetics Service LaboratoryLondonUnited Kingdom
| | | | - Antonio Novelli
- Medical Genetics Unit, Medical Genetics LaboratoryBambino Gesù Pediatric Hospital, IRCCSRomeItaly
| | - Laurence Olivier‐Faivre
- Centre de référence Anomalies du développement et Syndromes malformatifs, FHU TRANSLADCHU DijonFrance
| | - Jennifer Parker
- North East Thames Regional Genetics Service LaboratoryLondonUnited Kingdom
| | - Michael J. Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western BankSheffieldUnited Kingdom
| | - Christine Patch
- King's College London, Florence Nightingale Faculty of Nursing and MidwiferyLondonUnited Kingdom
- Genomics England, Dawson Hall, Charterhouse SquareLondonUnited Kingdom
| | - Anna L. Pelling
- Information Officer, Unique – The Rare Chromosome Disorder Support Group (www.rarechromo.org), The Stables, Station Road WestOxted, SurreyUnited Kingdom
| | - Thomas Smol
- Institut de génétique médicale, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical GeneticsCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Olivier Vanakker
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Arie van Haeringen
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Clémence Vanlerberghe
- Service de génétique clinique, CHU LilleLilleFrance
- EA7364, RADEME, Université de LilleLilleFrance
| | - Andre Strydom
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, Kings College LondonLondonUnited Kingdom
| | - David Skuse
- Behavioural and Brain Sciences UnitInstitute of Child Health, University College LondonLondonUnited Kingdom
| | - Nick Bass
- Molecular Psychiatry Laboratory, Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
An atypical autistic phenotype associated with a 2q13 microdeletion: a case report. J Med Case Rep 2018; 12:79. [PMID: 29549886 PMCID: PMC5857311 DOI: 10.1186/s13256-018-1620-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background Autism spectrum disorders are serious neurodevelopmental disorders that affect approximately 1% of the population. These disorders are substantially influenced by genetics. Several recent linkage analyses have examined copy number variations associated with autism risk. Microdeletion of the 2q13 region is considered a pathogenic copy number variation. This microdeletion is involved in developmental delays, congenital heart defects, dysmorphism, and various psychiatric disorders, including autism spectrum disorders. There are only 34 reported cases with this chromosomal deletion, and five cases of autism spectrum disorders have been identified among them. The autistic phenotype associated with this microdeletion has never been described. Case presentation We describe the case of a 44-month-old Caucasian girl with the 2q13 microdeletion and autism spectrum disorders with global development delay but no associated organ anomalies. We examined the autistic phenotype using different workups and observed an atypical phenotype defined by relatively preserved relational competency and imitation abilities. Conclusions The main contribution of this case report is the precise description of the autistic phenotype in the case of this deletion. We observed some atypical clinical features that could be markers of this genetic anomaly. We have discussed the pathophysiology of autism associated with this microdeletion and its incomplete penetrance and variable expressivity.
Collapse
|
8
|
Schwartz M, Sternberg D, Whalen S, Afenjar A, Isapof A, Chabrol B, Portnoï MF, Heide S, Keren B, Chantot-Bastaraud S, Siffroi JP. How chromosomal deletions can unmask recessive mutations? Deletions in 10q11.2 associated with CHAT or SLC18A3 mutations lead to congenital myasthenic syndrome. Am J Med Genet A 2017; 176:151-155. [PMID: 29130637 DOI: 10.1002/ajmg.a.38515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022]
Abstract
A congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3.
Collapse
Affiliation(s)
- Mathias Schwartz
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Damien Sternberg
- AP-HP, Hôpital Pitié-Salpêtrière, Biochimie et Génétique, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, ICM, Paris, France
| | - Sandra Whalen
- AP-HP, Hôpital Armand Trousseau, UF de Génétique Clinique, UPMC, Paris, France
| | - Alexandra Afenjar
- AP-HP, Hôpital Armand Trousseau, UF de Génétique Clinique, UPMC, Paris, France
| | - Arnaud Isapof
- AP-HP, Hôpital Armand Trousseau, Unité de Neuropédiatrie et Pathologie du Développement, UPMC, Paris, France
| | - Brigitte Chabrol
- CHU de Marseille, Hôpital de la Timone, Service de Neurologie Pédiatrique, Inserm U1127, CNRS UMR 7225, UPMC, Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière, Paris, France
| | - Marie-France Portnoï
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Solveig Heide
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| | - Boris Keren
- AP-HP, Département de Génétique, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Jean-Pierre Siffroi
- AP-HP, Département de Génétique Médicale, Hôpital Armand Trousseau, UPMC, Paris, France
| |
Collapse
|
9
|
Yu HC, Coughlin CR, Geiger EA, Salvador BJ, Elias ER, Cavanaugh JL, Chatfield KC, Miyamoto SD, Shaikh TH. Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy. Cold Spring Harb Mol Case Stud 2016; 2:a000844. [PMID: 27148590 PMCID: PMC4853521 DOI: 10.1101/mcs.a000844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare cause of heart muscle disease with the highest mortality rate among cardiomyopathy types. The etiology of RCM is poorly understood, although genetic causes have been implicated, and syndromic associations have been described. Here, we describe a patient with an atrial septal defect and restrictive cardiomyopathy along with craniofacial anomalies and intellectual disabilities. Initial screening using chromosomal microarray analysis (CMA) identified a maternally inherited 2q13 microdeletion. The patient had many of the features reported in previous cases with the recurrent 2q13 microdeletion syndrome. However, the inheritance of the microdeletion from an unaffected mother combined with the low incidence (10%) and milder forms of cardiac defects in previously reported cases made the clinical significance of the CMA results unclear. Whole-exome sequencing (WES) with trio-based analysis was performed and identified a paternally inherited TMEM87B mutation (c.1366A>G, p.Asn456Asp) in the patient. TMEM87B, a highly conserved, transmembrane protein of currently unknown function, lies within the critical region of the recurrent 2q13 microdeletion syndrome. Furthermore, a recent study had demonstrated that depletion of TMEM87B in zebrafish embryos affected cardiac development and led to cardiac hypoplasia. Thus, by combining CMA and WES, we potentially uncover an autosomal-recessive disorder characterized by a severe cardiac phenotype caused by mutations in TMEM87B. This study expands the spectrum of phenotypes associated with the recurrent 2q13 microdeletion syndrome and also further suggests the role of TMEM87B in its etiology, especially the cardiac pathology.
Collapse
Affiliation(s)
- Hung-Chun Yu
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Blake J Salvador
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ellen R Elias
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jean L Cavanaugh
- Department of Pediatrics, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shelley D Miyamoto
- Department of Pediatrics, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;; Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
10
|
Ma Y, Chen C, Wang Y, Wu L, He F, Chen C, Zhang C, Deng X, Yang L, Chen Y, Wu L, Yin F, Peng J. Analysis copy number variation of Chinese children in early-onset epileptic encephalopathies with unknown cause. Clin Genet 2016; 90:428-436. [PMID: 26925868 DOI: 10.1111/cge.12768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Y. Ma
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Chen
- State Key Laboratory of Medical Genetics; Central South University; Changsha China
| | - Y. Wang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Wu
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - F. He
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Chen
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - C. Zhang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - X. Deng
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Yang
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - Y. Chen
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| | - L. Wu
- Hunan Intellectual and Developmental Disabilities Research Center; Changsha China
| | - F. Yin
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
- Hunan Intellectual and Developmental Disabilities Research Center; Changsha China
| | - J. Peng
- Department of Pediatrics; Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
11
|
Riley KN, Catalano LM, Bernat JA, Adams SD, Martin DM, Lalani SR, Patel A, Burnside RD, Innis JW, Rudd MK. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. Am J Med Genet A 2015; 167A:2664-73. [PMID: 26227573 DOI: 10.1002/ajmg.a.37269] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 07/17/2015] [Indexed: 12/21/2022]
Abstract
Copy number variation (CNV) in the long arm of chromosome 2 has been implicated in developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), congenital anomalies, and psychiatric disorders. Here we describe 14 new subjects with recurrent deletions and duplications of chromosome 2q11.2, 2q13, and 2q11.2-2q13. Though diverse phenotypes are associated with these CNVs, some common features have emerged. Subjects with 2q11.2 deletions often exhibit DD, speech delay, and attention deficit hyperactivity disorder (ADHD), whereas those with 2q11.2 duplications have DD, gastroesophageal reflux, and short stature. Congenital heart defects (CHDs), hypotonia, dysmorphic features, and abnormal head size are common in those with 2q13 deletions. In the 2q13 duplication cohort, we report dysmorphic features, DD, and abnormal head size. Two individuals with large duplications spanning 2q11.2-2q13 have dysmorphic features, hypotonia, and DD. This compilation of clinical features associated with 2q CNVs provides information that will be useful for healthcare providers and for families of affected children. However, the reduced penetrance and variable expressivity associated with these recurrent CNVs makes genetic counseling and prediction of outcomes challenging. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kacie N Riley
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.,Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, North Carolina
| | - Lisa M Catalano
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - John A Bernat
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Stacie D Adams
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Donna M Martin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rachel D Burnside
- Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, North Carolina
| | - Jeffrey W Innis
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Hladilkova E, Barøy T, Fannemel M, Vallova V, Misceo D, Bryn V, Slamova I, Prasilova S, Kuglik P, Frengen E. A recurrent deletion on chromosome 2q13 is associated with developmental delay and mild facial dysmorphisms. Mol Cytogenet 2015; 8:57. [PMID: 26236398 PMCID: PMC4521466 DOI: 10.1186/s13039-015-0157-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/05/2015] [Indexed: 11/24/2022] Open
Abstract
We report two unrelated patients with overlapping chromosome 2q13 deletions (patient 1 in chr2:111415137-113194067 bp and patient 2 in chr2:110980342-113007823 bp, hg 19). Patient 1 presents with developmental delay, microcephaly and mild dysmorphic facial features, and patient 2 with autism spectrum disorder, borderline cognitive abilities, deficits in attention and executive functions and mild dysmorphic facial features. The mother and maternal grandmother of patient 1 were healthy carriers of the deletion. Previously, 2q13 deletions were reported in 27 patients, and the interpretation of its clinical significance varied. Our findings support that the 2q13 deletion is associated with a developmental delay syndrome manifesting with variable expressivity and reduced penetrance which poses a challenge for genetic counselling as well as the clinical recognition of 2q13 deletion patients.
Collapse
Affiliation(s)
- Eva Hladilkova
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway.,Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic
| | - Tuva Barøy
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Madeleine Fannemel
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Vladimira Vallova
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic.,Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic
| | - Doriana Misceo
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| | - Vesna Bryn
- Department of Habilitation, Sykehuset Innlandet HF, Lillehammer, Norway
| | - Iva Slamova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic.,Sanatorium Helios ltd., Laboratory of Medical Genetics, Brno, Czech Republic
| | - Sarka Prasilova
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic
| | - Petr Kuglik
- Department of Medical Genetics, University Hospital, Children Medical Hospital, Brno, Czech Republic.,Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno - Bohunice, Czech Republic
| | - Eirik Frengen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O.Box 1036, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
13
|
Tassano E, Gamucci A, Celle ME, Ronchetto P, Cuoco C, Gimelli G. Clinical and Molecular Cytogenetic Characterization of a de novo Interstitial 1p31.1p31.3 Deletion in a Boy with Moderate Intellectual Disability and Severe Language Impairment. Cytogenet Genome Res 2015; 146:39-43. [DOI: 10.1159/000431391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interstitial 1p deletions are rare events. Very few cases of 1p31.1p31.3 deletions characterized by variable phenotypes have been reported. No clear genotype-phenotype correlation has been determined yet. We present a child with a de novo interstitial 1p31.1p31.3 deletion, identified by array CGH, associated with intellectual disability and severe language impairment. The deleted region contains 20 OMIM genes, but we focused on GADD45A (MIM 126335; growth arrest- and DNA damage-inducible gene), LRRC7 (MIM 614453; leucine-rich repeat-containing protein 7), and NEGR1 (MIM 613173; neuronal growth regulator 1). We discuss whether these genes play a role in determining the phenotype of our patient in order to investigate the possibility of a genotype-phenotype correlation.
Collapse
|
14
|
Russell B, Johnston JJ, Biesecker LG, Kramer N, Pickart A, Rhead W, Tan WH, Brownstein CA, Kate Clarkson L, Dobson A, Rosenberg AZ, Vergano SAS, Helm BM, Harrison RE, Graham JM. Clinical management of patients with ASXL1 mutations and Bohring-Opitz syndrome, emphasizing the need for Wilms tumor surveillance. Am J Med Genet A 2015; 167A:2122-31. [PMID: 25921057 DOI: 10.1002/ajmg.a.37131] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/12/2015] [Indexed: 12/28/2022]
Abstract
Bohring-Opitz syndrome is a rare genetic condition characterized by distinctive facial features, variable microcephaly, hypertrichosis, nevus flammeus, severe myopia, unusual posture (flexion at the elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints), severe intellectual disability, and feeding issues. Nine patients with Bohring-Opitz syndrome have been identified as having a mutation in ASXL1. We report on eight previously unpublished patients with Bohring-Opitz syndrome caused by an apparent or confirmed de novo mutation in ASXL1. Of note, two patients developed bilateral Wilms tumors. Somatic mutations in ASXL1 are associated with myeloid malignancies, and these reports emphasize the need for Wilms tumor screening in patients with ASXL1 mutations. We discuss clinical management with a focus on their feeding issues, cyclic vomiting, respiratory infections, insomnia, and tumor predisposition. Many patients are noted to have distinctive personalities (interactive, happy, and curious) and rapid hair growth; features not previously reported.
Collapse
Affiliation(s)
- Bianca Russell
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jennifer J Johnston
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland
| | - Leslie G Biesecker
- National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland
| | - Nancy Kramer
- Medical Genetics Institute, Cedars Sinai Medical Center, Division of Medical Genetics, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Angela Pickart
- Section of Medical Genetics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - William Rhead
- Section of Medical Genetics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Amy Dobson
- Greenwood Genetic Center, Columbia, South Carolina
| | - Avi Z Rosenberg
- Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | - Benjamin M Helm
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | - Rachel E Harrison
- Clinical Genetics Service, Nottingham University Hospitals Trust, Nottingham, United Kingdom
| | - John M Graham
- Medical Genetics Institute, Cedars Sinai Medical Center, Division of Medical Genetics, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
15
|
Moreira DP, Griesi-Oliveira K, Bossolani-Martins AL, Lourenço NCV, Takahashi VNO, da Rocha KM, Moreira ES, Vadasz E, Meira JGC, Bertola D, Halloran EO, Magalhães TR, Fett-Conte AC, Passos-Bueno MR. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy. PLoS One 2014; 9:e107705. [PMID: 25255310 PMCID: PMC4177849 DOI: 10.1371/journal.pone.0107705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.
Collapse
MESH Headings
- Adolescent
- Base Sequence
- Brazil
- Child
- Child Development Disorders, Pervasive/complications
- Child Development Disorders, Pervasive/genetics
- Chromosomes, Human/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 22/genetics
- DNA Copy Number Variations
- Epilepsy/complications
- Female
- Genomics
- Humans
- Male
- Pedigree
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Danielle P. Moreira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Ana L. Bossolani-Martins
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brasil
| | - Naila C. V. Lourenço
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Vanessa N. O. Takahashi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Kátia M. da Rocha
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Eloisa S. Moreira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Estevão Vadasz
- Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joanna Goes Castro Meira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Debora Bertola
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
- Instituto da Criança da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Eoghan O’ Halloran
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Tiago R. Magalhães
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Agnes C. Fett-Conte
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
16
|
Liao C, Li R, Fu F, Xie G, Zhang Y, Pan M, Li J, Li D. Prenatal diagnosis of congenital heart defect by genome-wide high-resolution SNP array. Prenat Diagn 2014; 34:858-63. [PMID: 24718970 DOI: 10.1002/pd.4383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/05/2014] [Accepted: 04/06/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study aimed to detect genomic imbalances in fetuses with congenital heart defect (CHD) by high-resolution single-nucleotide polymorphism (SNP) array. METHODS A total of 99 fetuses with CHDs with or without other ultrasound anomalies (including structural anomalies and soft markers) but normal karyotypes were investigated using Affymetrix CytoScan HD array. RESULTS Clinical significant copy number variations (CNVs) were detected in 19 fetuses (19.2%). The proportion for variants of unknown significance was 3% after parental analysis. Five known microdeletion/microduplication syndromes were identified. The detection rate in CHD plus structural anomaly (27.8%) or soft marker (25%) group was higher than but not statistically different from isolated CHD group (15.9%). There was no significant difference between the detection rates in simple and complex CHD groups (20.7% vs. 16.7%). The detection rate in fetuses with CHD and neurologic defect was significantly higher than those with other types of structural anomaly (75% vs. 14.3%, P < 0.05). CONCLUSIONS Our results demonstrated the value of high-resolution SNP arrays in prenatal diagnosis of CHD; it should become an integral aspect in clinically molecular diagnosis and genetic counseling. The complexity of the cardiac defect was not related to the frequency of clinical significant CNV, but the presence of neurologic defect was related.
Collapse
Affiliation(s)
- Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Prenatally detected interstitial deletion 13q12.3-q22 in a fetus with a cystic hygroma. Gene 2013; 531:90-1. [PMID: 23999188 DOI: 10.1016/j.gene.2013.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/13/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
|
18
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
19
|
Prenatal diagnosis of an interstitial deletion of 10q (10q11.21 → q21.1): array comparative genomic hybridization characterization and literature review. Taiwan J Obstet Gynecol 2013; 51:672-6. [PMID: 23276582 DOI: 10.1016/j.tjog.2012.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 11/23/2022] Open
|
20
|
Vetro A, Bouman K, Hastings R, McMullan DJ, Vermeesch JR, Miller K, Sikkema-Raddatz B, Ledbetter DH, Zuffardi O, van Ravenswaaij-Arts CMA. The introduction of arrays in prenatal diagnosis: a special challenge. Hum Mutat 2012; 33:923-9. [PMID: 22508381 DOI: 10.1002/humu.22050] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 01/14/2023]
Abstract
Genome-wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1-3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta-analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome-wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome-wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus.
Collapse
|
21
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
22
|
McGrew SG, Peters BR, Crittendon JA, Veenstra-VanderWeele J. Diagnostic Yield of Chromosomal Microarray Analysis in an Autism Primary Care Practice: Which Guidelines to Implement? J Autism Dev Disord 2011; 42:1582-91. [DOI: 10.1007/s10803-011-1398-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Stankiewicz P, Kulkarni S, Dharmadhikari AV, Sampath S, Bhatt SS, Shaikh TH, Xia Z, Pursley AN, Cooper ML, Shinawi M, Paciorkowski AR, Grange DK, Noetzel MJ, Saunders S, Simons P, Summar M, Lee B, Scaglia F, Fellmann F, Martinet D, Beckmann JS, Asamoah A, Platky K, Sparks S, Martin AS, Madan-Khetarpal S, Hoover J, Medne L, Bonnemann CG, Moeschler JB, Vallee SE, Parikh S, Irwin P, Dalzell VP, Smith WE, Banks VC, Flannery DB, Lovell CM, Bellus GA, Golden-Grant K, Gorski JL, Kussmann JL, McGregor TL, Hamid R, Pfotenhauer J, Ballif BC, Shaw CA, Kang SHL, Bacino CA, Patel A, Rosenfeld JA, Cheung SW, Shaffer LG. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats. Hum Mutat 2011; 33:165-79. [PMID: 21948486 DOI: 10.1002/humu.21614] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/06/2011] [Indexed: 11/11/2022]
Abstract
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS, Gai X, Shaikh TH. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. CONGENIT HEART DIS 2011; 6:592-602. [PMID: 22010865 DOI: 10.1111/j.1747-0803.2011.00582.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Multiple genetic syndromes are caused by recurrent chromosomal microdeletions or microduplications. The increasing use of high-resolution microarrays in clinical analysis has allowed the identification of previously undetectable submicroscopic copy number variants (CNVs) associated with genetic disorders. We hypothesized that patients with congenital heart disease and additional dysmorphic features or other anomalies would be likely to harbor previously undetected CNVs, which might identify new disease loci or disease-related genes for various cardiac defects. DESIGN Copy number analysis with single nucleotide polymorphism-based, oligonucleotide microarrays was performed on 58 patients with congenital heart disease and other dysmorphic features and/or other anomalies. The observed CNVs were validated using independent techniques and validated CNVs were further analyzed using computational algorithms and comparison with available control CNV datasets in order to assess their pathogenic potential. RESULTS Potentially pathogenic CNVs were detected in twelve of 58 patients (20.7%), ranging in size from 240 Kb to 9.6 Mb. These CNVs contained between 1 and 55 genes, including NRP1, NTRK3, MESP1, ADAM19, and HAND1, all of which are known to participate in cardiac development. CONCLUSIONS Genome-wide analysis in patients with congenital heart disease and additional phenotypes has identified potentially pathogenic CNVs affecting genes involved in cardiac development. The identified variant loci and the genes within them warrant further evaluation in similarly syndromic and nonsyndromic cardiac cohorts.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Divisions of Cardiology Human Genetics Oncology Center for Applied Genomics Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics. Eur J Hum Genet 2011; 20:161-5. [PMID: 21934709 DOI: 10.1038/ejhg.2011.174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P < 0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient.
Collapse
|
26
|
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 2011; 43:729-31. [DOI: 10.1038/ng.868] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/31/2011] [Indexed: 12/18/2022]
|
27
|
Petti M, Samanich J, Pan Q, Huang CK, Reinmund J, Farooqi S, Morrow B, Babcock M. Molecular characterization of an interstitial deletion of 1p31.3 in a patient with obesity and psychiatric illness and a review of the literature. Am J Med Genet A 2011; 155A:825-32. [PMID: 21416589 DOI: 10.1002/ajmg.a.33869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/22/2010] [Indexed: 01/14/2023]
Abstract
We report on the clinical and array-based characterization of an interstitial 1p31.3 deletion in a 15-year-old male patient with obesity, behavioral problems including multiple psychiatric diagnoses, mild intellectual impairment, facial dysmorphism, and a strong family history of psychiatric illness. The deletion breakpoints were determined by molecular karyotyping, revealing a 3.2 Mb excision. Patients previously reported with hemizygous deletions including this cytogenetic band had intellectual impairment and some facial features that overlap with our patient's phenotype. However, their deletions were larger, encompassing several cytogenetic bands, making this case the smallest deletion to date that we are aware of sharing these phenotypic characteristics. There are 17 genes that map to the interval. Two genes within the interval, LEPR and PDE4B, are interesting candidates for these phenotypes because of their potential role in obesity and psychiatric illness, respectively. Identification of the smaller deletion underscores the importance of combining clinical investigation and array comparative genomic hybridization analysis for appropriate diagnosis, genetic counseling and potentially for prenatal diagnosis.
Collapse
Affiliation(s)
- Marilena Petti
- Division of Translational Genetics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu HE, Hawash K, Picker J, Stoler J, Urion D, Wu BL, Shen Y. A recurrent 1.71 Mb genomic imbalance at 2q13 increases the risk of developmental delay and dysmorphism. Clin Genet 2011; 81:257-64. [DOI: 10.1111/j.1399-0004.2011.01637.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Bohring-Opitz (Oberklaid-Danks) syndrome: clinical study, review of the literature, and discussion of possible pathogenesis. Eur J Hum Genet 2011; 19:513-9. [PMID: 21368916 DOI: 10.1038/ejhg.2010.234] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bohring-Opitz syndrome (BOS) is a rare congenital disorder of unknown etiology diagnosed on the basis of distinctive clinical features. We suggest diagnostic criteria for this condition, describe ten previously unreported patients, and update the natural history of four previously reported patients. This is the largest series reported to date, providing a unique opportunity to document the key clinical features and course through childhood. Investigations undertaken to try and elucidate the underlying pathogenesis of BOS using array comparative genomic hybridization and tandem mass spectrometry of cholesterol precursors did not show any pathogenic changes responsible.
Collapse
|
30
|
Siggberg L, Ala-Mello S, Jaakkola E, Kuusinen E, Schuit R, Kohlhase J, Böhm D, Ignatius J, Knuutila S. Array CGH in molecular diagnosis of mental retardation - A study of 150 Finnish patients. Am J Med Genet A 2010; 152A:1398-410. [PMID: 20503314 DOI: 10.1002/ajmg.a.33402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report on the results of an array comparative genomic hybridization (array CGH) study of 150 karyotypically normal Finnish patients with idiopathic mental retardation and/or dysmorphic features and/or malformations. Using high-resolution microarray analysis, we sought to identify clinically relevant microdeletions and microduplications in these patients. The results were confirmed using other methods and compared with findings reported in recent publications and internet databases. Small aberrations of potential clinical significance were found in 28 (18.6%) of the 150 patients. Eight of the identified aberrations are known to cause syndromes, 4 affected the X chromosome in males, 4 were familial, and 13 have yet to be associated with a phenotype. This study demonstrates the benefits of array CGH in clinical diagnostics of developmental disorders. Further, our findings give evidence of new syndromes.
Collapse
Affiliation(s)
- Linda Siggberg
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rudd MK, Keene J, Bunke B, Kaminsky EB, Adam MP, Mulle JG, Ledbetter DH, Martin CL. Segmental duplications mediate novel, clinically relevant chromosome rearrangements. Hum Mol Genet 2009; 18:2957-62. [PMID: 19443486 PMCID: PMC2714723 DOI: 10.1093/hmg/ddp233] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/03/2009] [Accepted: 05/11/2009] [Indexed: 11/12/2022] Open
Abstract
Copy number studies have led to an explosion in the discovery of new segmental duplication-mediated deletions and duplications. We have analyzed copy number changes in 2419 patients referred for clinical array comparative genomic hybridization studies. Twenty-three percent of the abnormal copy number changes we found are immediately flanked by segmental duplications > or =10 kb in size and > or =95% identical in direct orientation, consistent with deletions and duplications generated by non-allelic homologous recombination. Here, we describe copy number changes in five previously unreported loci with genomic organization characteristic of NAHR-mediated gains and losses; namely, 2q11.2, 7q36.1, 17q23, 2q13 and 7q11.21. Deletions and duplications of 2q11.2, deletions of 7q36.1 and deletions of 17q23 are interpreted as pathogenic based on their genomic size, gene content, de novo inheritance and absence from control populations. The clinical significance of 2q13 deletions and duplications is still emerging, as these imbalances are also found in phenotypically normal family members and control individuals. Deletion of 7q11.21 is a benign copy number change well represented in control populations and copy number variation databases. Here, we discuss the genetic factors that can modify the phenotypic expression of such gains and losses, which likely play a role in these and other recurrent genomic disorders.
Collapse
Affiliation(s)
- M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kirchhoff M, Bisgaard AM, Stoeva R, Dimitrov B, Gillessen-Kaesbach G, Fryns JP, Rose H, Grozdanova L, Ivanov I, Keymolen K, Fagerberg C, Tranebjaerg L, Skovby F, Stefanova M. Phenotype and 244k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter. Am J Med Genet A 2009; 149A:894-905. [PMID: 19363806 DOI: 10.1002/ajmg.a.32814] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact breakpoints in 14 patients with partial deletions of this region. Subsequently, we linked the genotype to the patient's phenotype. Using this approach, we were able to refine the smallest deletion region linked to short stature (13q31.3: 89.5-91.6 Mb), microcephaly (13q33.3-q34), cortical development malformations (13q33.1-qter), Dandy-Walker malformation (DWM) (13q32.2-q33.1), corpus callosum agenesis (CCA) (13q32.3-q33.1), meningocele/encephalocele (13q31.3-qter), DWM, CCA, and neural tube defects (NTDs) taken together (13q32.3-q33.1), ano-/microphthalmia (13q31.3-13qter), cleft lip/palate (13q31.3-13q33.1), lung hypoplasia (13q31.3-13q33.1), and thumb a-/hypoplasia (13q31.3-q33.1 and 13q33.3-q34). Based on observations of this study and previous reports we suggest a new entity, "distal limb anomalies association," linked to 13q31.3q33.1 segment. Most of the individuals with deletion of any part of 13q21qter showed surprisingly similar facial dysmorphic features, and thus, a "13q deletion facial appearance" was suggested. Prominent nasal columella was mapped between 13q31.3 and 13q33.3, and micrognathia between 13q21.33 and 13q31.1. The degree of mental delay did not display a particular phenotype-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years.
Collapse
Affiliation(s)
- Maria Kirchhoff
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
34
|
Sharp AJ. Emerging themes and new challenges in defining the role of structural variation in human disease. Hum Mutat 2009; 30:135-44. [DOI: 10.1002/humu.20843] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Goumy C, Gouas L, Tchirkov A, Roucaute T, Giollant M, Veronèse L, Francannet C, Vago P. Familial deletion 11q14.3-q22.1 without apparent phenotypic consequences: A haplosufficient 8.5 Mb region. Am J Med Genet A 2008; 146A:2668-72. [DOI: 10.1002/ajmg.a.32511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Mencarelli MA, Katzaki E, Papa FT, Sampieri K, Caselli R, Uliana V, Pollazzon M, Canitano R, Mostardini R, Grosso S, Longo I, Ariani F, Meloni I, Hayek J, Balestri P, Mari F, Renieri A. Private inherited microdeletion/microduplications: Implications in clinical practice. Eur J Med Genet 2008; 51:409-16. [DOI: 10.1016/j.ejmg.2008.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/17/2008] [Indexed: 11/29/2022]
|
37
|
Rodriguez-Revenga L, Mila M, Rosenberg C, Lamb A, Lee C. Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet Med 2007; 9:600-6. [PMID: 17873648 DOI: 10.1097/gim.0b013e318149e1e3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the past few years, the application of whole-genome scanning array technologies has catalyzed the appreciation of a new form of submicroscopic genomic imbalances, referred to as copy number variants. Copy number variants contribute substantially to genetic diversity and result from gains and losses of genomic regions that are 1000 base pairs in size or larger, sometimes encompassing millions of bases of contiguous DNA sequences. As genome-wide scanning techniques become more widely used in diagnostic laboratories, a major challenge is how to accurately interpret which submicroscopic genomic imbalances are pathogenic in nature and which are benign. Herein, we review the literature from the past 3 years on this new source of genomic variability and comment on factors that should be considered when trying to differentiate between a pathogenic and a benign copy number variant.
Collapse
Affiliation(s)
- Laia Rodriguez-Revenga
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115 , USA
| | | | | | | | | |
Collapse
|