1
|
Rust MB, Marcello E. Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human genetic studies. Eur J Cell Biol 2022; 101:151207. [PMID: 35150966 DOI: 10.1016/j.ejcb.2022.151207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs' physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
2
|
Array comparative genomic hybridisation results of non-syndromic children with the conotruncal heart anomaly. Cardiol Young 2022; 32:301-306. [PMID: 35045913 DOI: 10.1017/s104795112100473x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The study aimed to show the chromosomal copy number variations responsible for the aetiology in patients with isolated conotruncal heart anomaly by array comparative genomic hybridisation and identify candidate genes causing conotruncal heart disease. A total of 37 patients, 17 male, and 20 female, with isolated conotruncal heart anomalies, were included in the study. No findings indicated any syndrome in terms of dysmorphology in the patients. RESULTS Copy number variations were detected in the array comparative genomic hybridisation analysis of five (13.5%) of 37 patients included in the study. Three candidate genes (PRDM16, HIST1H1E, GJA5) found in these deletion and duplication regions may be associated with the conotruncal cardiac anomaly. CONCLUSION CHDs can be encountered as the first and sometimes the single finding of many genetic disorders in children. It is thought that genetic tests, especially array comparative genomic hybridisation, may be beneficial for children with CHD since the diagnosis of genetic diseases in these patients as early as possible will help to prevent or reduce complications that may develop in the future. Also, it would be possible to detect candidate genes responsible for conotruncal cardiac anomalies with array comparative genomic hybridisation.
Collapse
|
3
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
4
|
Vrachnis N, Papoulidis I, Vrachnis D, Siomou E, Antonakopoulos N, Oikonomou S, Zygouris D, Loukas N, Iliodromiti Z, Pavlidou E, Thomaidis L, Manolakos E. Partial deletion of chromosome 6p causing developmental delay and mild dysmorphisms in a child: molecular and developmental investigation and literature search. Mol Cytogenet 2021; 14:39. [PMID: 34303382 PMCID: PMC8310580 DOI: 10.1186/s13039-021-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background The interstitial 6p22.3 deletions concern rare chromosomal events affecting numerous aspects of both physical and mental development. The syndrome is characterized by partial deletion of chromosome 6, which may arise in a number of ways. Case presentation We report a 2.8-year old boy presenting with developmental delay and mild dysmorphisms. High-resolution oligonucleotide microarray analysis revealed with high precision a 2.5 Mb interstitial 6p deletion in the 6p22.3 region which encompasses 13 genes. Conclusions Identification and in-depth analysis of cases presenting with mild features of the syndrome will sharpen our understanding of the genetic spectrum of the 6p22.3 deletion.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, GR, Greece. .,Research Centre in Obstetrics and Gynecology, HSOGE, Athens, Greece. .,Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Ioannis Papoulidis
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Medical School, Alexandra Hospital, Athens, Greece
| | - Elisavet Siomou
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, GR, Greece.,Research Centre in Obstetrics and Gynecology, HSOGE, Athens, Greece
| | - Stavroula Oikonomou
- Second Department of Pediatrics, Aglaia Kyriakou Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Loukas
- Department of Gynecology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Efterpi Pavlidou
- Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - Loretta Thomaidis
- Second Department of Pediatrics, Aglaia Kyriakou Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Manolakos
- Access To Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| |
Collapse
|
5
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Kepser LJ, Damar F, De Cicco T, Chaponnier C, Prószyński TJ, Pagenstecher A, Rust MB. CAP2 deficiency delays myofibril actin cytoskeleton differentiation and disturbs skeletal muscle architecture and function. Proc Natl Acad Sci U S A 2019; 116:8397-8402. [PMID: 30962377 PMCID: PMC6486752 DOI: 10.1073/pnas.1813351116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actin filaments (F-actin) are key components of sarcomeres, the basic contractile units of skeletal muscle myofibrils. A crucial step during myofibril differentiation is the sequential exchange of α-actin isoforms from smooth muscle (α-SMA) and cardiac (α-CAA) to skeletal muscle α-actin (α-SKA) that, in mice, occurs during early postnatal life. This "α-actin switch" requires the coordinated activity of actin regulators because it is vital that sarcomere structure and function are maintained during differentiation. The molecular machinery that controls the α-actin switch, however, remains enigmatic. Cyclase-associated proteins (CAP) are a family of actin regulators with largely unknown physiological functions. We here report a function for CAP2 in regulating the α-actin exchange during myofibril differentiation. This α-actin switch was delayed in systemic CAP2 mutant mice, and myofibrils remained in an undifferentiated stage at the onset of the often excessive voluntary movements in postnatal mice. The delay in the α-actin switch coincided with the onset of motor function deficits and histopathological changes including a high frequency of type IIB ring fibers. Our data suggest that subtle disturbances of postnatal F-actin remodeling are sufficient for predisposing muscle fibers to form ring fibers. Cofilin2, a putative CAP2 interaction partner, has been recently implicated in myofibril actin cytoskeleton differentiation, and the myopathies in cofilin2 and CAP2 mutant mice showed striking similarities. We therefore propose a model in which CAP2 and cofilin2 cooperate in actin regulation during myofibril differentiation.
Collapse
Affiliation(s)
- Lara-Jane Kepser
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Fidan Damar
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Teresa De Cicco
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Christine Chaponnier
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Axel Pagenstecher
- Institute of Neuropathology, University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032 Marburg, Germany;
- Center for Mind, Brain and Behavior, Research Campus of Central Hessen, 35032 Marburg, Germany
- DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling," GRK 2213, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
8
|
Méndez-Giráldez R, Gogarten SM, Below JE, Yao J, Seyerle AA, Highland HM, Kooperberg C, Soliman EZ, Rotter JI, Kerr KF, Ryckman KK, Taylor KD, Petty LE, Shah SJ, Conomos MP, Sotoodehnia N, Cheng S, Heckbert SR, Sofer T, Guo X, Whitsel EA, Lin HJ, Hanis CL, Laurie CC, Avery CL. GWAS of the electrocardiographic QT interval in Hispanics/Latinos generalizes previously identified loci and identifies population-specific signals. Sci Rep 2017; 7:17075. [PMID: 29213071 PMCID: PMC5719082 DOI: 10.1038/s41598-017-17136-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
QT interval prolongation is a heritable risk factor for ventricular arrhythmias and can predispose to sudden death. Most genome-wide association studies (GWAS) of QT were performed in European ancestral populations, leaving other groups uncharacterized. Herein we present the first QT GWAS of Hispanic/Latinos using data on 15,997 participants from four studies. Study-specific summary results of the association between 1000 Genomes Project (1000G) imputed SNPs and electrocardiographically measured QT were combined using fixed-effects meta-analysis. We identified 41 genome-wide significant SNPs that mapped to 13 previously identified QT loci. Conditional analyses distinguished six secondary signals at NOS1AP (n = 2), ATP1B1 (n = 2), SCN5A (n = 1), and KCNQ1 (n = 1). Comparison of linkage disequilibrium patterns between the 13 lead SNPs and six secondary signals with previously reported index SNPs in 1000G super populations suggested that the SCN5A and KCNE1 lead SNPs were potentially novel and population-specific. Finally, of the 42 suggestively associated loci, AJAP1 was suggestively associated with QT in a prior East Asian GWAS; in contrast BVES and CAP2 murine knockouts caused cardiac conduction defects. Our results indicate that whereas the same loci influence QT across populations, population-specific variation exists, motivating future trans-ethnic and ancestrally diverse QT GWAS.
Collapse
Affiliation(s)
| | | | - Jennifer E Below
- The Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Amanda A Seyerle
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.,Division of Epidemiology and Community, University of Minnesota, Minneapolis, MN, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elsayed Z Soliman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Epidemiological Cardio Research Center (EPICARE), Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kelli K Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lauren E Petty
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, USA.,Center for Precision Medicine, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Sanjiv J Shah
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Cheng
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Boston, MA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Medical Genetics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA. .,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
10
|
Field J, Ye DZ, Shinde M, Liu F, Schillinger KJ, Lu M, Wang T, Skettini M, Xiong Y, Brice AK, Chung DC, Patel VV. CAP2 in cardiac conduction, sudden cardiac death and eye development. Sci Rep 2015; 5:17256. [PMID: 26616005 PMCID: PMC4663486 DOI: 10.1038/srep17256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023] Open
Abstract
Sudden cardiac death kills 180,000 to 450,000 Americans annually, predominantly males. A locus that confers a risk for sudden cardiac death, cardiac conduction disease, and a newly described developmental disorder (6p22 syndrome) is located at 6p22. One gene at 6p22 is CAP2, which encodes a cytoskeletal protein that regulates actin dynamics. To determine the role of CAP2 in vivo, we generated knockout (KO) mice. cap2−/cap2− males were underrepresented at weaning and ~70% died by 12 weeks of age, but cap2−/cap2− females survived at close to the expected levels and lived normal life spans. CAP2 knockouts resembled patients with 6p22 syndrome in that mice were smaller and they developed microphthalmia and cardiac disease. The cardiac disease included cardiac conduction disease (CCD) and, after six months of age, dilated cardiomyopathy (DCM), most noticeably in the males. To address the mechanisms underlying these phenotypes, we used Cre-mediated recombination to knock out CAP2 in cardiomyocytes. We found that the mice developed CCD, leading to sudden cardiac death from complete heart block, but no longer developed DCM or the other phenotypes, including sex bias. These studies establish a direct role for CAP2 and actin dynamics in sudden cardiac death and cardiac conduction disease.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Diana Z Ye
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Manasi Shinde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Fang Liu
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Kurt J Schillinger
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA.,Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - MinMin Lu
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Tao Wang
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Michelle Skettini
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Yao Xiong
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Angela K Brice
- University Laboratory Animal Resources and School of Veterinary Medicine, Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel C Chung
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Pennsylvania 19041 USA
| | - Vickas V Patel
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA.,Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| |
Collapse
|
11
|
Flöttmann R, Wagner J, Kobus K, Curry CJ, Savarirayan R, Nishimura G, Yasui N, Spranger J, Van Esch H, Lyons MJ, DuPont BR, Dwivedi A, Klopocki E, Horn D, Mundlos S, Spielmann M. Microdeletions on 6p22.3 are associated with mesomelic dysplasia Savarirayan type. J Med Genet 2015; 52:476-83. [DOI: 10.1136/jmedgenet-2015-103108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/09/2015] [Indexed: 11/04/2022]
|
12
|
Ono S. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor. J Cell Sci 2014; 126:3249-58. [PMID: 23908377 DOI: 10.1242/jcs.128231] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Peche VS, Holak TA, Burgute BD, Kosmas K, Kale SP, Wunderlich FT, Elhamine F, Stehle R, Pfitzer G, Nohroudi K, Addicks K, Stöckigt F, Schrickel JW, Gallinger J, Schleicher M, Noegel AA. Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 2013; 70:527-43. [PMID: 22945801 PMCID: PMC11113306 DOI: 10.1007/s00018-012-1142-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/01/2012] [Accepted: 08/14/2012] [Indexed: 12/24/2022]
Abstract
Cyclase-associated proteins are highly conserved proteins that have a role in the regulation of actin dynamics. Higher eukaryotes have two isoforms, CAP1 and CAP2. To study the in vivo function of CAP2, we generated mice in which the CAP2 gene was inactivated by a gene-trap approach. Mutant mice showed a decrease in body weight and had a decreased survival rate. Further, they developed a severe cardiac defect marked by dilated cardiomyopathy (DCM) associated with drastic reduction in basal heart rate and prolongations in atrial and ventricular conduction times. Moreover, CAP2-deficient myofibrils exhibited reduced cooperativity of calcium-regulated force development. At the microscopic level, we observed disarrayed sarcomeres with development of fibrosis. We analyzed CAP2's role in actin assembly and found that it sequesters G-actin and efficiently fragments filaments. This activity resides completely in its WASP homology domain. Thus CAP2 is an essential component of the myocardial sarcomere and is essential for physiological functioning of the cardiac system, and a deficiency leads to DCM and various cardiac defects.
Collapse
Affiliation(s)
- Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tad A. Holak
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Sushant P. Kale
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL USA
| | - F. Thomas Wunderlich
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max-Planck-Institute of Neurological Research, Cologne, Germany
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Klaus Nohroudi
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Klaus Addicks
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Florian Stöckigt
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Jan W. Schrickel
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Julia Gallinger
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Michael Schleicher
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Di Benedetto D, Di Vita G, Romano C, Giudice ML, Vitello GA, Zingale M, Grillo L, Castiglia L, Musumeci SA, Fichera M. 6p22.3 deletion: report of a patient with autism, severe intellectual disability and electroencephalographic anomalies. Mol Cytogenet 2013; 6:4. [PMID: 23324214 PMCID: PMC3564794 DOI: 10.1186/1755-8166-6-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Background The interstitial 6p deletions, involving the 6p22-p24 chromosomal region, are rare events characterized by variable phenotypes and no clear genotype-phenotype correlation has been established so far. Results High resolution array-CGH identified 1 Mb de novo interstitial deletion in 6p22.3 chromosomal region in a patient affected by severe Intellectual Disability (ID), Autism Spectrum Disorders (ASDs), and electroencephalographic anomalies. This deletion includes ATXN1, DTNBP1, JARID2 and MYLIP genes, known to play an important role in the brain, and the GMPR gene whose function in the nervous system is unknown. Conclusions We support the suggestion that ATXN1, DTNBP1, JARID2 and MYLIP are candidate genes for the pathophysiology of ASDs and ID, and we propose that deletion of DTNBP1 and/or JARID2 contributes to the hypotonia phenotype.
Collapse
Affiliation(s)
- Daniela Di Benedetto
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Giuseppa Di Vita
- Unit of Neurology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Mariangela Lo Giudice
- Unit of Neuromuscular Disease, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Marinella Zingale
- Unit of Psychology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Lucia Grillo
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Lucia Castiglia
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | | | - Marco Fichera
- Laboratory of Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy.,Medical Genetics, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Barøy T, Misceo D, Strømme P, Stray-Pedersen A, Holmgren A, Rødningen OK, Blomhoff A, Helle JR, Stormyr A, Tvedt B, Fannemel M, Frengen E. Haploinsufficiency of two histone modifier genes on 6p22.3, ATXN1 and JARID2, is associated with intellectual disability. Orphanet J Rare Dis 2013; 8:3. [PMID: 23294540 PMCID: PMC3675438 DOI: 10.1186/1750-1172-8-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nineteen patients with deletions in chromosome 6p22-p24 have been published so far. The syndromic phenotype is varied, and includes intellectual disability, behavioural abnormalities, dysmorphic features and structural organ defects. Heterogeneous deletion breakpoints and sizes (1-17 Mb) and overlapping phenotypes have made the identification of the disease causing genes challenging. We suggest JARID2 and ATXN1, both harbored in 6p22.3, as disease causing genes. METHODS AND RESULTS We describe five unrelated patients with de novo deletions (0.1-4.8 Mb in size) in chromosome 6p22.3-p24.1 detected by aCGH in a cohort of approximately 3600 patients ascertained for neurodevelopmental disorders. Two patients (Patients 4 and 5) carried non-overlapping deletions that were encompassed by the deletions of the remaining three patients (Patients 1-3), indicating the existence of two distinct dosage sensitive genes responsible for impaired cognitive function in 6p22.3 deletion-patients. The smallest region of overlap (SRO I) in Patients 1-4 (189 kb) included the genes JARID2 and DTNBP1, while SRO II in Patients 1-3 and 5 (116 kb) contained GMPR and ATXN1. Patients with deletion of SRO I manifested variable degrees of cognitive impairment, gait disturbance and distinct, similar facial dysmorphic features (prominent supraorbital ridges, deep set eyes, dark infraorbital circles and midface hypoplasia) that might be ascribed to the haploinsufficiency of JARID2. Patients with deletion of SRO II showed intellectual disability and behavioural abnormalities, likely to be caused by the deletion of ATXN1. Patients 1-3 presented with lower cognitive function than Patients 4 and 5, possibly due to the concomitant haploinsufficiency of both ATXN1 and JARID2. The chromatin modifier genes ATXN1 and JARID2 are likely candidates contributing to the clinical phenotype in 6p22-p24 deletion-patients. Both genes exert their effect on the Notch signalling pathway, which plays an important role in several developmental processes. CONCLUSIONS Patients carrying JARID2 deletion manifested with cognitive impairment, gait disturbance and a characteristic facial appearance, whereas patients with deletion of ATXN1 seemed to be characterized by intellectual disability and behavioural abnormalities. Due to the characteristic facial appearance, JARID2 haploinsufficiency might represent a clinically recognizable neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Tuva Barøy
- Department of Medical Genetics, University of Oslo, P,O, Box 1036, Blindern, Oslo N-0315, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicholl J, Waters W, Suwalski S, Brown S, Hull Y, Harbord MG, Entwistle J, Thompson S, Clark D, Pridmore C, Haan E, Barnett C, McGregor L, Liebelt J, Thompson EM, Friend K, Bain SM, Yu S, Mulley JC. Epilepsy with cognitive deficit and autism spectrum disorders: prospective diagnosis by array CGH. Am J Med Genet B Neuropsychiatr Genet 2013. [PMID: 23184456 DOI: 10.1002/ajmg.b.32114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical significance of chromosomal microdeletions and microduplications was predicted based on their gene content, de novo or familial inheritance and accumulated knowledge recorded on public databases. A patient group comprised of 247 cases with epilepsy and its common co-morbidities of developmental delay, intellectual disability, autism spectrum disorders, and congenital abnormalities was reviewed prospectively in a diagnostic setting using a standardized oligo-array CGH platform. Seventy-three (29.6%) had copy number variations (CNVs) and of these 73 cases, 27 (37.0%) had CNVs that were likely causative. These 27 cases comprised 10.9% of the 247 cases reviewed. The range of pathogenic CNVs associated with seizures was consistent with the existence of many genetic determinants for epilepsy.
Collapse
Affiliation(s)
- Jillian Nicholl
- Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Celestino-Soper PBS, Skinner C, Schroer R, Eng P, Shenai J, Nowaczyk MMJ, Terespolsky D, Cushing D, Patel GS, Immken L, Willis A, Wiszniewska J, Matalon R, Rosenfeld JA, Stevenson RE, Kang SHL, Cheung SW, Beaudet AL, Stankiewicz P. Deletions in chromosome 6p22.3-p24.3, including ATXN1, are associated with developmental delay and autism spectrum disorders. Mol Cytogenet 2012; 5:17. [PMID: 22480366 PMCID: PMC3351998 DOI: 10.1186/1755-8166-5-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/05/2012] [Indexed: 04/14/2023] Open
Abstract
Interstitial deletions of the short arm of chromosome 6 are rare and have been associated with developmental delay, hypotonia, congenital anomalies, and dysmorphic features. We used array comparative genomic hybridization in a South Carolina Autism Project (SCAP) cohort of 97 subjects with autism spectrum disorders (ASDs) and identified an ~ 5.4 Mb deletion on chromosome 6p22.3-p23 in a 15-year-old patient with intellectual disability and ASDs. Subsequent database queries revealed five additional individuals with overlapping submicroscopic deletions and presenting with developmental and speech delay, seizures, behavioral abnormalities, heart defects, and dysmorphic features. The deletion found in the SCAP patient harbors ATXN1, DTNBP1, JARID2, and NHLRC1 that we propose may be responsible for ASDs and developmental delay.
Collapse
Affiliation(s)
| | - Cindy Skinner
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA
| | - Richard Schroer
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA
| | - Patricia Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jayant Shenai
- Neonatal-Perinatal Medicine, Pediatrics, The Vanderbilt Clinic, Nashville, TN, USA
| | - Malgorzata MJ Nowaczyk
- Pathology and Molecular Medicine and Pediatrics, Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | | | | | | | | | - Alecia Willis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joanna Wiszniewska
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Reuben Matalon
- Division of General Academic Pediatrics, Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, WA, USA
| | - Roger E Stevenson
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Siggberg L, Mustonen A, Schuit R, Salomons GS, Roos B, Gibson KM, Jakobs C, Ignatius J, Knuutila S. Familial 6p22.2 duplication associates with mild developmental delay and increased SSADH activity. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:448-53. [PMID: 21438145 PMCID: PMC3082589 DOI: 10.1002/ajmg.b.31180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/18/2011] [Indexed: 02/01/2023]
Abstract
We present a family with mild developmental delay and a duplication (6)(p22.2). Array CGH analyses revealed this 0.7 Mb duplication in all three patients, spanning candidate genes ALDH5A1, DCDC2, and KIAA0319. Results were confirmed by MLPA analysis of the dyslexia genes DCDC2 and KIAA0319. Of interest, ALDH5A1 encodes succinate semialdehyde dehydrogenase (SSADH), an enzyme responsible for γ-amino-butyric acid (GABA) degradation. Inherited deficiency of SSADH results in accumulation of the neuromodulator γ-hydroxybutyrate (GHB), which likely contributes to some aspects of the neurological phenotype of SSADH deficiency (MIM #271980). Based on autosomal-recessive inheritance, we sequenced ALDH5A1 in all patients, which revealed no pathogenic mutations. SSADH enzyme studies in cultured white cells confirmed elevated SSADH activity, consistent with the duplication, whereas concentrations of SSA were slightly elevated in urine, suggesting oxidant stress. We speculate that the duplication (6)(p22.2) and corresponding hyperactive level of SSADH activity may have negative consequences for GABA metabolism and the role of SSADH in other metabolic sequences.
Collapse
Affiliation(s)
- Linda Siggberg
- Department of Pathology, Haartman Institute, University of Helsinki, Finland.
| | - Aki Mustonen
- Department of Clinical Genetics, University Hospital of Oulu and Oulu University, Oulu, Finland
| | | | - Gajja S Salomons
- Metabolic Unit, Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Birthe Roos
- Metabolic Unit, Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Cornelis Jakobs
- Metabolic Unit, Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaakko Ignatius
- Department of Clinical Genetics, University Hospital of Oulu and Oulu University, Oulu, Finland, Department of Clinical Genetics, University Hospital of Turku, Turku, Finland
| | - Sakari Knuutila
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Pietiläinen OPH, Rehnström K, Jakkula E, Service SK, Congdon E, Tilgmann C, Hartikainen AL, Taanila A, Heikura U, Paunio T, Ripatti S, Jarvelin MR, Isohanni M, Sabatti C, Palotie A, Freimer NB, Peltonen L. Phenotype mining in CNV carriers from a population cohort. Hum Mol Genet 2011; 20:2686-95. [PMID: 21505072 DOI: 10.1093/hmg/ddr162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenotype mining is a novel approach for elucidating the genetic basis of complex phenotypic variation. It involves a search of rich phenotype databases for measures correlated with genetic variation, as identified in genome-wide genotyping or sequencing studies. An initial implementation of phenotype mining in a prospective unselected population cohort, the Northern Finland 1966 Birth Cohort (NFBC1966), identifies neurodevelopment-related traits-intellectual deficits, poor school performance and hearing abnormalities-which are more frequent among individuals with large (>500 kb) deletions than among other cohort members. Observation of extensive shared single nucleotide polymorphism haplotypes around deletions suggests an opportunity to expand phenotype mining from cohort samples to the populations from which they derive.
Collapse
Affiliation(s)
- Olli P H Pietiläinen
- Institute for Molecular Medicine Finland, and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wincent J, Anderlid BM, Lagerberg M, Nordenskjöld M, Schoumans J. High-resolution molecular karyotyping in patients with developmental delay and/or multiple congenital anomalies in a clinical setting. Clin Genet 2011; 79:147-57. [DOI: 10.1111/j.1399-0004.2010.01442.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Ansermet F, Lespinasse J, Gimelli S, Béna F, Paoloni-Giacobino A. Mild intellectual disability associated with a progeny of father-daughter incest: genetic and environmental considerations. JOURNAL OF CHILD SEXUAL ABUSE 2010; 19:337-344. [PMID: 20509080 DOI: 10.1080/10538711003788991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report the case of a 34-year-old female resulting from a father-daughter sexual abuse and presenting a phenotype of mild intellectual disability with minor dysmorphic features. Karyotyping showed a normal 46, XX constitution. Array-based comparative genomic hybridization (array-CGH) revealed a heterozygote 320kb 6p22.3 microdeletion in the proband, encompassing only one known gene, and therefore unlikely to be the cause of the phenotype. However, the role of other genetic factors, such as a recessive condition, could not be ruled out as a putative cause for the phenotype. On the other hand, the role played by a heavily detrimental familial situation on the development and outcome, and possibly leading or contributing to a mild intellectual disability, should be taken into account.
Collapse
|