1
|
Lu S, Liu K, Wang D, Ye Y, Jiang Z, Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci 2024; 115:3543-3551. [PMID: 39180374 PMCID: PMC11531954 DOI: 10.1111/cas.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanChina
| | - Di Wang
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| | - Yuan Ye
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhiping Jiang
- Department of Hematology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Hematology Oncology Clinical Medical Research CenterChangshaHunanChina
| | - Yunhua Gao
- Center for Advanced Measurement ScienceNational Institute of MetrologyBeijingChina
| |
Collapse
|
2
|
He Y, Guo L, Zheng L, Ren C, Wang T, Lu J. Clinical and molecular cytogenetic findings and pregnancy outcomes of fetuses with isochromosome Y. Mol Cytogenet 2022; 15:32. [PMID: 35927742 PMCID: PMC9351221 DOI: 10.1186/s13039-022-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mosaic forms and clinical phenotypes of fetuses with isochromosome Y are difficult to predict. Therefore, we summarized the cases of nine fetuses with isochromosome Y identified in prenatal diagnosis with a combination of molecular cytogenetic techniques, providing clinical evidence for prenatal genetic counseling. METHODS The prenatal diagnosis and pregnancy outcomes of nine fetuses with isochromosome Y were obtained by a retrospective analysis. Isochromosome Y was identified prenatally by different approaches, such as conventional karyotyping, chromosomal microarray analysis (CMA), quantitative fluorescent polymerase chain reaction (QF-PCR) and fluorescence in situ hybridization (FISH). RESULTS Seven idic(Y) fetuses and two i(Y) fetuses were identified. One fetus was complete for i(Y)(p10), and the rest with 45,X had mosaic forms. A break and fusion locus was identified in Yp11.3 in one fetus, in Yq11.22 in six fetuses and in Yp10 in two fetuses. The CMA results suggested that different deletions and duplications were found on the Y chromosome. The deletion fragments ranged from 4.7 Mb to the entire Y chromosome, and the duplication fragments ranged from 10.4 to 18.0 Mb. QF-PCR analysis suggested that the AZF region was intact in one fetus, four fetuses had AZFb+c+d deletion, one fetus had AZFa+b+c+d deletion, and one fetus had AZFc+d deletion. Finally, four healthy male neonates were delivered successfully, but the parents of the remaining five fetuses, including three healthy and two unhealthy fetuses, chose to terminate their pregnancies. CONCLUSION The fetus and neonate phenotype of prenatally detected isochromosome Y usually is that of a normally developed male, ascertained in the absence of other indicators of a fetal structural anomaly. Our study provides clinical reference materials for risk assessment and permits better prenatally counseling and preparation of parents facing the birth of isochromosome Y fetuses.
Collapse
Affiliation(s)
- Yiqun He
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Li Guo
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Laiping Zheng
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Congmian Ren
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Ting Wang
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Jian Lu
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China.
| |
Collapse
|
3
|
Third-Generation Cytogenetic Analysis: Diagnostic Application of Long-Read Sequencing. J Mol Diagn 2022; 24:711-718. [PMID: 35526834 DOI: 10.1016/j.jmoldx.2022.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days. Nanopore sequencing has the ability to reduce time to results for the detection of CNVs with the same resolution of current state-of-the-art diagnostic tests. Nanopore sequencing was compared to molecular karyotyping for the detection of pathogenic CNVs of seven patients with previously diagnosed causative CNVs of different sizes and cellular fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs, two genomic imbalances of 1.3 Mb, a small deletion of 170 kb, and two mosaic deletions (1.2 Mb and 408 kb) were tested. DNA was sequenced and data generated during runs were analyzed in online mode. All pathogenic CNVs were identified with detection time inversely proportional to size and cellular fraction. Aneuploidies were called after only 30 minutes of sequencing, whereas 30 hours were needed to call small CNVs. These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30-minute to 30-hour time frame and its easy implementation as a routinary diagnostic tool.
Collapse
|
4
|
Andrews A, Maharaj A, Cottrell E, Chatterjee S, Shah P, Denvir L, Dumic K, Bossowski A, Mushtaq T, Vukovic R, Didi M, Shaw N, Metherell LA, Savage MO, Storr HL. Genetic Characterization of Short Stature Patients With Overlapping Features of Growth Hormone Insensitivity Syndromes. J Clin Endocrinol Metab 2021; 106:e4716-e4733. [PMID: 34136918 PMCID: PMC8530715 DOI: 10.1210/clinem/dgab437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Growth hormone insensitivity (GHI) in children is characterized by short stature, functional insulin-like growth factor (IGF)-I deficiency, and normal or elevated serum growth hormone (GH) concentrations. The clinical and genetic etiology of GHI is expanding. OBJECTIVE We undertook genetic characterization of short stature patients referred with suspected GHI and features which overlapped with known GH-IGF-I axis defects. METHODS Between 2008 and 2020, our center received 149 GHI referrals for genetic testing. Genetic analysis utilized a combination of candidate gene sequencing, whole exome sequencing, array comparative genomic hybridization, and a targeted whole genome short stature gene panel. RESULTS Genetic diagnoses were identified in 80/149 subjects (54%) with 45/80 (56%) having known GH-IGF-I axis defects (GHR n = 40, IGFALS n = 4, IGFIR n = 1). The remaining 35/80 (44%) had diagnoses of 3M syndrome (n = 10) (OBSL1 n = 7, CUL7 n = 2, and CCDC8 n = 1), Noonan syndrome (n = 4) (PTPN11 n = 2, SOS1 n = 1, and SOS2 n = 1), Silver-Russell syndrome (n = 2) (loss of methylation on chromosome 11p15 and uniparental disomy for chromosome 7), Class 3-5 copy number variations (n = 10), and disorders not previously associated with GHI (n = 9) (Barth syndrome, autoimmune lymphoproliferative syndrome, microcephalic osteodysplastic primordial dwarfism type II, achondroplasia, glycogen storage disease type IXb, lysinuric protein intolerance, multiminicore disease, macrocephaly, alopecia, cutis laxa, and scoliosis syndrome, and Bloom syndrome). CONCLUSION We report the wide range of diagnoses in 149 patients referred with suspected GHI, which emphasizes the need to recognize GHI as a spectrum of clinical entities in undiagnosed short stature patients. Detailed clinical and genetic assessment may identify a diagnosis and inform clinical management.
Collapse
Affiliation(s)
- Afiya Andrews
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Artur Bossowski
- Department of Peadiatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Białystok, Poland
| | | | - Rade Vukovic
- Mother and Child Health Care Institute of Serbia, “Dr Vukan Cupic”, Belgrade, Serbia
| | | | - Nick Shaw
- Birmingham Children’s Hospital, Birmingham, UK
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Correspondence: Professor Helen L. Storr, Professor and Honorary Consultant in Paediatric Endocrinology, Centre for Endocrinology, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
5
|
Su M, Page S, Haag M, Swisshelm K, Hennerich D, Graw S, LeRoux J, Brzeskiewicz P, Svihovec S, Bao L. Clinical utility and cost-effectiveness analysis of chromosome testing concomitant with chromosomal microarray of patients with constitutional disorders in a U.S. academic medical center. J Genet Couns 2021; 31:364-374. [PMID: 34397147 DOI: 10.1002/jgc4.1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022]
Abstract
Chromosomal microarray (CMA) is now widely used as first-tier testing for the detection of copy number variants (CNVs) and absence of heterozygosity (AOH) in patients with multiple congenital anomalies (MCA), autism spectrum disorder (ASD), developmental delay (DD), and/or intellectual disability (ID). Chromosome analysis is commonly used to complement CMA in the detection of balanced genomic aberrations. However, the cost-effectiveness and the impact on clinical management of chromosome analysis concomitant with CMA were not well studied, and there is no consensus on how to best utilize these two tests. To assess the clinical utility and cost-effectiveness of chromosome analysis concomitant with CMA in patients with MCA, ASD, DD, and/or ID, we retrospectively analyzed 3,360 postnatal cases for which CMA and concomitant chromosome analysis were performed in the Colorado Genetic Laboratory (CGL) at the University Of Colorado School Of Medicine. Chromosome analysis alone yielded a genetic diagnosis in two patients (0.06%) and contributed additional information to CMA results in 199 (5.92%) cases. The impact of abnormal chromosome results on patient management was primarily related to counseling for reproductive and recurrence risks assessment (101 cases, 3.01%) while a few (5 cases, 0.15%) led to changes in laboratory testing and specialist referral (25 cases, 0.74%). The incremental cost-effectiveness ratio (ICER) of combined testing demonstrated the cost of each informative chromosome finding was significantly higher for patients with clinically insignificant (CI) CMA findings versus clinically significant (CS) CMA results. Our results suggest that a stepwise approach with CMA testing with reflex to chromosome analysis on cases with CS CMA findings is a more cost-effective testing algorithm for patients with MCA, ASD, and/or DD/ID.
Collapse
Affiliation(s)
- Meng Su
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie Page
- Genetics Counseling Program, Department of Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mary Haag
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen Swisshelm
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborrah Hennerich
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sharon Graw
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jamie LeRoux
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter Brzeskiewicz
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shayna Svihovec
- Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liming Bao
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Yurtcu E, Karçaaltıncaba D, Kazan HH, Özdemir H, Yirmibeş Karaoğuz M, Çalış P, Kayhan G, Güntekin Ergün S, Perçin F, Bayram M, İlhan MN, Bilgili G, Kaymak T, Ergün MA. Is cervical swab an efficient method for developing a new noninvasive prenatal diagnostic test for numerical and structural chromosome anomalies? Turk J Med Sci 2021; 51:1043-1048. [PMID: 33315353 PMCID: PMC8283453 DOI: 10.3906/sag-2009-347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/12/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim Prenatal diagnosis is vital to obtain healthy generation for risky pregnancies. There have been several approaches, some of which are routinely applied in clinics to evaluate the possible prenatal deficiencies and/or diseases. In the present study, we aimed to isolate the fetal cells from endocervical samples and try to identify possible anomalies which were proved by Amniocentesis (AS) and chorionic villus sampling (CVS) methods. Materials and methods Endoservical specimens were collected from 100 pregnant women. Cells were separated in parallel by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) using human leukocyte antigen (HLA) G233 and placental alkaline phosphatase (PLAP) antibodies. CMA (comprehensive meta-analysis) were carried out and male fetuses were confirmed with Sex determining region Y (SRY) amplification. Results The percent of HLA G233 and placental and placental alkaline phosphatase (PLAP) positive cells were 4.55% and 84.59%, respectively. The percent of cells positive for both markers was 14.75%. CMA analyses were not informative. (SRY) was amplified in 67% of the samples. Conclusion However, the success rate of the both cell sorting and scanning of DNA anomalies by aCGH and/or RT-PCR was limited, preventing the applicability of this proposal in the clinics. Still, the success of the proposed method depends on the development of the novel fetal cell-specific antibodies and the improvements in the sorting systems.
Collapse
Affiliation(s)
- Erkan Yurtcu
- Department of Medical Biology, Faculty of Medicine, Başkent University,Ankara, Turkey
| | - Deniz Karçaaltıncaba
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Hüseyin Kazan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Halis Özdemir
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | - Pinar Çalış
- Department of Obstetrics and Gynaecology, Sami Ulus Women’s and Children’s Health Training and Research Hospital, Ankara, Turkey
| | - Gülsüm Kayhan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sezen Güntekin Ergün
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ferda Perçin
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Merih Bayram
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Mustafa Necmi İlhan
- Department of Public Health, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gamze Bilgili
- Department of Medical Biology, Faculty of Medicine, Başkent University,Ankara, Turkey
| | - Tuğrul Kaymak
- Mycotoxin Analysis Laboratory, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Mehmet Ali Ergün
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Lee JM, Shin SY, Kim GW, Kim WJ, Wie JH, Hong S, Kang D, Choi H, Yim J, Kim Y, Kim M, Park IY. Optimizing the Diagnostic Strategy to Identify Genetic Abnormalities in Miscarriage. Mol Diagn Ther 2021; 25:351-359. [PMID: 33792848 PMCID: PMC8139896 DOI: 10.1007/s40291-021-00523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The single most common cause of miscarriage is genetic abnormality. OBJECTIVE We conducted a prospective cohort study to compare the performance of conventional karyotyping and chromosomal microarray analysis (CMA) using array comparative genomic hybridization (array-CGH) and single nucleotide polymorphism array (SNP-array) to identify genetic abnormalities in miscarriage specimens. METHODS A total of 63 miscarriage specimens were included. Conventional karyotyping, array-CGH, and SNP-array were performed and the results compared. RESULTS Genetic abnormalities were detected in 31 cases (49.2%) by at least one testing modality. Single autosomal trisomy was the most common defect (71.0%), followed by polyploidy (16.1%), multiple aneuploidy (9.7%), and monosomy X (3.2%). Mosaicisms were identified in four cases and confirmed by fluorescence in situ hybridization (FISH) using appropriate probes. SNP-array had a higher detection rate of genetic abnormalities than array-CGH (93.5 vs. 77.4%), and conventional karyotyping had the lowest detection rate (76.0%). SNP-array enabled the detection of all types of genetic abnormalities, including polyploidy. CONCLUSIONS Although conventional karyotyping and FISH are still needed, SNP-array represents the first choice for miscarriage because the technique showed excellent performance in the detection of genetic abnormalities and minimized the probability of testing failure as well as time, costs, and labor.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - So Young Shin
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, 23, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Guk Won Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Woo Jeng Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
| | - In Yang Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
8
|
Chen C, Lim AST, Lau LC, Lim TH, Heng EYH, Tien SL. Implementation of cytogenomic microarray with plasma cell enrichment enables better abnormality detection and risk stratification in patients with plasma cell neoplasia than conventional cytogenetics and fluorescence in situ hybridization. Cancer Genet 2020; 252-253:25-36. [PMID: 33341677 DOI: 10.1016/j.cancergen.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
The detection of chromosomal abnormalities is important in the diagnosis, prognosis and disease monitoring in plasma cell neoplasia (PCN). However, the gold standard diagnostic techniques of conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) are hampered by culture difficulties and probe availability. Cytogenomic microarray (CMA), however, is able to surmount such limitations and generate a comprehensive genomic profile with the implementation of plasma cell (PC) enrichment. In this study, we examined 89 bone marrow specimens with CC and FISH without PC enrichment, 35 of which were examined with CMA after PC enrichment. Results revealed that after PC enrichment, CMA was able to detect chromosomal abnormalities in 34 of 35 specimens tested (97.1%), compared to 21 and 32 specimens (60% and 91.4%, respectively) achieved by CC and FISH, respectively, which were similar to the abnormality detection rates among all 89 specimens (59.5% by CC and 92.1% by FISH). In addition, as the only technique capable of detecting copy neutral loss of heterozygosity (CN-LOH) and chromothripsis, CMA appears to be the most powerful tool in risk stratification as it successfully re-stratified 9 (25.7%) and 12 (34.3%) specimens from standard risk (determined by CC and FISH, respectively) to high risk. Based on the encouraging data presented by our study and others, we conclude that implementation of CMA with PC enrichment is of great value in routine clinical workup in achieving a more complete genetic profile of patients with PCN.
Collapse
Affiliation(s)
- Chuanfei Chen
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore.
| | - Alvin Soon Tiong Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Lai Ching Lau
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Tse Hui Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Evelyn Yee Hsieh Heng
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Sim Leng Tien
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore; Department of Haematology, Singapore General Hospital, Singapore
| |
Collapse
|
9
|
Cottrell E, Cabrera CP, Ishida M, Chatterjee S, Greening J, Wright N, Bossowski A, Dunkel L, Deeb A, Basiri IA, Rose SJ, Mason A, Bint S, Ahn JW, Hwa V, Metherell LA, Moore GE, Storr HL. Rare CNVs provide novel insights into the molecular basis of GH and IGF-1 insensitivity. Eur J Endocrinol 2020; 183:581-595. [PMID: 33055295 PMCID: PMC7592635 DOI: 10.1530/eje-20-0474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1). DESIGN AND METHODS Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions. RESULTS Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts. CONCLUSIONS Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.
Collapse
Affiliation(s)
- Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Miho Ishida
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James Greening
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Neil Wright
- The University of Sheffield Faculty of Medicine, Dentistry and Health, Sheffield, UK
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, Bialystok, Poland
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Asma Deeb
- Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | | | - Stephen J Rose
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gudrun E Moore
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Correspondence should be addressed to H L Storr;
| |
Collapse
|
10
|
Wang Y, Zhang M, Chen L, Huang H, Xu L. Prenatal diagnosis of BACs-on-Beads assay in 1520 cases from Fujian Province, China. Mol Genet Genomic Med 2020; 8:e1446. [PMID: 32767744 PMCID: PMC7549593 DOI: 10.1002/mgg3.1446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to evaluate the application of BACs‐on‐Beads (BoBs™) assay for rapid detection of chromosomal abnormalities for prenatal diagnosis (PND). Methods A total of 1520 samples, including seven chorionic villi biopsy samples, 1328 amniotic fluid samples, and 185 umbilical cord samples from pregnant women were collected to detect the chromosomal abnormalities using BoBs™ assay and karyotyping. Furthermore, abnormal specimens were verified by chromosome microarray analysis (CMA) and fluorescence in situ hybridization (FISH). Results The results demonstrated that the success rate of karyotyping and BoBs™ assay in PND was 98.09% and 100%, respectively. BoBs™ assay was concordant with karyotyping for Trisomy 21, Trisomy 18, and Trisomy 13, sex chromosomal aneuploidy, Wolf–Hirschhorn syndrome, and mosaicism. BoBs™ assay also detected Smith–Magenis syndrome, Williams–Beuren syndrome, DiGeorge syndrome, Miller–Dieker syndrome, Prader–Willi syndrome, Xp22.31 microdeletions, 22q11.2, and 17p11.2 microduplications. However, karyotyping failed to show these chromosomal abnormalities. A case of 8q21.2q23.3 duplication which was found by karyotyping was not detected by BoBs™ assay. Furthermore, all these chromosomal abnormalities were consistent with CMA and FISH verifications. According to the reports, we estimated that the detection rates of karyotyping, BoBs™, and CMA in the present study were 4.28%, 4.93%, and 5%, respectively, which is consistent with the results of a previous study. The respective costs for the three methods were about $135–145, $270–290, and $540–580. Conclusion BoBs™ assay is considered a reliable, rapid test for use in PND. A variety of comprehensive technological applications can complement each other in PND, in order to maximize the diagnosis rate and reduce the occurrence of birth defects.
Collapse
Affiliation(s)
- Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Zhang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Vogel I, Vestergaard EM, Lildballe DL, Christensen R, Hoseth GE, Petersen AC, Bogaard P, Sørensen AN. Placental mosaicism in the era of chromosomal microarrays. Eur J Med Genet 2019; 63:103778. [PMID: 31580923 DOI: 10.1016/j.ejmg.2019.103778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/15/2019] [Accepted: 09/29/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Placental mosaicism for a subset of a chromosome, a structural chromosomal aberration, is thought to be a very rare finding in chorionic villus samples. Here, we present clinical and laboratory data on five cases with such mosaicism for structural chromosomal aberrations. METHODS During a period of 6 months, chromosomal microarray was carried out on DNA extracted from 100 uncultured chorion villous samples from high-risk pregnancies. RESULTS In five of 100 consecutively collected samples (5/100), mosaicism for a structural chromosomal aberration was detected. The mosaic aberration was subsequently detected in fetal tissue in three of the five cases. CONCLUSION Chromosomal microarray can detect placental mosaicism for structural chromosomal aberrations. This kind of mosaicism may be more frequent than previously anticipated, and the fetal involvement seems difficult to predict. These findings highlight the complexity of mosaicism for structural chromosomal aberrations in prenatal samples in the chromosomal microarray era.
Collapse
Affiliation(s)
- Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark.
| | - Else Marie Vestergaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Biochemistry, Horsens Regional Hospital, Horsens, Denmark
| | - Dorte Launtoft Lildballe
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Genetics, Vejle Hospital, Aarhus, Denmark
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
| | - Gerd-Eva Hoseth
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Denmark
| | | | - Pauline Bogaard
- Department of Pathology, Aalborg University Hospital, Denmark
| | - Anne Nødgaard Sørensen
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Aalborg University, Denmark
| |
Collapse
|
12
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
13
|
Waggoner D, Wain KE, Dubuc AM, Conlin L, Hickey SE, Lamb AN, Martin CL, Morton CC, Rasmussen K, Schuette JL, Schwartz S, Miller DT. Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018; 20:1105-1113. [PMID: 29915380 PMCID: PMC6410698 DOI: 10.1038/s41436-018-0040-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: Chromosomal microarray (CMA) is recommended as the first tier test in evaluation of individuals with neurodevelopmental disability and congenital anomalies. CMA may not detect balanced cytogenomic abnormalities or uniparental disomy (UPD), and deletion/duplications and regions of homozygosity may require additional testing to clarify the mechanism and inform accurate counseling. We conducted an evidence review to synthesize data regarding the benefit of additional testing after CMA to inform a genetic diagnosis. Methods: The review was guided by key questions related to the detection of genomic events that may require additional testing. A PubMed search for original research articles, systematic reviews, and meta-analyses were evaluated from articles published between January 1, 1983 and March 31, 2017. Based on the key questions, articles were retrieved and data extracted in parallel with comparison of results and discussion to resolve discrepancies. Variables assessed included study design and outcomes. Results: A narrative synthesis was created for each question to describe the occurrence of, and clinical significance of, additional diagnostic findings from subsequent testing performed after CMA. Conclusion: These findings may be used to assist the laboratory and clinician when making recommendations about additional testing after CMA, as it impacts clinical care, counseling, and diagnosis.
Collapse
Affiliation(s)
- Darrel Waggoner
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
| | - Karen E Wain
- Autism & Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Allen N Lamb
- Department of Pathology, ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Cynthia C Morton
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts, USA.,Division of Evolution and Genomics Science, School of Biological Sciences, Manchester Academic Health Science Center, Manchester, UK
| | - Kristen Rasmussen
- Department of Medical Genetics, Marshfield Clinic, Marshfield, Wisconsin, USA
| | - Jane L Schuette
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Stuart Schwartz
- Laboratory Corporation of America® Holdings, Burlington, North Carolina, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
14
|
Oneda B, Asadollahi R, Azzarello-Burri S, Niedrist D, Baldinger R, Masood R, Schinzel A, Latal B, Jenni OG, Rauch A. Low-Level Chromosomal Mosaicism in Neurodevelopmental Disorders. Mol Syndromol 2017; 8:266-271. [PMID: 28878611 DOI: 10.1159/000477189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chromosomal mosaicism, which represents a diagnostic challenge for detection and interpretation, has been described in several genetic conditions. It can contribute to a large phenotypic variation in diseases. At analysis of a well-characterized cohort of 714 patients with neurodevelopmental disorders (NDDs) of unknown etiology using a high-resolution chromosomal microarray platform, we found 2 cases (0.28%) of low-level mosaicism and defined a previously detected extra chromosome in a third patient. Two of the cases were mosaics for segmental imbalances (a partial trisomy 3q26.1q27.3 and a partial monosomy 18q21.2qter with 14.6 and 20% mosaic ratios in lymphocytes, respectively), and 1 was a mosaic for an entire chromosome (trisomy 14, mosaic ratio 20%). Our diagnostic yield is in line with the ratios previously published in patients with intellectual disability. Notably, the partial trisomy 3q26.1q27.3 case is an example of a rare and unusual class of a rearranged neocentric ring chromosome, which can neither be categorized in class I, nor in class II of such rearrangements. Our cases further elucidate the phenotypes related to the aberrations of the specific chromosome segments observed and underline the important role of low-level mosaics in the pathogenesis of NDDs of unknown etiology even in the absence of clinical signs of mosaicism.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Bea Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Naoufal R, Legendre M, Couet D, Gilbert-Dussardier B, Kitzis A, Bilan F, Harbuz R. Association of structural and numerical anomalies of chromosome 22 in a patient with syndromic intellectual disability. Eur J Med Genet 2016; 59:483-7. [PMID: 27452446 DOI: 10.1016/j.ejmg.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/02/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022]
Abstract
Array comparative genomic hybridization (aCGH) is now widely adopted as a first-tier clinical diagnostic test for patients with developmental delay (DD)/intellectual disability (ID), autism spectrum disorders, and multiple congenital anomalies. Nevertheless, classic karyotyping still has its impact in diagnosing genetic diseases, particularly mosaic cases. We report on a 30 year old patient with syndromic intellectual disability, a 22q13.2 microdeletion and mosaic trisomy 22. The patient had the following clinical features: intrauterine growth retardation at birth, hypotonia, cryptorchidism, facial asymmetry, enophthalmus, mild prognathism, bifid uvula, hypoplastic upper limb phalanges, DD including speech delay, and ID. Whole genome aCGH showed a de novo 1 Mb interstitial heterozygous deletion in 22q13.2, confirmed by fluorescence in situ hybridization in all cells examined. Moreover, 18% cells had an extra chromosome 22 suggesting a trisomy 22 mosaicism. Almost all 22q13 deletions published so far have been terminal deletions with variable sizes (100 kb to over 9 Mb). Very few cases of interstitial 22q13.2 deletions were reported. In its mosaic form, trisomy 22 is compatible with life, and there are about 20 reports in the literature. It has a variable clinical presentation: growth restriction, dysmorphic features, cardiovascular abnormalities, hemihyperplasia, genitourinary tract anomalies and ID. Neurodevelopmental outcome ranges from normal to severe DD. The patient presents clinical features that are common to both the interstitial 22q13 deletion and the mosaic trisomy 22; characteristics related to the interstitial deletion alone and others explained solely by the mosaic trisomy. Our case points out the role of conventional cytogenetic tools in mosaic cases that could be missed by microarray technology. We therefore suggest the combination of both conventional and molecular karyotyping in the investigation of certain genetic diseases.
Collapse
Affiliation(s)
- Rania Naoufal
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France.
| | - Marine Legendre
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Dominique Couet
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Alain Kitzis
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Frederic Bilan
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Radu Harbuz
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| |
Collapse
|
16
|
Wou K, Levy B, Wapner RJ. Chromosomal Microarrays for the Prenatal Detection of Microdeletions and Microduplications. Clin Lab Med 2016; 36:261-76. [PMID: 27235911 DOI: 10.1016/j.cll.2016.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromosomal microarray analysis has replaced conventional G-banded karyotype in prenatal diagnosis as the first-tier test for the cytogenetic detection of copy number imbalances in fetuses with/without major structural abnormalities. This article reviews the basic technology of microarray; the value and clinical significance of the detection of microdeletions, microduplications, and other copy number variants; as well as the importance of genetic counseling for prenatal diagnosis. It also discusses the current status of noninvasive screening for some of these microdeletion and microduplication syndromes.
Collapse
Affiliation(s)
- Karen Wou
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, 3959 Broadway, CHN 718, New York, NY 10032, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, 3959 Broadway, CHC 406b, New York, NY 10032, USA
| | - Ronald J Wapner
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th Street, PH 16-66, New York, NY 10032, USA.
| |
Collapse
|
17
|
Carey L, Scott F, Murphy K, Mansfield N, Barahona P, Leigh D, Robertson R, McLennan A. Prenatal diagnosis of chromosomal mosaicism in over 1600 cases using array comparative genomic hybridization as a first line test. Prenat Diagn 2014; 34:478-86. [PMID: 24453008 DOI: 10.1002/pd.4332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to assess the detection of chromosomal mosaicism in chorionic villus (CVS) and amniotic fluid (AF) samples using array comparative genomic hybridization (aCGH) and quantitative fluorescent polymerase chain reaction. METHODS All patients undergoing invasive prenatal testing by aCGH at a specialist prenatal screening service were included in the study. A total of 1609 samples (953 CVS and 656 AF) underwent quantitative fluorescent polymerase chain reaction and targeted aCGH without concurrent conventional G-banded karyotyping. RESULTS Chromosomal mosaicism was detected in 20 of the 1609 cases (1.24%); of which 17 were derived from 953 CVS (1.78%), and three from 656 AF (0.46%). Mosaicism was observed at a level as low as 9%. Four cases were likely confined placental mosaicism, 12 were likely true fetal mosaicism, and four cases were unable to be classified into either group. CONCLUSIONS This study demonstrates that the use of aCGH as a first line test is able to identify chromosomal mosaicism down to 9%, which is lower than the level reliably detected using standard cytogenetic analysis. aCGH avoids the disadvantages of culturing, which include culture bias, artifact, and culture failure.
Collapse
|
18
|
Hall GK, Mackie FL, Hamilton S, Evans A, McMullan DJ, Williams D, Allen S, Kilby MD. Chromosomal microarray analysis allows prenatal detection of low level mosaic autosomal aneuploidy. Prenat Diagn 2014; 34:505-7. [PMID: 24464918 DOI: 10.1002/pd.4333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Georgina K Hall
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet 2014; 22:969-78. [PMID: 24398791 PMCID: PMC4350600 DOI: 10.1038/ejhg.2013.285] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/09/2022] Open
Abstract
Somatic chromosomal mosaicism arising from post-zygotic errors is known to cause several well-defined genetic syndromes as well as contribute to phenotypic variation in diseases. However, somatic mosaicism is often under-diagnosed due to challenges in detection. We evaluated 10 362 patients with a custom-designed, exon-targeted whole-genome oligonucleotide array and detected somatic mosaicism in a total of 57 cases (0.55%). The mosaicism was characterized and confirmed by fluorescence in situ hybridization (FISH) and/or chromosome analysis. Different categories of abnormal cell lines were detected: (1) aneuploidy, including sex chromosome abnormalities and isochromosomes (22 cases), (2) ring or marker chromosomes (12 cases), (3) single deletion/duplication copy number variations (CNVs) (11 cases), (4) multiple deletion/duplication CNVs (5 cases), (5) exonic CNVs (4 cases), and (6) unbalanced translocations (3 cases). Levels of mosaicism calculated based on the array data were in good concordance with those observed by FISH (10–93%). Of the 14 cases evaluated concurrently by chromosome analysis, mosaicism was detected solely by the array in 4 cases (29%). In summary, our exon-targeted array further expands the diagnostic capability of high-resolution array comparative genomic hybridization in detecting mosaicism for cytogenetic abnormalities as well as small CNVs in disease-causing genes.
Collapse
|
20
|
Ahn JW, Dixit A, Johnston C, Ogilvie CM, Collier DA, Curran S, Dobson RJB. BBGRE: brain and body genetic resource exchange. Database (Oxford) 2013; 2013:bat067. [PMID: 24077841 PMCID: PMC3785255 DOI: 10.1093/database/bat067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/10/2013] [Accepted: 09/06/2013] [Indexed: 11/22/2022]
Abstract
Studies of copy number variation (genomic imbalance) are providing insight into both complex and Mendelian genetic disorders. Array comparative genomic hybridization (array CGH), a tool for detecting copy number variants at a resolution previously unattainable in clinical diagnostics, is increasingly used as a first-line test at clinical genetics laboratories. Many copy number variants are of unknown significance; correlation and comparison with other patients will therefore be essential for interpretation. We present a resource for clinicians and researchers to identify specific copy number variants and associated phenotypes in patients from a single catchment area, tested using array CGH at the SE Thames Regional Genetics Centre, London. User-friendly searching is available, with links to external resources, providing a powerful tool for the elucidation of gene function. We hope to promote research by facilitating interactions between researchers and patients. The BBGRE (Brain and Body Genetic Resource Exchange) resource can be accessed at the following website: http://bbgre.org DATABASE URL: http://bbgre.org.
Collapse
Affiliation(s)
- Joo Wook Ahn
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Abhishek Dixit
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Caroline Johnston
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Caroline M. Ogilvie
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - David A. Collier
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Sarah Curran
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| | - Richard J. B. Dobson
- Department of Cytogenetics, Guy's and St Thomas NHS Foundation Trust, London, SE1 9RT, UK, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF and NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation, London, SE5 8AF
| |
Collapse
|
21
|
The Future of Prenatal Cytogenetics: From Copy Number Variations to Non-invasive Prenatal Testing. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Mansour S. Re: prenatal diagnosis using combined quantitative fluorescent polymerase chain reaction and array comparative genomic hybridization analysis as a first-line test: results from over 1000 consecutive cases. F. Scott, K. Murphy, L. Carey, W. Greville, N. Mansfield, P. Barahona, R. Robertson and A. McLennan. Ultrasound Obstet Gynecol 2013; 41: 500-507. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2013; 41:489. [PMID: 23610035 DOI: 10.1002/uog.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- S Mansour
- SW Thames Regional Genetics Service, St George's Healthcare NHS Trust, University of London, London, SW17 0RE, UK.
| |
Collapse
|
23
|
Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals - results from four years' clinical application for over 8,700 patients. Mol Cytogenet 2013; 6:16. [PMID: 23560982 PMCID: PMC3632487 DOI: 10.1186/1755-8166-6-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 11/18/2022] Open
Abstract
Background Array CGH is widely used in cytogenetics centres for postnatal constitutional genome analysis, and is now recommended as a first line test in place of G-banded chromosome analysis. At our centre, first line testing by oligonucleotide array CGH for all constitutional referrals for genome imbalance has been in place since June 2008, using a patient vs patient hybridisation strategy to minimise costs. Findings Out of a total of 13,412 patients tested with array CGH, 8,794 (66%) had array CGH as the first line test. Referral indications for this first line group ranged from neonatal congenital anomalies through to adult neurodisabilities; 25% of these patients had CNVs either in known pathogenic regions or in other regions where imbalances have not been reported in the normal population. Of these CNVs, 46% were deletions or nullisomy, 53% were duplications or triplications, and mosaic imbalances made up the remainder; 87% were <5Mb and would likely not be detected by G-banded chromosome analysis. For cases with completed inheritance studies, 20% of imbalances were de novo. Conclusions Array CGH is a robust and cost-effective alternative to traditional cytogenetic methodology; it provides a higher diagnostic detection rate than G-banded chromosome analysis, and adds to the sum of information and understanding of the role of genomic imbalance in disease. Use of novel hybridisation strategies can reduce costs, allowing more widespread testing.
Collapse
Affiliation(s)
- Joo Wook Ahn
- Cytogenetics Department, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, Lalani SR, Patel A, Stankiewicz P, Lupski JR, Beaudet AL, Cheung SW. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med 2012; 15:450-7. [DOI: 10.1038/gim.2012.152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Cheng YKY, Wong C, Wong HK, Leung KO, Kwok YK, Suen A, Wang CC, Leung TY, Choy KW. The detection of mosaicism by prenatal BoBs™. Prenat Diagn 2012; 33:42-9. [PMID: 23168997 DOI: 10.1002/pd.4006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate the ability of a new prenatal diagnostic platform - prenatal BACs-on-Beads™ (BoBs™) in detecting mosaicism by comparison to quantitative fluorescence-polymerase chain reaction (QF-PCR). METHODS A validation study of prenatal BoBs™ was firstly performed using 18 artificially constructing mosaic samples involving various aneuploidies and microdeletion conditions. Additionally, we compared the accuracy between prenatal BoBs™ and QF-PCR for 18 archived clinical mosaic cases and nine chromosomally abnormal cell lines with reference to conventional karyotype results. RESULTS In the validation study, BoBs™ allowed the detection of mosaicism at a level of 20-40%. Among the clinical mosaic cases, 14/18 cases were within the detection of BoBs™, 8/14 (57.1%) could be identified by BoBs™ and 6/9 (66.7%) by QF-PCR, but 6/14 (42.9%) were missed by both tests. Three cases (16.7%) were detected by prenatal BoBs™ but missed by QF-PCR, whereas QF-PCR detected one case that was missed by BoBs™. The overall sensitivity of BoBs™ in detecting mosaicism is 44.4% (8/18), which is slightly higher than that of QF-PCR (33.3%; 6/18). CONCLUSION Prenatal BoBs™ has a sensitivity of 57.1% in the detection clinical mosaic cases. According to the validation test, mosaicism of 20% or greater is detectable by the BoBs™ assay.
Collapse
Affiliation(s)
- Yvonne K Y Cheng
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Markus-Bustani K, Yaron Y, Goldstein M, Orr-Urtreger A, Ben-Shachar S. Undetected sex chromosome aneuploidy by chromosomal microarray. Prenat Diagn 2012; 32:1117-8. [PMID: 23034780 DOI: 10.1002/pd.3979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/11/2012] [Accepted: 09/06/2012] [Indexed: 11/09/2022]
Abstract
We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting.
Collapse
|
27
|
Abstract
Genomic microarrays are now widely used diagnostically for the molecular karyotyping of patients with intellectual disability, congenital anomalies and autistic spectrum disorder and have more recently been applied for the detection of genomic imbalances in prenatal genetic diagnosis. We present an overview of the different arrays, protocols used and discuss methods of genomic array data analysis.
Collapse
Affiliation(s)
- Paul D Brady
- Laboratory for Cytogenetics and Genome Research, Centre for Human Genetics, University Hospital Leuven, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
28
|
McGillivray G, Rosenfeld JA, McKinlay Gardner RJ, Gillam LH. Genetic counselling and ethical issues with chromosome microarray analysis in prenatal testing. Prenat Diagn 2012; 32:389-95. [PMID: 22467169 DOI: 10.1002/pd.3849] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular karyotyping using chromosome microarray analysis (CMA) detects more pathogenic chromosomal anomalies than classical karyotyping, making CMA likely to become a first tier test for prenatal diagnosis. Detecting copy number variants of uncertain clinical significance raises ethical considerations. We consider the risk of harm to a woman or her fetus following the detection of a copy number variant of uncertain significance, whether it is ethically justifiable to withhold any test result information from a woman, what constitutes an 'informed choice' when women are offered CMA in pregnancy and whether clinicians are morally responsible for 'unnecessary' termination of pregnancy. Although we are cognisant of the distress associated with uncertain prenatal results, we argue in favour of the autonomy of women and their right to information from genome-wide CMA in order to make informed choices about their pregnancies. We propose that information material to a woman's decision-making process, including uncertain information, should not be withheld, and that it would be paternalistic for clinicians to try to take responsibility for women's decisions to terminate pregnancies. Non-directive pre-test and post-test genetic counselling is central to the delivery of these ethical objectives.
Collapse
Affiliation(s)
- George McGillivray
- Royal Women's Hospital, Melbourne, Victoria, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Vermeesch JR, Brady PD, Sanlaville D, Kok K, Hastings RJ. Genome-wide arrays: quality criteria and platforms to be used in routine diagnostics. Hum Mutat 2012; 33:906-15. [PMID: 22415865 DOI: 10.1002/humu.22076] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Whole-genome analysis using genome-wide arrays, also called "genomic arrays," "microarrays," or "arrays," has become the first-tier diagnostic test for patients with developmental abnormalities and/or intellectual disabilities. In addition to constitutional anomalies, genomic arrays are also used to diagnose acquired disorders. Despite the rapid implementation of these technologies in diagnostic laboratories, external quality control schemes (such as CEQA, EMQN, UK NEQAS, and the USA QA scheme CAP) and interlaboratory comparisons show that there are huge differences in quality, interpretation, and reporting among laboratories. We offer guidance to laboratories to help assure the quality of array experiments and to standardize minimum detection resolution, and we also provide guidelines to standardize interpretation and reporting.
Collapse
Affiliation(s)
- Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, University Hospital Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Robberecht C, Voet T, Utine GE, Schinzel A, de Leeuw N, Fryns JP, Vermeesch J. Meiotic errors followed by two parallel postzygotic trisomy rescue events are a frequent cause of constitutional segmental mosaicism. Mol Cytogenet 2012; 5:19. [PMID: 22490612 PMCID: PMC3350457 DOI: 10.1186/1755-8166-5-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/10/2012] [Indexed: 01/27/2023] Open
Abstract
Structural copy number variation (CNV) is a frequent cause of human variation and disease. Evidence is mounting that somatic acquired CNVs are prevalent, with mosaicisms of large segmental CNVs in blood found in up to one percent of both the healthy and patient populations. It is generally accepted that such constitutional mosaicisms are derived from postzygotic somatic mutations. However, few studies have tested this assumption. Here we determined the origin of CNVs which coexist with a normal cell line in nine individuals. We show that in 2/9 the CNV originated during meiosis. The existence of two cell lines with 46 chromosomes thus resulted from two parallel trisomy rescue events during postzygotic mitoses.
Collapse
Affiliation(s)
| | - Thierry Voet
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Gülen E Utine
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
- Department of Pediatrics, Division of Genetics, Hacettepe University, Ankara, Turkey
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jean-Pierre Fryns
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Joris Vermeesch
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Shehab MI, Mazen I, Bint S. Tissue-specific mosaicism for tetrasomy 9p uncovered by array CGH. Am J Med Genet A 2011; 155A:2496-2500. [DOI: 10.1002/ajmg.a.34176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|