1
|
Gall-Duncan T, Ko SY, Quick IK, Khan M, Feng K, Kelley CP, Coleman A, Touze A, Tang S, Mehkary M, Yokoi K, Herrington CR, You J, Lambie SC, Prasolava TK, Panigrahi GB, Park J, Nakatani K, Byrne LM, Wang P, Schneekloth JS, Nakamori M, Frankland PW, Wang ET, Pearson CE. Interventionally targeting somatic CAG expansions can be a rapid disease-modifying therapeutic avenue: Preclinical evidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650652. [PMID: 40330856 PMCID: PMC12051495 DOI: 10.1101/2025.04.25.650652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Huntington disease (HD) is caused by inherited CAG expansions, which continue expanding somatically in affected brain regions to hasten disease onset and progression. Therapeutically diminishing somatic expansions is expected to be clinically beneficial. However, it is not known if interventionally modifying somatic CAG expansions will actually modify in vivo clinically-relevant phenotypes, what the therapeutic window is, or which phenotypes will be altered. Here we show that acute (6-week) delivery of the contraction-inducing slipped-CAG DNA ligand naphthyridine-azaquinolone to young (4-week-old) (CAG)120 HD mice, induces contractions throughout brain regions, improves motor function (locomotion, balance, coordination, muscle strength), molecular disease landmarks (mHTT aggregates, nuclear envelope morphology, nucleocytoplasmic mRNA transport, transcriptomic dysregulation, neuroinflammation), and neurodegeneration. Beneficial effects of modifying somatic expansions were also evident in muscle and blood, where blood CAG instability correlated with brain instability and blood serum had diminished levels of neurofilament light (a biomarker for neurodegeneration) - offering blood as having elements of target engagement and efficacy. These data support that targeting somatic repeat expansions can be a rapid disease-modifying therapeutic avenue for HD and possibly other repeat expansion diseases. Our findings support an etiologic pathway interconnected to somatic CAG expansions that will inform the design of clinical trials expecting clinical benefit by modulating somatic expansions.
Collapse
|
2
|
Bunting EL, Donaldson J, Cumming SA, Olive J, Broom E, Miclăuș M, Hamilton J, Tegtmeyer M, Zhao HT, Brenton J, Lee WS, Handsaker RE, Li S, Ford B, Ryten M, McCarroll SA, Kordasiewicz HB, Monckton DG, Balmus G, Flower M, Tabrizi SJ. Antisense oligonucleotide-mediated MSH3 suppression reduces somatic CAG repeat expansion in Huntington's disease iPSC-derived striatal neurons. Sci Transl Med 2025; 17:eadn4600. [PMID: 39937881 DOI: 10.1126/scitranslmed.adn4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Expanded CAG alleles in the huntingtin (HTT) gene that cause the neurodegenerative disorder Huntington's disease (HD) are genetically unstable and continue to expand somatically throughout life, driving HD onset and progression. MSH3, a DNA mismatch repair protein, modifies HD onset and progression by driving this somatic CAG repeat expansion process. MSH3 is relatively tolerant of loss-of-function variation in humans, making it a potential therapeutic target. Here, we show that an MSH3-targeting antisense oligonucleotide (ASO) effectively engaged with its RNA target in induced pluripotent stem cell (iPSC)-derived striatal neurons obtained from a patient with HD carrying 125 HTT CAG repeats (the 125 CAG iPSC line). ASO treatment led to a dose-dependent reduction of MSH3 and subsequent stalling of CAG repeat expansion in these striatal neurons. Bulk RNA sequencing revealed a safe profile for MSH3 reduction, even when reduced by >95%. Maximal knockdown of MSH3 also effectively slowed CAG repeat expansion in striatal neurons with an otherwise accelerated expansion rate, derived from the 125 CAG iPSC line where FAN1 was knocked out by CRISPR-Cas9 editing. Last, we created a knock-in mouse model expressing the human MSH3 gene and demonstrated effective in vivo reduction in human MSH3 after ASO treatment. Our study shows that ASO-mediated MSH3 reduction can prevent HTT CAG repeat expansion in HD 125 CAG iPSC-derived striatal neurons, highlighting the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Emma L Bunting
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Jasmine Donaldson
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jessica Olive
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Elizabeth Broom
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Mihai Miclăuș
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Joseph Hamilton
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan Brenton
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Won-Seok Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Susan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Michael Flower
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| |
Collapse
|
3
|
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int J Mol Sci 2024; 25:11493. [PMID: 39519046 PMCID: PMC11546943 DOI: 10.3390/ijms252111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators.
Collapse
Affiliation(s)
- Alexandra E. Zubkova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
| |
Collapse
|
4
|
Stanisławska-Sachadyn A, Krzemiński M, Zielonka D, Krygier M, Ziętkiewicz E, Sławek J, Limon J. Sex contribution to average age at onset of Huntington's disease depends on the number of (CAG) n repeats. Sci Rep 2024; 14:15729. [PMID: 38977715 PMCID: PMC11231309 DOI: 10.1038/s41598-024-64105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the extension of the CAG repeats in exon 1 of the HTT gene and is transmitted in a dominant manner. The present study aimed to assess whether patients' sex, in the context of mutated and normal allele length, contributes to age on onset (AO) of HD. The study population comprised a large cohort of 3723 HD patients from the European Huntington's Disease Network's REGISTRY database collected at 160 sites across 17 European countries and in one location outside Europe. The data were analyzed using regression models and factorial analysis of variance (ANOVA) considering both mutated allele length and sex as predictors of patients' AO. AO, as described by the rater's estimate, was found to be later in affected women than in men across the whole population. This difference was most pronounced in a subgroup of 1273 patients with relatively short variants of the mutated allele (40-45 CAG repeats) and normal alleles in a higher half of length distribution-namely, more than 17 CAG repeats; however, it was also observed in each group. Our results presented in this observational study point to sex-related differences in AO, most pronounced in the presence of the short mutated and long normal allele, which may add to understanding the dynamics of AO in Huntington's Disease.Trial registration: ClinicalTrials.gov identifier NCT01590589.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Department of Biotechnology and Microbiology, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
- Department of Biology and Medical Genetics, Medical University of Gdańsk, 80-211, Gdańsk, Poland.
- BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michał Krzemiński
- Institute of Applied Mathematics , Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Daniel Zielonka
- Department of Public Health, Poznań University of Medical Sciences, 60-812, Poznan, Poland
| | - Magdalena Krygier
- Department of Developmental Neurology, Medical University of Gdansk, 80-952, Gdańsk, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Jarosław Sławek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL, 80-462,, Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Janusz Limon
- Department of Medical Ethics, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| |
Collapse
|
5
|
Risby-Jones G, Lee JD, Woodruff TM, Fung JN. Sex differences in Huntington's disease from a neuroinflammation perspective. Front Neurol 2024; 15:1384480. [PMID: 38915800 PMCID: PMC11194371 DOI: 10.3389/fneur.2024.1384480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune dysregulation, prominently featuring increased immune activity, plays a significant role in HD pathogenesis. In addition to the central nervous system (CNS), systemic innate immune activation and inflammation are observed in HD patients, exacerbating the effects of the Huntingtin (HTT) gene mutation. Recent attention to sex differences in HD symptom severity underscores the need to consider gender as a biological variable in neurodegenerative disease research. Understanding sex-specific immune responses holds promise for elucidating HD pathophysiology and informing targeted treatment strategies to mitigate cognitive and functional decline. This perspective will highlight the importance of investigating gender influence in HD, particularly focusing on sex-specific immune responses predisposing individuals to disease.
Collapse
Affiliation(s)
- Grace Risby-Jones
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Calluori S, Stark R, Pearson BL. Gene-Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability. Biomedicines 2023; 11:515. [PMID: 36831049 PMCID: PMC9953593 DOI: 10.3390/biomedicines11020515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Short tandem repeats (STRs) are units of 1-6 base pairs that occur in tandem repetition to form a repeat tract. STRs exhibit repeat instability, which generates expansions or contractions of the repeat tract. Over 50 diseases, primarily affecting the central nervous system and muscles, are characterized by repeat instability. Longer repeat tracts are typically associated with earlier age of onset and increased disease severity. Environmental exposures are suspected to play a role in the pathogenesis of repeat expansion diseases. Here, we review the current knowledge of mechanisms of environmentally induced repeat instability in repeat expansion diseases. The current evidence demonstrates that environmental factors modulate repeat instability via DNA damage and induction of DNA repair pathways, with distinct mechanisms for repeat expansion and contraction. Of particular note, oxidative stress is a key mediator of environmentally induced repeat instability. The preliminary evidence suggests epigenetic modifications as potential mediators of environmentally induced repeat instability. Future research incorporating an array of environmental exposures, new human cohorts, and improved model systems, with a continued focus on cell-types, tissues, and critical windows, will aid in identifying mechanisms of environmentally induced repeat instability. Identifying environmental modulators of repeat instability and their mechanisms of action will inform preventions, therapies, and public health measures.
Collapse
Affiliation(s)
- Stephanie Calluori
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
- Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, USA
| | - Rebecca Stark
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
8
|
Fourier A, Quadrio I. Proteinopathies associated to repeat expansion disorders. J Neural Transm (Vienna) 2022; 129:173-185. [DOI: 10.1007/s00702-021-02454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
9
|
Huntington's Chorea-a Rare Neurodegenerative Autosomal Dominant Disease: Insight into Molecular Genetics, Prognosis and Diagnosis. Appl Biochem Biotechnol 2021; 193:2634-2648. [PMID: 34235640 DOI: 10.1007/s12010-021-03523-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
Huntington's disease is a neurodegenerative autosomal disease results due to expansion of polymorphic CAG repeats in the huntingtin gene. Phosphorylation of the translation initiation factor 4E-BP results in the alteration of the translation control leading to unwanted protein synthesis and neuronal function. Consequences of mutant huntington (mhtt) gene transcription are not well known. Variability of age of onset is an important factor of Huntington's disease separating adult and juvenile types. The factors which are taken into account are-genetic modifiers, maternal protection i.e excessive paternal transmission, superior ageing genes and environmental threshold. A major focus has been given to the molecular pathogenesis which includes-motor disturbance, cognitive disturbance and neuropsychiatric disturbance. The diagnosis part has also been taken care of. This includes genetic testing and both primary and secondary symptoms. The present review also focuses on the genetics and pathology of Huntington's disease.
Collapse
|
10
|
Hentosh S, Zhu L, Patino J, Furr JW, Rocha NP, Furr Stimming E. Sex Differences in Huntington's Disease: Evaluating the Enroll-HD Database. Mov Disord Clin Pract 2021; 8:420-426. [PMID: 33816672 PMCID: PMC8015889 DOI: 10.1002/mdc3.13178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Identifying sex-related differences is critical for enhancing our understanding of factors that may impact prognosis and advance treatments in Huntington's disease (HD). OBJECTIVES To investigate if sex-related differences exist in clinical HD. METHODS Longitudinal study of the Enroll-HD database. Manifest HD patients were included in the analysis (N = 8401). Linear mixed models were used to assess motor, behavioral, and cognitive functioning over a series of four annual visits, and compared male and female HD gene carriers. RESULTS HD patients showed significant sex-dependent differences in motor, cognitive, and behavioral symptoms. Both sexes had worsened motor symptoms over the course of four visits, but there was a significant disparity between sexes, with females consistently presenting with more symptoms than males. For behavioral symptoms, specifically depressive symptoms, females had significantly more depressive symptoms, although self-reported symptoms in both sexes became less severe throughout time. CONCLUSIONS Our analyses suggest that women have worse symptoms than men during the course of HD.
Collapse
Affiliation(s)
- Samantha Hentosh
- McGovern Medical School, The University of Texas Health Science Center (UTHealth)HoustonTexasUSA
| | - Liang Zhu
- Department of Internal MedicineMcGovern Medical School, The University of Texas Health Science Center (UTHealth)HoustonTexasUSA
| | - Jorge Patino
- McGovern Medical School, The University of Texas Health Science Center (UTHealth)HoustonTexasUSA
- HDSA Center of Excellence at UTHealthHoustonTexasUSA
| | - J. Weldon Furr
- School of Medicine, Louisiana State University Health Sciences Center ShreveportShreveportLouisianaUSA
| | - Natalia P. Rocha
- The Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of NeurologyMcGovern Medical School, The University of Texas Health Science CenterHoustonTexasUSA
| | - Erin Furr Stimming
- McGovern Medical School, The University of Texas Health Science Center (UTHealth)HoustonTexasUSA
- HDSA Center of Excellence at UTHealthHoustonTexasUSA
| |
Collapse
|
11
|
Khampang S, Parnpai R, Mahikul W, Easley CA, Cho IK, Chan AWS. CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington's disease monkey. J Assist Reprod Genet 2021; 38:1215-1229. [PMID: 33611676 DOI: 10.1007/s10815-021-02106-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time. METHODS HD rhesus monkey embryonic stem cells (rESCs) were cultured in vitro for an extended period. Male rESCs were used to derive spermatogenic cells in vitro with a 10-day differentiation. The assessment of CAG repeat instability was performed by GeneScan and curve fit analysis. RESULTS Spermatogenic cells derived from rESCs exhibit progressive expansion of CAG repeats with high daily expansion rates compared to the extended culture of rESCs. The expansion of CAG repeats is cell type-specific and size-dependent. CONCLUSIONS Here, we report a novel stem cell model that replicates genome instability and CAG repeat expansion in in vitro derived HD monkey spermatogenic cells. The in vitro spermatogenic cell model opens a new opportunity for studying TNR instability and the underlying mechanism of genetic anticipation, not only in HD but also in other TNR diseases.
Collapse
Affiliation(s)
- Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wiriya Mahikul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Zielonka D, Stawinska-Witoszynska B. Gender Differences in Non-sex Linked Disorders: Insights From Huntington's Disease. Front Neurol 2020; 11:571. [PMID: 32733356 PMCID: PMC7358529 DOI: 10.3389/fneur.2020.00571] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Daniel Zielonka
- The Department of Public Health, The Poznan University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
13
|
Clever F, Cho IK, Yang J, Chan AWS. Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. J Huntingtons Dis 2020; 8:443-448. [PMID: 31561381 PMCID: PMC6839466 DOI: 10.3233/jhd-190359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expanded CAG repeat results in somatic mosaicism and genetic anticipation in Huntington’s disease (HD). Here we report a longitudinal study examining CAG repeat instability in lymphocytes and sperm of three HD monkeys throughout their whole life-span that encompass the prodromal to symptomatic stages of HD. We demonstrate a progressive increase in CAG repeat length in lymphocytes and sperm as the animals aged. We also examined the impact of CAG repeat length on expansion rate, which showed a clear linear correlation up to 62Q, and high instability after. Our findings stress the importance of further investigation in CAG instability in peripheral blood cells longitudinally.
Collapse
Affiliation(s)
- Faye Clever
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Gemechu SD, van Vliet CM, Win AK, Figueiredo JC, Le Marchand L, Gallinger S, Newcomb PA, Hopper JL, Lindor NM, Jenkins MA, Dowty JG. Do the risks of Lynch syndrome-related cancers depend on the parent of origin of the mutation? Fam Cancer 2020; 19:215-222. [PMID: 32107660 PMCID: PMC7410789 DOI: 10.1007/s10689-020-00167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 01/07/2023]
Abstract
Individuals who carry pathogenic mutations in DNA mismatch repair (MMR) genes have high risks of cancer, and small studies have suggested that these risks depend on the sex of the parent from whom the mutation was inherited. We have conducted the first large study of such a parent-of-origin effect (POE). Our study was based on all MMR gene mutation carriers and their relatives in the Colon Cancer Family Registry, comprising 18,226 people. The POE was estimated as a hazard ratio (HR) using a segregation analysis approach that adjusted for ascertainment. HR = 1 corresponds to no POE and HR > 1 corresponds to higher risks for maternal mutations. For all MMR genes combined, the estimated POE HRs were 1.02 (95% confidence interval (CI) 0.75-1.39, p = 0.9) for male colorectal cancer, 1.12 (95% CI 0.81-1.54, p = 0.5) for female colorectal cancer and 0.84 (95% CI 0.52-1.36, p = 0.5) for endometrial cancer. Separate results for each MMR gene were similar. Therefore, despite being well-powered, our study did not find any evidence that cancer risks for MMR gene mutation carriers depend on the parent-of-origin of the mutation. Based on current evidence, we do not recommend that POEs be incorporated into the clinical guidelines or advice for such carriers.
Collapse
Affiliation(s)
- Shimelis Dejene Gemechu
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Christine M van Vliet
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Steven Gallinger
- Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
16
|
Tibben A, Dondorp WJ, de Wert GM, de Die-Smulders CE, Losekoot M, Bijlsma EK. Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners. J Huntingtons Dis 2020; 8:71-78. [PMID: 30689590 DOI: 10.3233/jhd-180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amongst the main reasons people at risk for Huntington's disease (HD) have for undergoing predictive genetic testing are planning a family and prevention of passing on an expanded CAG-repeat to future offspring. After having received an unfavourable test result, a couple may consider prenatal testing in the foetus or preimplantation genetic diagnostic testing (PGD) in embryos. Testing of the foetus or embryos is possible by means of direct testing of the expanded repeat. Optimal reliability in testing the foetus or embryos requires the establishment of the origin of the repeats of both parents in the foetus. For PGD the analysis is combined with or sometimes solely based on identification of the at-risk haplotype in the embryo. This policy implies that in the context of direct testing, the healthy partner's CAG repeat lengths in the HD gene are also tested, but with the expectation that the repeat lengths of the partner are within the normal range, with the proviso that the partner's pedigree is free of clinically confirmed HD. However, recent studies have shown that the expanded repeat has been observed more often in the general population than previously estimated. Moreover, we have unexpectedly observed an expanded repeat in the non-HD partner in four cases which had far-reaching consequences. Hence, we propose that in the context of reproductive genetic counselling, prior to a planned pregnancy, and irrespective of the outcome of the predictive test in the HD-partner, the non-HD partner should also be given the option of being tested on the expanded allele. International recommendations for predictive testing for HD should be adjusted.
Collapse
Affiliation(s)
- Aad Tibben
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wybo J Dondorp
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | - Guido M de Wert
- Department of Health, Ethics and Society, Maastricht University, Maastricht, The Netherlands
| | | | - Moniek Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Abstract
In a range of neurological conditions, including movement disorders, sex-related differences are emerging not only in brain anatomy and function, but also in pathogenesis, clinical features and response to treatment. In Parkinson disease (PD), for example, oestrogens can influence the severity of motor symptoms, whereas elevation of androgens can exacerbate tic disorders. Nevertheless, the real impact of sex differences in movement disorders remains under-recognized. In this article, we provide an up-to-date review of sex-related differences in PD and the most common hyperkinetic movement disorders, namely, essential tremor, dystonia, Huntington disease and other chorea syndromes, and Tourette syndrome and other chronic tic disorders. We highlight the most relevant clinical aspects of movement disorders that differ between men and women. Increased recognition of these differences and their impact on patient care could aid the development of tailored approaches to the management of movement disorders and enable the optimization of preclinical research and clinical studies.
Collapse
|
18
|
Castilhos RMD, Santos JAD, Augustin MC, Pedroso JL, Barsottini O, Saba R, Ferraz HB, Godeiro Junior C, Vargas FR, Salarini DZ, Furtado GV, Polese-Bonatto M, Rodrigues LP, Sena LS, Saraiva-Pereira ML, Jardim LB. Minimal prevalence of Huntington's disease in the South of Brazil and instability of the expanded CAG tract during intergenerational transmissions. Genet Mol Biol 2019; 42:329-336. [PMID: 31259362 PMCID: PMC6726154 DOI: 10.1590/1678-4685-gmb-2018-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is due to dominant expansions of the CAG repeat of the
HTT gene. Meiotic instability of the (CAG)n
might impact the disorder frequency. We report on HD minimal prevalence in Rio
Grande do Sul (RS) state, Brazil, and on intergenerational instability of the
(CAG)n in HD families. Symptomatic and at-risk subjects from 179
HD families were ascertained between 2013 and 2016. Clinical, molecular and
family history data were obtained. Expanded (CAG)n length differences
between parent and child (delta-expanded-(CAG)n) were calculated.
Effect of parental age on the (CAG)n instability upon transmission
was inferred by correlating delta-expanded-(CAG)n between siblings to
their age differences. HD minimal prevalence in RS state was estimated as
1.85:100,000 inhabitants. Alleles with (CAG)27-35 were found on
21/384 non-disease associated chromosomes (5.5%); among 253 expanded alleles,
four (1.6%) were within reduced penetrance range with (CAG)36-39. In
32 direct transmissions, mean instability was larger among paternal than
maternal transmissions. In direct transmissions and in 51 sibling pairs,
parental age at the time of child birth were not correlated with
delta-expanded-(CAG)n. Briefly, HD prevalence in RS state was
lower than those reported for European populations. Expanded (CAG)n
transmissions were unstable and not associated to parental age.
Collapse
Affiliation(s)
- Raphael Machado de Castilhos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
| | - José Augusto Dos Santos
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Marina Coutinho Augustin
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - José Luiz Pedroso
- Disciplina de Neurologia Clínica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Orlando Barsottini
- Disciplina de Neurologia Clínica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Roberta Saba
- Disciplina de Neurologia Clínica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Henrique Ballalai Ferraz
- Disciplina de Neurologia Clínica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Clécio Godeiro Junior
- Departamento de Medicina Integrada, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fernando Regla Vargas
- Hospital Graffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil.,Laboratório de Epidemiologia de Malformações Congênitas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Gabriel Vasata Furtado
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Marcia Polese-Bonatto
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Luiza Paulsen Rodrigues
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Schenatto Sena
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
| | -
- Rede Neurogenética, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 2019; 102:95-105. [DOI: 10.1016/j.neubiorev.2019.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
20
|
Ylönen S, Sipilä JOT, Hietala M, Majamaa K. HTT haplogroups in Finnish patients with Huntington disease. NEUROLOGY-GENETICS 2019; 5:e334. [PMID: 31086827 PMCID: PMC6481225 DOI: 10.1212/nxg.0000000000000334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Objective To study genetic causes of the low frequency of Huntington disease (HD) in the Finnish population, we determined HTT haplogroups in the population and patients with HD and analyzed intergenerational Cytosine-Adenosine-Guanosine (CAG) stability. Methods A national cohort of patients with HD was used to identify families with mutant HTT (mHTT). HTT haplogroups were determined in 225 archival samples from patients and from 292 population samples. CAG repeats were phased with HTT haplotypes using data from parent-offspring pairs and other mHTT carriers in the family. Results The allele frequencies of HTT haplotypes in the Finnish population differed from those in 411 non-Finnish European subjects (p < 0.00001). The frequency of haplogroup A was lower than that in Europeans and haplogroup C was higher. Haplogroup A alleles were significantly more common in patients than in controls. Among patients with HD haplotypes A1 and A2 were more frequent than among the controls (p = 0.003). The mean size of the CAG repeat change was +1.38 units in paternal transmissions being larger than that (−0.17) in maternal transmissions (p = 0.008). CAG repeats on haplogroup A increased by 3.18 CAG units in paternal transmissions, but only by 0.11 units in maternal transmissions (p = 0.008), whereas haplogroup C repeat lengths decreased in both paternal and maternal transmissions. Conclusions The low frequency of HD in Finland is partly explained by the low frequency of the HD-associated haplogroup A in the Finnish population. There were remarkable differences in intergenerational CAG repeat dynamics that depended on HTT haplotype and parent gender.
Collapse
Affiliation(s)
- Susanna Ylönen
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Jussi O T Sipilä
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Marja Hietala
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Kari Majamaa
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| |
Collapse
|
21
|
Wei CW, Luo T, Zou SS, Wu AS. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci 2018; 12:175. [PMID: 30323747 PMCID: PMC6172704 DOI: 10.3389/fnbeh.2018.00175] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a group of noncoding RNAs (ncRNAs) that has a transcript of more than 200 nucleotides in length in eukaryotic cells. The lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels by multiple action modes. In this review, we describe the diverse roles reported for lncRNAs, and discuss how they could mechanistically be involved in the development of central nervous system (CNS) and neurodegenerative diseases. Further studies on the function of lncRNAs and their mechanism will help deepen our understanding of the development, function, and diseases of the CNS, and provide new ideas for the design and development of some therapeutic drugs.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc Natl Acad Sci U S A 2017; 114:E11020-E11028. [PMID: 29229810 PMCID: PMC5754783 DOI: 10.1073/pnas.1712526114] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genetic basis of X-Linked dystonia-parkinsonism (XDP) has been difficult to unravel, in part because all patients inherit the same haplotype of seven sequence variants, none of which has ever been identified in control individuals. This study revealed that one of the haplotype markers, a retrotransposon insertion within an intron of TAF1, has a variable number of hexameric repeats among affected individuals with an increase in repeat number strongly correlated with earlier age at disease onset. These data support a contributing role for this sequence in disease pathogenesis while further suggesting that XDP may be part of a growing list of neurodegenerative disorders associated with unstable repeat expansions. X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein–associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n. The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.
Collapse
|
23
|
Risk factors for the onset and progression of Huntington disease. Neurotoxicology 2017; 61:79-99. [PMID: 28111121 DOI: 10.1016/j.neuro.2017.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/10/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by chorea, behavioural and psychiatric manifestations, and dementia, caused by a CAG triplet repeat expansion in the huntingtin gene. Systematic review of the literature was conducted to determine the risk factors for the onset and progression of HD. Multiple databases were searched, using terms specific to Huntington disease and to studies of aetiology, risk, prevention and genetics, limited to studies on human subjects published in English or French between 1950 and 2010. Two reviewers independently screened the abstracts and identified potentially relevant articles for full-text review using predetermined inclusion criteria. Three major categories of risk factors for onset of HD were identified: CAG repeat length in the huntingtin gene, CAG instability, and genetic modifiers. Of these, CAG repeat length in the huntingtin gene is the most important risk factor. For the progression of HD: genetic, demographic, past medical/clinical and environmental risk factors have been studied. Of these factors, genetic factors appear to play the most important role in the progression of HD. Among the potential risk factors, CAG repeat length in the mutant allele was found to be a relatively consistent and significant risk factor for the progression of HD, especially in motor, cognitive, and other neurological symptom deterioration. In addition, there were many consistent results in the literature indicating that a higher number of CAG repeats was associated with shorter survival, faster institutionalization, and earlier percutaneous endoscopic gastrostomy.
Collapse
|
24
|
Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice. Genetics 2016; 205:503-516. [PMID: 27913616 PMCID: PMC5289832 DOI: 10.1534/genetics.116.195578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability.
Collapse
|
25
|
Mamimoué É, Jalenques I. Maladie de Huntington : données actuelles sur la prise en charge thérapeutique des troubles psychiatriques. ANNALES MEDICO-PSYCHOLOGIQUES 2016. [DOI: 10.1016/j.amp.2016.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. DNA Repair (Amst) 2016; 42:107-18. [PMID: 27155933 DOI: 10.1016/j.dnarep.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats.
Collapse
|
27
|
Bouhouche A, Regragui W, Lamghari H, Khaldi K, Birouk N, Lytim S, Bellamine S, Kriouile Y, Bouslam N, Haddou EHAB, Faris MA, Benomar A, Yahyaoui M. Clinical and genetic data of Huntington disease in Moroccan patients. Afr Health Sci 2015; 15:1232-8. [PMID: 26958025 DOI: 10.4314/ahs.v15i4.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) occurs worldwide with prevalence varying from 0.1 to 10/100,000 depending of the ethnic origin. Since no data is available in the Maghreb population, the aim of this study is to describe clinical and genetic characteristics of Huntington patients of Moroccan origin. METHODS Clinical and genetics data of 21 consecutive patients recruited from 2009 to 2014 from the outpatient clinic of six medical centers were analyzed. Statistical analysis was performed using descriptive statistics. RESULTS Twenty one patients from 17 families were diagnosed positive for the IT15 gene CAG expansion. Clinical symptoms were predominantly motor (19/21). Twelve patients had psychiatric and behavioral disorders, and 11 patients had cognitive disorders essentially of memory impairment. Analysis of genetic results showed that 5 patients had reduced penetrant (RP) alleles and 16 had fully penetrant (FP) alleles. The mean CAG repeat length in patients with RP alleles was 38.4 ± 0.54, and 45.37 ± 8.30 in FP alleles. The age of onset and the size of the CAG repeat length showed significant inverse correlation (p <0.001, r = -0.754). CONCLUSION Clinical and genetic data of Moroccan patients are similar to those of Caucasian populations previously reported in the literature.
Collapse
Affiliation(s)
- Ahmed Bouhouche
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Wafaa Regragui
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | | | | | - Nazha Birouk
- Service de Neurophysiologie clinique, Hôpital des Spécialités de Rabat, Morocco
| | - Safaa Lytim
- Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Soufiane Bellamine
- Service de Neurologie et de Neuropsychologie, Hôpital des Spécialités de Rabat, Morocco
| | | | - Naima Bouslam
- Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - El Hachmia Ait Ben Haddou
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Mustapha Alaoui Faris
- Service de Neurologie et de Neuropsychologie, Hôpital des Spécialités de Rabat, Morocco
| | - Ali Benomar
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| | - Mohamed Yahyaoui
- Equipe de Recherche sur les Maladies Neurodégénératives, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Morocco; Service de Neurologie et de Neurogénétique, Hôpital des Spécialités de Rabat, Morocco
| |
Collapse
|
28
|
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, Streichenberger N, Vighetto A, Desestret V, Tesson C, Wichmann HE, Illig T, Huttenlocher J, Kita Y, Izumi Y, Mizusawa H, Schöls L, Klopstock T, Brice A, Ishikawa K, Dürr A. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry 2015; 86:986-95. [PMID: 25476002 DOI: 10.1136/jnnp-2014-309153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Spinocerebellar ataxia 36 (SCA36) is an autosomal-dominant neurodegenerative disorder caused by a large (>650) hexanucleotide GGCCTG repeat expansion in the first intron of the NOP56 gene. The aim of this study is to clarify the prevalence, clinical and genetic features of SCA36. METHODS The expansion was tested in 676 unrelated SCA index cases and 727 controls from France, Germany and Japan. Clinical and neuropathological features were investigated in available family members. RESULTS Normal alleles ranged between 5 and 14 hexanucleotide repeats. Expansions were detected in 12 families in France (prevalence: 1.9% of all French SCAs) including one family each with Spanish, Portuguese or Chinese ancestry, in five families in Japan (1.5% of all Japanese SCAs), but were absent in German patients. All the 17 SCA36 families shared one common haplotype for a 7.5 kb pairs region flanking the expansion. While 27 individuals had typically long expansions, three affected individuals harboured small hexanucleotide expansions of 25, 30 and 31 hexanucleotide repeat-units, demonstrating that such a small expansion could cause the disease. All patients showed slowly progressive cerebellar ataxia frequently accompanied by hearing and cognitive impairments, tremor, ptosis and reduced vibration sense, with the age at onset ranging between 39 and 65 years, and clinical features were indistinguishable between individuals with short and typically long expansions. Neuropathology in a presymptomatic case disclosed that Purkinje cells and hypoglossal neurons are affected. CONCLUSIONS SCA36 is rare with a worldwide distribution. It can be caused by a short GGCCTG expansion and associates various extracerebellar symptoms.
Collapse
Affiliation(s)
- Masato Obayashi
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Giovanni Stevanin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Marie-Lorraine Monin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France
| | - Charles Duyckaerts
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Laboratoire de Neuropathologie R. Escourolle, Groupe Hospitalier Pitié-Salpêtrière, 47 Blvd de l'Hôpital, Paris, France
| | - Nozomu Sato
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nathalie Streichenberger
- Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France
| | - Alain Vighetto
- Neurology Department, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Desestret
- Neurology D, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Christelle Tesson
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - H-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Illig
- Unit for Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Johanna Huttenlocher
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Yasushi Kita
- Neurology Service, Hyogo Brain and Heart Center at Himeji, Himeji, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany German Network for Mitochondrial Disorders (mitoNET) DZNE-German Center for Neurodegenerative Diseases, Munich, Germany German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| | - Kinya Ishikawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alexandra Dürr
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| |
Collapse
|
29
|
Uhlmann WR, Peñaherrera MS, Robinson WP, Milunsky JM, Nicholson JM, Albin RL. Biallelic mutations in huntington disease: A new case with just one affected parent, review of the literature and terminology. Am J Med Genet A 2015; 167A:1152-60. [DOI: 10.1002/ajmg.a.37009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Wendy R. Uhlmann
- Division of Molecular Medicine and Genetics; Department of Internal Medicine; University of Michigan; Ann Arbor Michigan
- Department of Human Genetics; University of Michigan; Ann Arbor Michigan
| | - Maria S. Peñaherrera
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia
- Child and Family Research Institute; Vancouver British Columbia
| | - Wendy P. Robinson
- Department of Medical Genetics; University of British Columbia; Vancouver British Columbia
- Child and Family Research Institute; Vancouver British Columbia
| | | | - Jane M. Nicholson
- Division of Molecular Medicine and Genetics; Department of Internal Medicine; University of Michigan; Ann Arbor Michigan
- Department of Obstetrics and Gynecology; University of Michigan; Ann Arbor Michigan
| | - Roger L. Albin
- Department of Neurology; University of Michigan; Ann Arbor Michigan
- VA Ann Arbor Healthcare System; Geriatrics Research, Education, and Clinical Center; Ann Arbor Michigan
| |
Collapse
|
30
|
Bean L, Bayrak-Toydemir P. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet Med 2014; 16:e2. [PMID: 25356969 DOI: 10.1038/gim.2014.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
Huntington disease is an autosomal-dominant neurodegenerative disease of mid-life onset caused by expansion of a polymorphic trinucleotide (CAG) repeat. Variable penetrance for alleles carrying 36-39 repeats has been noted, but the disease appears fully penetrant when the repeat numbers are >40. An abnormal CAG repeat may expand, contract, or be stably transmitted when passed from parent to child. Assays used to diagnose Huntington disease must be optimized to ensure the accurate and unambiguous quantitation of CAG repeat length. This document provides an overview of Huntington disease and methodological considerations for Huntington disease testing. Examples of laboratory reports are also included.
Collapse
Affiliation(s)
- Lora Bean
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiol Dis 2014; 73:174-88. [PMID: 25301414 DOI: 10.1016/j.nbd.2014.09.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease triggered by the expansion of CAG repeats in the ATXN3 gene. Here, we report the generation of the first humanized ataxin-3 knock-in mouse model (Ki91), which provides insights into the neuronal and glial pathology of SCA3/MJD. First, mutant ataxin-3 accumulated in cell nuclei across the Ki91 brain, showing diffused immunostaining and forming intranuclear inclusions. The humanized allele revealed expansion and contraction of CAG repeats in intergenerational transmissions. CAG mutation also exhibited age-dependent tissue-specific expansion, which was most prominent in the cerebellum, pons and testes of Ki91 animals. Moreover, Ki91 mice displayed neuroinflammatory processes, showing astrogliosis in the cerebellar white matter and the substantia nigra that paralleled the transcriptional deregulation of Serpina3n, a molecular sign of neurodegeneration and brain damage. Simultaneously, the cerebellar Purkinje cells in Ki91 mice showed neurodegeneration, a pronounced decrease in Calbindin D-28k immunoreactivity and a mild decrease in cell number, thereby modeling the degeneration of the cerebellum observed in SCA3. Moreover, these molecular and cellular neuropathologies were accompanied by late behavioral deficits in motor coordination observed in rotarod and static rod tests in heterozygous Ki91 animals. In summary, we created an ataxin-3 knock-in mouse model that combines the molecular and behavioral disease phenotypes with the genetic features of SCA3. This model will be very useful for studying the pathogenesis and responses to therapy of SCA3/MJD and other polyQ disorders.
Collapse
|
32
|
Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS. Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert Opin Ther Targets 2014; 18:1293-304. [PMID: 25118797 DOI: 10.1517/14728222.2014.948419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein, which underlies the loss of striatal and cortical neurons. Glutamate has been implicated in a number of neurodegenerative diseases, and several studies suggest that the metabotropic glutamate receptor 5 (mGluR5) may represent a target for the treatment of HD. AREAS COVERED The main goal of this review is to discuss the current data in the literature regarding the role of mGluR5 in HD and evaluate the potential of mGluR5 as a therapeutic target for the treatment of HD. mGluR5 is highly expressed in the brain regions affected in HD and is involved in movement control. Moreover, mGluR5 interacts with htt and mutated htt profoundly affects mGluR5 signaling. However, mGluR5 stimulation can activate both neuroprotective and neurotoxic signaling pathways, depending on the context of activation. EXPERT OPINION Although the data published so far strongly indicate that mGluR5 plays a major role in HD-associated neurodegeneration, htt aggregation and motor symptoms, it is not clear whether mGluR5 stimulation can diminish or intensify neuronal cell loss and HD progression. Thus, future experiments will be necessary to further investigate the outcome of drugs acting on mGluR5 for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Universidade Federal de Minas Gerais, Departamento de Bioquimica e Imunologia, ICB , Belo Horizonte 31270-901 , Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Im W, Chung J, Lee ST, Chu K, Kim MW, Kim M. Nuclear localization of huntingtin during spermatogenesis. Neurol Sci 2013; 35:459-62. [DOI: 10.1007/s10072-013-1515-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/07/2013] [Indexed: 01/14/2023]
|
34
|
de Die-Smulders CEM, de Wert GMWR, Liebaers I, Tibben A, Evers-Kiebooms G. Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections. Hum Reprod Update 2013; 19:304-15. [PMID: 23377865 DOI: 10.1093/humupd/dms058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative late onset disorder. This review of reproductive options aims to increase reproductive confidence and to prevent suffering in relation to family planning around HD and possibly other late onset neurodegenerative disorders. METHODS Selected relevant literature and own views and experiences as clinical geneticists, psychologists and ethicists have been used. RESULTS Possible options, with emphasis on prenatal diagnosis (PD) and preimplantation genetic diagnosis (PGD) to prevent the transmission of HD to the next generation, are described and discussed. They are formally presented in a decision tree, taking into account the presence or absence of a fully penetrant allele (FPA), a reduced penetrant allele (RPA) or an intermediate allele (IA). A table compares invasive and non-invasive PD and PGD. From a psychological perspective, the complex process of counselling and decision-making regarding reproductive options is discussed. Special attention is paid to the decision to avoid the transmission of the mutation and to the confrontation and coping of a mutation-free child growing up with a parent developing disease symptoms. From an ethical point of view, reflections on both PD and PGD are brought forward taking into account the difference between FPA, RPA and IA, direct testing or exclusion testing and taking into account the welfare of the child in the context of medically assisted reproduction. CONCLUSION Recommendations and suggestions for good clinical practice in the reproductive care for HD families are formulated.
Collapse
Affiliation(s)
- C E M de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre, Joseph Bechlaan 113, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, Pardo J, Millán MJ, Arias-Rivas S, Blanco-Arias P, Dapena D, Moreira R, Rodríguez-Trelles F, Sequeiros J, Carracedo A, Silveira I, Sobrido MJ. 'Costa da Morte' ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain 2012; 135:1423-35. [PMID: 22492559 PMCID: PMC3338928 DOI: 10.1093/brain/aws069] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ~0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5-14 hexanucleotide repeats, expanded alleles range from ~650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ~1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia 36 is thus, so far, the most frequent dominant spinocerebellar ataxia in this region, which may have implications for American countries associated with traditional Spanish emigration.
Collapse
Affiliation(s)
- María García-Murias
- Fundacion Pública Galega de Medicina Xenómica, Clinical Hospital of Santiago, Travesía da Choupana s/n, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nopoulos P, Epping EA, Wassink T, Schlaggar BL, Perlmutter J. Correlation of CAG repeat length between the maternal and paternal allele of the Huntingtin gene: evidence for assortative mating. Behav Brain Funct 2011; 7:45. [PMID: 22008211 PMCID: PMC3219594 DOI: 10.1186/1744-9081-7-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
Triplet repeats contribute to normal variation in behavioral traits and when expanded, cause brain disorders. While Huntington's Disease is known to be caused by a CAG triplet repeat in the gene Huntingtin, the effect of CAG repeats on brain function below disease threshold has not been studied. The current study shows a significant correlation between the CAG repeat length of the maternal and paternal allele in the Huntingtin gene among healthy subjects, suggesting assortative mating.
Collapse
Affiliation(s)
- Peg Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | | | |
Collapse
|