1
|
Zaker E, Nouri N, Movahedinia M, Dadbinpour A, Vahidi Mehrjardi MY. Type 1 early infantile epileptic encephalopathy: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2412. [PMID: 38400608 PMCID: PMC10891437 DOI: 10.1002/mgg3.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Variants in the Aristaless-related homeobox (ARX) gene lead to a variety of phenotypes, with intellectual disability being a steady feature. Other features can include severe epilepsy, spasticity, movement disorders, hydranencephaly, and ambiguous genitalia in males. X-linked Ohtahara syndrome or Type 1 early infantile epileptic encephalopathy (EIEE1) is a severe early-onset epileptic encephalopathy with arrested psychomotor development caused by hemizygous mutations in the ARX gene, which encodes a transcription factor in fundamental brain developmental processes. METHODS We presented a case report of a 2-year-old boy who exhibited symptoms such as microcephaly, seizures, and severe multifocal epileptic abnormalities, and genetic techniques such as autozygosity mapping, Sanger sequencing, and whole-exome sequencing. RESULTS We confirmed that the patient had the NM_139058.3:c.84C>A; p.(Cys28Ter) mutation in the ARX gene. CONCLUSION The patient with EIEE1 had physical symptoms and hypsarrhythmia on electroencephalogram. Genetic testing identified a causative mutation in the ARX gene, emphasizing the role of genetic testing in EIEE diagnosis.
Collapse
Affiliation(s)
- Erfan Zaker
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Negar Nouri
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Mojtaba Movahedinia
- Department of Children Growth Disorder Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Ali Dadbinpour
- Department of Medical GeneticsSchool of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | | |
Collapse
|
2
|
Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, Kalueff AV. Towards Zebrafish Models of CNS Channelopathies. Int J Mol Sci 2022; 23:ijms232213979. [PMID: 36430455 PMCID: PMC9693542 DOI: 10.3390/ijms232213979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.
Collapse
Affiliation(s)
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Fabiano V. Costa
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | | | - Murilo S. de Abreu
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| | - Elena V. Gerasimova
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Allan V. Kalueff
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
- Ural Federal University, 620002 Yekaterinburg, Russia
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| |
Collapse
|
3
|
Huang YC, Chao YC, Lee IC. Syndromic and non-syndromic etiologies causing neonatal hypocalcemic seizures. Front Endocrinol (Lausanne) 2022; 13:998675. [PMID: 36440223 PMCID: PMC9685421 DOI: 10.3389/fendo.2022.998675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The diagnosis of neonatal hypocalcemic seizures (HS) in newborns is made based on clinical signs and serum calcium level. Their etiology is broad and diverse, and timely detection and initiation of treatment is essential. METHODS We retrospectively reviewed 1029 patients admitted to the neonatal intensive care unit. Neonatal HS were diagnosed in 16 patients, and we compared etiologies and clinical outcomes, including clinical seizures and neurodevelopment at least over 1 year old. RESULTS The etiologies can be broadly categorized into 5 syndromic and 11 non-syndromic neonatal HS. Syndromic neonatal HS included 3 Digeorge syndrome, 1 Kleefstra syndrome and 1 Alström syndrome. Non-syndromic neonatal HS included 8 vitamin D deficiency, 1 hypoparathyroidism, and 2 hypoxic-ischemic encephalopathy. Patients with syndromic neonatal HS were found to have worse clinical outcomes than those with nonsyndromic HS. In eight patients with vitamin D deficiency, neurodevelopment was normal. Five of five patients (100%) with syndromic HS used two or more antiseizure drugs. However, among patients with non-syndromic neonatal HS, only one of 11 (9.1%) used more than one drug (p = 0.001). CONCLUSION This finding highlighted that syndromic hypocalcemic seizures in newborns have worse neurodevelopmental outcomes and are more often difficult to manage, and would benefit from a genetic diagnostic approach.
Collapse
Affiliation(s)
- Yi-Chieh Huang
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yin-Chi Chao
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Whitlock JH, Soelter TM, Williams AS, Hardigan AA, Lasseigne BN. Liquid biopsies in epilepsy: biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum Cell 2022; 35:15-22. [PMID: 34694568 PMCID: PMC8732818 DOI: 10.1007/s13577-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Collapse
Affiliation(s)
- Jordan H Whitlock
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tabea M Soelter
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avery S Williams
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew A Hardigan
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N Lasseigne
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Abstract
This review describes the clinical presentations and treatment options for commonly recognized epilepsy syndromes in the pediatric age group, based on the 2017 International League Against Epilepsy classification. Structural epilepsies that are amenable to surgical intervention are discussed. Lastly, emerging technologies are reviewed that are expanding our knowledge of underlying epilepsy pathologies and will guide future syndromic classification systems including genetic testing and tissue repositories.
Collapse
Affiliation(s)
- Laura C Swanson
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave. #18, Chicago, IL 60611, USA
| | - Raheel Ahmed
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, 1675 Highland Avenue #0002, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Hong SY, Yang JJ, Li SY, Lee IC. A Wide Spectrum of Genetic Disorders Causing Severe Childhood Epilepsy in Taiwan: A Case Series of Ultrarare Genetic Cause and Novel Mutation Analysis in a Pilot Study. J Pers Med 2020; 10:jpm10040281. [PMID: 33333793 PMCID: PMC7765181 DOI: 10.3390/jpm10040281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pediatric epileptic encephalopathy and severe neurological disorders comprise a group of heterogenous diseases. We used whole-exome sequencing (WES) to identify genetic defects in pediatric patients. METHODS Patients with refractory seizures using ≥2 antiepileptic drugs (AEDs) receiving one AED and having neurodevelopmental regression or having severe neurological or neuromuscular disorders with unidentified causes were enrolled, of which 54 patients fulfilled the inclusion criteria, were enrolled, and underwent WES. RESULTS Genetic diagnoses were confirmed in 24 patients. In the seizure group, KCNQ2, SCN1A, TBCID 24, GRIN1, IRF2BPL, MECP2, OSGEP, PACS1, PIGA, PPP1CB, SMARCA4, SUOX, SZT2, UBE3A, 16p13.11 microdeletion, [4p16.3p16.1(68,345-7,739,782)X1, 17q25.1q25.3(73,608,322-81,041,938)X3], and LAMA2 were identified. In the nonseizure group, SCN2A, SPTBN2, DMD, and FBN1 were identified. Ten novel mutations were identified. The recurrent genes included SCN1A, KCNQ2, and TBCID24. Male pediatric patients had a significantly higher (57% vs. 29%; p < 0.05, odds ratio = 3.18) yield than their female counterparts. Seventeen genes were identified from the seizure groups, of which 82% were rare genetic etiologies for childhood seizure and did not appear recurrently in the case series. CONCLUSIONS Wide genetic variation was identified for severe childhood seizures by WES. WES had a high yield, particularly in male infantile patients.
Collapse
Affiliation(s)
- Syuan-Yu Hong
- Division of Pediatric Neurology, Department of Pediatrics, Children’s Hospital, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jiann-Jou Yang
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-J.Y.); (S.-Y.L.)
| | - Shuan-Yow Li
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-J.Y.); (S.-Y.L.)
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-2473-9535; Fax: +886-4-2471-0934
| |
Collapse
|
7
|
Kim MJ, Yum MS, Seo GH, Lee Y, Jang HN, Ko TS, Lee BH. Clinical Application of Whole Exome Sequencing to Identify Rare but Remediable Neurologic Disorders. J Clin Med 2020; 9:jcm9113724. [PMID: 33233562 PMCID: PMC7699758 DOI: 10.3390/jcm9113724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The aim of this study was to describe the application of whole exome sequencing (WES) in the accurate genetic diagnosis and personalized treatment of extremely rare neurogenetic disorders. Methods: From 2017 to 2019, children with neurodevelopmental symptoms were evaluated using WES in the pediatric neurology clinic and medical genetics center. The clinical presentation, laboratory findings including the genetic results from WES, and diagnosis-based treatment and outcomes of the four patients are discussed. Results: A total of 376 children with neurodevelopmental symptom were evaluated by WES, and four patients (1.1%) were diagnosed with treatable neurologic disorders. Patient 1 (Pt 1) showed global muscle hypotonia, dysmorphic facial features, and multiple anomalies beginning in the perinatal period. Pt 1 was diagnosed with congenital myasthenic syndrome 22 of PREPL deficiency. Pt 2 presented with hypotonia and developmental arrest and was diagnosed with autosomal recessive dopa-responsive dystonia due to TH deficiency. Pt 3, who suffered from intractable epilepsy and progressive cognitive decline, was diagnosed with epileptic encephalopathy 47 with a heterozygous FGF12 mutation. Pt 4 presented with motor delay and episodic ataxia and was diagnosed with episodic ataxia type II (heterozygous CACNA1A mutation). The patients’ major neurologic symptoms were remarkably relieved with pyridostigmine (Pt 1), levodopa (Pt 2), sodium channel blocker (Pt 3), and acetazolamide (Pt 4), and most patients regained developmental milestones in the follow-up period (0.4 to 3 years). Conclusions: The early application of WES helps in the identification of extremely rare genetic diseases, for which effective treatment modalities exist. Ultimately, WES resulted in optimal clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
- Correspondence: ; Tel.: +82-2-3010-3386; Fax: +82-2-3010-3356
| | - Go Hun Seo
- 3billion Inc., Seoul 06193, Korea; (G.H.S.); (B.H.L.)
| | - Yena Lee
- Department of Genetics, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea;
| | - Han Na Jang
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Beom Hee Lee
- 3billion Inc., Seoul 06193, Korea; (G.H.S.); (B.H.L.)
| |
Collapse
|
8
|
Crozier D, Martin K. Fifteen-minute consultation: Epilepsy in the child with intellectual disabilities-aetiology. Arch Dis Child Educ Pract Ed 2020; 105:204-208. [PMID: 31792041 DOI: 10.1136/archdischild-2019-316975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 11/03/2022]
Abstract
Epilepsies are a relatively common group of disorders affecting children and young people. Children with intellectual disabilities have an increased risk of developing an epilepsy, and children with epilepsy are more likely to have difficulties with learning or development than those who do not have an epilepsy. Assessment in this group can be more challenging but is particularly important as it may provide information regarding a potential unifying diagnosis, prognosis and best treatment options.
Collapse
Affiliation(s)
- Denise Crozier
- Child Development Centre, Nottingham Children's Hospital, Nottingham University Hospitals, Nottingham, UK
| | - Katherine Martin
- Child Development Centre, Nottingham Children's Hospital, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
9
|
Isik E, Yilmaz S, Atik T, Aktan G, Onay H, Gokben S, Ozkinay F. The utility of whole exome sequencing for identification of the molecular etiology in autosomal recessive developmental and epileptic encephalopathies. Neurol Sci 2020; 41:3729-3739. [DOI: 10.1007/s10072-020-04619-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
|
10
|
Dunn PJ, Maher BH, Albury CL, Stuart S, Sutherland HG, Maksemous N, Benton MC, Smith RA, Haupt LM, Griffiths LR. Tiered analysis of whole-exome sequencing for epilepsy diagnosis. Mol Genet Genomics 2020; 295:751-763. [DOI: 10.1007/s00438-020-01657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
11
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
12
|
Oyarzabal A, Marin-Valencia I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis 2019; 42:220-236. [PMID: 30734319 DOI: 10.1002/jimd.12071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Most of the energy produced in the brain is dedicated to supporting synaptic transmission. Glucose is the main fuel, providing energy and carbon skeletons to the cells that execute and support synaptic function: neurons and astrocytes, respectively. It is unclear, however, how glucose is provided to and used by these cells under different levels of synaptic activity. It is even more unclear how diseases that impair glucose uptake and oxidation in the brain alter metabolism in neurons and astrocytes, disrupt synaptic activity, and cause neurological dysfunction, of which seizures are one of the most common clinical manifestations. Poor mechanistic understanding of diseases involving synaptic energy metabolism has prevented the expansion of therapeutic options, which, in most cases, are limited to symptomatic treatments. To shed light on the intersections between metabolism, synaptic transmission, and neuronal excitability, we briefly review current knowledge of compartmentalized metabolism in neurons and astrocytes, the biochemical pathways that fuel synaptic transmission at resting and active states, and the mechanisms by which disorders of brain glucose metabolism disrupt neuronal excitability and synaptic function and cause neurological disease in the form of epilepsy.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Synaptic Metabolism Laboratory, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Isaac Marin-Valencia
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
13
|
Bisgin A, Tuğ Bozdoğan S. Epilepsi ve anlıksal yetiyitimi olan hastalarda moleküler karyotiplemenin klinik yararı. CUKUROVA MEDICAL JOURNAL 2018. [DOI: 10.17826/cumj.376982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Jalloh I, Cho N, Nga VD, Whitney R, Jain P, Al-Mehmadi S, Yau I, Okura H, Widjaja E, Otsubo H, Ochi A, Donner E, McCoy B, Drake J, Go C, Rutka JT. The role of surgery in refractory epilepsy secondary to polymicrogyria in the pediatric population. Epilepsia 2018; 59:1982-1996. [DOI: 10.1111/epi.14556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Newton Cho
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Vincent D.W. Nga
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
- Division of Neurosurgery; National University Hospital; Singapore City Singapore
| | - Robyn Whitney
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Puneet Jain
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
- Division of Pediatric Neurology; Department of Pediatrics; BLK Super Speciality Hospital; New Delhi India
| | - Sameer Al-Mehmadi
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Ivanna Yau
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Hidehiro Okura
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
- Department of Neurosurgery; Juntendo University School of Medicine; Tokyo Japan
| | - Elysa Widjaja
- Division of Diagnostic Imaging; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Hiroshi Otsubo
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Ayako Ochi
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Elizabeth Donner
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - Blathnaid McCoy
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - James Drake
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| | - Cristina Go
- Division of Neurology; The Hospital for Sick Children; The University of Toronto; Toronto Ontario Canada
| | - James T. Rutka
- Division of Neurosurgery; The Hospital for Sick Children; Department of Surgery; The University of Toronto; Toronto Ontario Canada
| |
Collapse
|
15
|
Devinsky O, Verducci C, Thiele EA, Laux LC, Patel AD, Filloux F, Szaflarski JP, Wilfong A, Clark GD, Park YD, Seltzer LE, Bebin EM, Flamini R, Wechsler RT, Friedman D. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav 2018; 86:131-137. [PMID: 30006259 DOI: 10.1016/j.yebeh.2018.05.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE We studied our collective open-label, compassionate use experience in using cannabidiol (CBD) to treat epilepsy in patients with CDKL5 deficiency disorder and Aicardi, Doose, and Dup15q syndromes. METHODS We included patients aged 1-30 years with severe childhood-onset epilepsy who received CBD for ≥10 weeks as part of multiple investigator-initiated expanded access or state access programs for a compassionate prospective interventional study: CDKL5 deficiency disorder (n = 20), Aicardi syndrome (n = 19), Dup15q syndrome (n = 8), and Doose syndrome (n = 8). These patients were treated at 11 institutions from January 2014 to December 2016. RESULTS The percent change in median convulsive seizure frequency for all patients taking CBD in the efficacy group decreased from baseline [n = 46] to week 12 (51.4% [n = 35], interquartile range (IQR): 9-85%) and week 48 (59.1% [n = 27], IQR: 14-86%). There was a significant difference between the percent changes in monthly convulsive seizure frequency during baseline and week 12, χ2(2) = 22.9, p = 0.00001, with no difference in seizure percent change between weeks 12 and 48. Of the 55 patients in the safety group, 15 (27%) withdrew from extended observation by week 144: 4 due to adverse effects, 9 due to lack of efficacy, 1 withdrew consent, and 1 was lost to follow-up. SIGNIFICANCE This open-label drug trial provides class III evidence for the long-term safety and efficacy of CBD administration in patients with treatment-resistant epilepsy (TRE) associated with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Adjuvant therapy with CBD showed similar safety and efficacy for these four syndromes as reported in a diverse population of TRE etiologies. This study extended analysis of the prior report from 12 weeks to 48 weeks of efficacy data and suggested that placebo-controlled randomized trials should be conducted to formally assess the safety and efficacy of CBD in these epileptic encephalopathies.
Collapse
Affiliation(s)
- Orrin Devinsky
- New York University School of Medicine, NY, United States.
| | - Chloe Verducci
- New York University School of Medicine, NY, United States.
| | | | - Linda C Laux
- Lurie Children's Hospital of Chicago, IL, United States.
| | - Anup D Patel
- Nationwide Children's Hospital, OH, United States.
| | | | - Jerzy P Szaflarski
- UAB Epilepsy Center, 1719 6th Avenue South, CIRC 312, Birmingham, AL 35294, United States.
| | - Angus Wilfong
- Texas Children's Hospital, Houston, TX, United States; Baylor College of Medicine, Houston, TX, United States.
| | - Gary D Clark
- Neurology and Neuroscience, Baylor College of Medicine, TX, United States; Neurology Service, Texas Children's Hospital, United States; Professors of Child Neurology, United States.
| | - Yong D Park
- Neurology and Pediatrics, Medical College of Georgia, Augusta University, GA, United States; Child Neurology, Medical College of Georgia, Augusta University, United States.
| | | | - E Martina Bebin
- Neurology and Pediatrics, UAB Epilepsy Center, Birmingham, AL 35294, United States.
| | - Robert Flamini
- PANDA Neurology (Pediatric and Adolescent NeuroDevelopmental Associates), Atlanta, GA, United States
| | - Robert T Wechsler
- Consultants in Epilepsy & Neurology, 1499 West Hays Street, Boise, ID 83702, United States; Idaho Comprehensive Epilepsy Center, 1499 West Hays Street, Boise, ID 83702, United States
| | | |
Collapse
|
16
|
Ostrander BEP, Butterfield RJ, Pedersen BS, Farrell AJ, Layer RM, Ward A, Miller C, DiSera T, Filloux FM, Candee MS, Newcomb T, Bonkowsky JL, Marth GT, Quinlan AR. Whole-genome analysis for effective clinical diagnosis and gene discovery in early infantile epileptic encephalopathy. NPJ Genom Med 2018; 3:22. [PMID: 30109124 PMCID: PMC6089881 DOI: 10.1038/s41525-018-0061-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Early infantile epileptic encephalopathy (EIEE) is a devastating epilepsy syndrome with onset in the first months of life. Although mutations in more than 50 different genes are known to cause EIEE, current diagnostic yields with gene panel tests or whole-exome sequencing are below 60%. We applied whole-genome analysis (WGA) consisting of whole-genome sequencing and comprehensive variant discovery approaches to a cohort of 14 EIEE subjects for whom prior genetic tests had not yielded a diagnosis. We identified both de novo point and INDEL mutations and de novo structural rearrangements in known EIEE genes, as well as mutations in genes not previously associated with EIEE. The detection of a pathogenic or likely pathogenic mutation in all 14 subjects demonstrates the utility of WGA to reduce the time and costs of clinical diagnosis of EIEE. While exome sequencing may have detected 12 of the 14 causal mutations, 3 of the 12 patients received non-diagnostic exome panel tests prior to genome sequencing. Thus, given the continued decline of sequencing costs, our results support the use of WGA with comprehensive variant discovery as an efficient strategy for the clinical diagnosis of EIEE and other genetic conditions.
Collapse
Affiliation(s)
- Betsy E. P. Ostrander
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Russell J. Butterfield
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Brent S. Pedersen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Andrew J. Farrell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Ryan M. Layer
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Alistair Ward
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Chase Miller
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Tonya DiSera
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Francis M. Filloux
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Meghan S. Candee
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Tara Newcomb
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Gabor T. Marth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Aaron R. Quinlan
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT USA
| |
Collapse
|
17
|
Kothur K, Holman K, Farnsworth E, Ho G, Lorentzos M, Troedson C, Gupta S, Webster R, Procopis PG, Menezes MP, Antony J, Ardern-Holmes S, Dale RC, Christodoulou J, Gill D, Bennetts B. Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure 2018; 59:132-140. [DOI: 10.1016/j.seizure.2018.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022] Open
|
18
|
Gerald B, Ramsey K, Belnap N, Szelinger S, Siniard AL, Balak C, Russell M, Richholt R, De Both M, Claasen AM, Schrauwen I, Huentelman MJ, Craig DW, Rangasamy S, Narayanan V. Neonatal epileptic encephalopathy caused by de novo GNAO1 mutation misdiagnosed as atypical Rett syndrome: Cautions in interpretation of genomic test results. Semin Pediatr Neurol 2018; 26:28-32. [PMID: 29961512 DOI: 10.1016/j.spen.2017.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epileptic encephalopathies are childhood brain disorders characterized by a variety of severe epilepsy syndromes that differ by the age of onset and seizure type. Until recently, the cause of many epileptic encephalopathies was unknown. Whole exome or whole genome sequencing has led to the identification of several causal genes in individuals with epileptic encephalopathy, and the list of genes has now expanded greatly. Genetic testing with epilepsy gene panels is now done quite early in the evaluation of children with epilepsy, following brain imaging, electroencephalogram, and metabolic profile. Early infantile epileptic encephalopathy (EIEE1; OMIM #308350) is the earliest of these age-dependent encephalopathies, manifesting as tonic spasms, myoclonic seizures, or partial seizures, with severely abnormal electroencephalogram, often showing a suppression-burst pattern. In this case study, we describe a 33-month-old female child with severe, neonatal onset epileptic encephalopathy. An infantile epilepsy gene panel test revealed 2 novel heterozygous variants in the MECP2 gene; a 70-bp deletion resulting in a frameshift and truncation (p.Lys377ProfsX9) thought to be pathogenic, and a 6-bp in-frame deletion (p.His371_372del), designated as a variant of unknown significance. Based on this test result, the diagnosis of atypical Rett syndrome (RTT) was made. Family-based targeted testing and segregation analysis, however, raised questions about the pathogenicity of these specific MECP2 variants. Whole exome sequencing was performed in this family trio, leading to the discovery of a rare, de novo, missense mutation in GNAO1 (p. Leu284Ser). De novo, heterozygous mutations in GNAO1 have been reported to cause early infantile epileptic encephalopathy-17 (EIEE17; OMIM 615473). The child's severe phenotype, the family history and segregation analysis of variants and prior reports of GNAO1-linked disease allowed us to conclude that the GNAO1 mutation, and not the MECP2 variants, was the cause of this child's neurological disease. With the increased use of genetic panels and whole exome sequencing, we will be confronted with lists of gene variants suspected to be pathogenic or of unknown significance. It is important to integrate clinical information, genetic testing that includes family members and correlates this with the published clinical and scientific literature, to help one arrive at the correct genetic diagnosis.
Collapse
Affiliation(s)
- Brittany Gerald
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ; School of Life Sciences, Arizona State University, Tempe, AZ
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Szabolcs Szelinger
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ashley L Siniard
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Chris Balak
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Megan Russell
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ryan Richholt
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Matt De Both
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Ana M Claasen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Isabelle Schrauwen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Matthew J Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - David W Craig
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Sampathkumar Rangasamy
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ.
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ; School of Life Sciences, Arizona State University, Tempe, AZ.
| |
Collapse
|
19
|
Faqeih EA, Almannai M, Saleh MM, AlWadei AH, Samman MM, Alkuraya FS. Phenotypic characterization of KCTD3-related developmental epileptic encephalopathy. Clin Genet 2018; 93:1081-1086. [PMID: 29406573 DOI: 10.1111/cge.13227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 12/01/2022]
Abstract
The association between KCTD3 gene and neurogenetic disorders has only been published recently. In this report, we describe the clinical phenotype associated with 2 pathogenic variants in KCTD3 gene. Seven individuals (including one set of monozygotic twin) from 4 consanguineous families presented with developmental epileptic encephalopathy, global developmental delay, central hypotonia, progressive peripheral hypertonia, and variable dysmorphic facial features. Posterior fossa abnormalities (ranging from Dandy-Walker malformation to isolated hypoplasia of the cerebellar vermis) were consistently observed in addition to other variable neuroradiological abnormalities such as hydrocephalus and abnormal brain myelination. One patient also had a multicystic kidney. Whole exome sequencing revealed 2 probably pathogenic homozygous variants in KCTD3 gene that fully segregated with the disease. KCTD3 gene belongs to a family of accessory subunits that regulate the biophysical properties of ion channels, and is highly expressed in the kidney and brain. In this largest series to date on KCTD3-mutated patients, we show that biallelic loss of function mutations in KCTD3 lead to a consistent phenotype of developmental epileptic encephalopathy and abnormal cerebellum on brain imaging.
Collapse
Affiliation(s)
- E A Faqeih
- Section of Medial Genetics, Department of Pediatrics Subspecialties, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M Almannai
- Section of Medial Genetics, Department of Pediatrics Subspecialties, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M M Saleh
- Section of Medial Genetics, Department of Pediatrics Subspecialties, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - A H AlWadei
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M M Samman
- Pathology and Clinical Laboratory Administration, Section of Molecular Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Abstract
Discovery of nearly 200 genes implicated in epilepsy and insights into the molecular and cellular pathways involved are transforming our knowledge of the causes, classifications, diagnosis, and in some cases, treatments for individuals with chronic seizure disorders. Numerous disorders once considered "idiopathic" are now recognized as genetic conditions. Despite these remarkable advances, the cause of epilepsy for most individuals is unknown. We present a clinical approach to patients with epilepsy, presenting an algorithm for clinical and genetic testing, and review genes implicated in epilepsy and their associated syndromes.
Collapse
Affiliation(s)
- Danielle Nolan
- Departments of Pediatrics and Pediatric Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John Fink
- Department of Neurology, University of Michigan and the Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
21
|
Yoo Y, Jung J, Lee YN, Lee Y, Cho H, Na E, Hong J, Kim E, Lee JS, Lee JS, Hong C, Park SY, Wie J, Miller K, Shur N, Clow C, Ebel RS, DeBrosse SD, Henderson LB, Willaert R, Castaldi C, Tikhonova I, Bilgüvar K, Mane S, Kim KJ, Hwang YS, Lee SG, So I, Lim BC, Choi HJ, Seong JY, Shin YB, Jung H, Chae JH, Choi M. GABBR2mutations determine phenotype in rett syndrome and epileptic encephalopathy. Ann Neurol 2017; 82:466-478. [DOI: 10.1002/ana.25032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yongjin Yoo
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Jane Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Yoo-Na Lee
- Graduate School of Medicine; Korea University; Seoul Republic of Korea
| | - Youngha Lee
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Eunjung Na
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - JeaYeok Hong
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Eunjin Kim
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science; Gachon University Gil Medical Center; Incheon Republic of Korea
| | - Je Sang Lee
- Department of Rehabilitation Medicine; Pusan National University College of Medicine; Pusan Republic of Korea
| | - Chansik Hong
- Department of Physiology; Chosun University School of Medicine; Kwangju Republic of Korea
| | - Sang-Yoon Park
- Department of Science in Korean Medicine, Cancer Preventive Material Developmental Research Center, College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - Jinhong Wie
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Physiology; Seoul National University College of Medicine; Seoul Republic of Korea
| | | | | | | | - Roseànne S. Ebel
- UH Cleveland Medical Center; Center for Human Genetics; Cleveland OH
| | | | | | | | | | | | - Kaya Bilgüvar
- Yale Center for Genome Analysis; West Haven CT
- Department of Genetics; Yale University School of Medicine; New Haven CT
| | - Shrikant Mane
- Yale Center for Genome Analysis; West Haven CT
- Department of Genetics; Yale University School of Medicine; New Haven CT
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Yong Seung Hwang
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Cancer Preventive Material Developmental Research Center, College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - Insuk So
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Physiology; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences; Seoul National University College of Natural Sciences; Seoul Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine; Korea University; Seoul Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine; Pusan National University College of Medicine; Pusan Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine; Seoul National University Children's Hospital; Seoul Republic of Korea
| |
Collapse
|
22
|
Szczałuba K, Szymańska K, Kosińska J, Pollak A, Murcia V, Kędra A, Stawiński P, Rydzanicz M, Demkow U, Płoski R. Isolated Hearing Impairment Caused by SPATA5 Mutations in a Family with Variable Phenotypic Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 980:59-66. [PMID: 28293831 DOI: 10.1007/5584_2016_206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Biallelic mutations in the SPATA5 gene, encoding ATPase family protein, are an important cause of newly recognized epileptic encephalopathy classified as epilepsy, hearing loss, and mental retardation syndrome (EHLMRS, OMIM: 616577). Herein we describe a family in which two SPATA5 mutations with established pathogenicity (p.Thr330del and c.1714+1G>A) were found in the proband and her younger sister. The proband had a similar clinical picture to the previous descriptions of EHLMRS. In the sister, the only manifestation was an isolated sensorineural hearing loss. Our findings extend the phenotypic spectrum of SPATA5-associated diseases and indicate that SPATA5 defects may account for a fraction of isolated sensorineural hearing impairment cases.
Collapse
Affiliation(s)
- Krzysztof Szczałuba
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland
| | - Krystyna Szymańska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Victor Murcia
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Anna Kędra
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, 3C Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
23
|
Maljevic S, Reid CA, Petrou S. Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 2017; 143:30-48. [PMID: 28742937 DOI: 10.1111/jnc.14134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies.
Collapse
Affiliation(s)
- Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model. J Ginseng Res 2017; 42:429-435. [PMID: 30337802 PMCID: PMC6187050 DOI: 10.1016/j.jgr.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.
Collapse
|
25
|
Patel J, Mercimek-Mahmutoglu S. Epileptic Encephalopathy in Childhood: A Stepwise Approach for Identification of Underlying Genetic Causes. Indian J Pediatr 2016; 83:1164-74. [PMID: 26821542 DOI: 10.1007/s12098-015-1979-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/02/2015] [Indexed: 01/29/2023]
Abstract
Epilepsy is one of the most common neurological disorders in childhood. Epilepsy associated with global developmental delay and cognitive dysfunction is defined as epileptic encephalopathy. Certain inherited metabolic disorders presenting with epileptic encephalopathy can be treated with disease specific diet, vitamin, amino acid or cofactor supplementations. In those disorders, disease specific therapy is successful to achieve good seizure control and improve long-term neurodevelopmental outcome. For this reason, intractable epilepsy with global developmental delay or history of developmental regression warrants detailed metabolic investigations for the possibility of an underlying treatable inherited metabolic disorder, which should be undertaken as first line investigations. An underlying genetic etiology in epileptic encephalopathy has been supported by recent studies such as array comparative genomic hybridization, targeted next generation sequencing panels, whole exome and whole genome sequencing. These studies report a diagnostic yield up to 70%, depending on the applied genetic testing as well as number of patients enrolled. In patients with epileptic encephalopathy, a stepwise approach for diagnostic work-up will help to diagnose treatable inherited metabolic disorders quickly. Application of detailed genetic investigations such as targeted next generation sequencing as second line and whole exome sequencing as third line testing will diagnose underlying genetic disease which will help for genetic counseling as well as guide for prenatal diagnosis. Knowledge of underlying genetic cause will provide novel insights into the pathogenesis of epileptic encephalopathy and pave the ground towards the development of targeted neuroprotective treatment strategies to improve the health outcome of children with epileptic encephalopathy.
Collapse
Affiliation(s)
- Jaina Patel
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. .,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Babkina N, Deignan JL, Lee H, Vilain E, Sankar R, Giurgea I, Mowat D, Graham JM. Early Infantile Epileptic Encephalopathy with a de novo variant in ZEB2 identified by exome sequencing. Eur J Med Genet 2015; 59:70-4. [PMID: 26721324 DOI: 10.1016/j.ejmg.2015.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/08/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022]
Abstract
Early Infantile Epileptic Encephalopathy (EIEE) presents shortly after birth with frequent, severe seizures, a burst-suppression EEG pattern, and progressive disturbance of cerebral function. We present a case of EIEE associated with a de novo missense variant in ZEB2. Heterozygous truncating mutations or deletions in ZEB2 are known to cause Mowat-Wilson syndrome (MWS), which is characterized by seizures with onset in the second year of life, distinctive dysmorphic facial features and malformations that were absent in this patient. This unique case expands the range of phenotypes associated with variants in ZEB2 and indicates that this gene should be included in the molecular investigation of EIEE cases.
Collapse
Affiliation(s)
- Natalia Babkina
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raman Sankar
- Department of Neurology, Pediatrics and Children's Discovery and Innovation Institute at Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Irina Giurgea
- Service de Biochimie Génétique, INSERM U955 Equipe 11, Hôpital Henri Mondor, 94000 Créteil, France
| | - David Mowat
- Department of Medical Genetics, Sydney Children's Hospital, School of Women's and Children's Health, University of New South Wales, Australia
| | - John M Graham
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
27
|
Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 2015; 5:3251. [PMID: 24504326 PMCID: PMC3934797 DOI: 10.1038/ncomms4251] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs), ligand-gated ion channels, play important roles in various neurological disorders, including epilepsy. Here we show the functional analysis of a de novo missense mutation (L812M) in a gene encoding NMDAR subunit GluN2A (GRIN2A). The mutation, identified in a patient with early-onset epileptic encephalopathy and profound developmental delay, is located in the linker region between the ligand-binding and transmembrane domains. Electrophysiological recordings revealed that the mutation enhances agonist potency, decreases sensitivity to negative modulators including magnesium, protons and zinc, prolongs the synaptic response time course and increases single-channel open probability. The functional changes of this amino acid apply to all other NMDAR subunits, suggesting an important role of this residue on the function of NMDARs. Taken together, these data suggest that the L812M mutation causes overactivation of NMDARs and drives neuronal hyperexcitability. We hypothesize that this mechanism underlies the patient's epileptic phenotype as well as cerebral atrophy.
Collapse
|
28
|
Abstract
As the genetic etiologies of an expanding number of epilepsy syndromes are revealed, the complexity of the phenotype genotype correlation increases. As our review will show, multiple gene mutations cause different epilepsy syndromes, making identification of the specific mutation increasingly more important for prognostication and often more directed treatment. Examples of that include the need to avoid specific drugs in Dravet syndrome and the ongoing investigations of the potential use of new directed therapies such as retigabine in KCNQ2-related epilepsies, quinidine in KCNT1-related epilepsies, and memantine in GRIN2A-related epilepsies.
Collapse
Affiliation(s)
- Abeer J Hani
- Division of Pediatric Neurology, Department of Pediatrics, Duke Children's Hospital and Health Center, Suite T0913J, 2301 Erwin Road, Durham, NC 27710, USA
| | - Husam M Mikati
- Center of Human Genome Variation, LSRC, Duke University School of Medicine, 201 Trent Drive, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Children's Hospital and Health Center, Suite T0913J, 2301 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Basel-Vanagaite L, Hershkovitz T, Heyman E, Raspall-Chaure M, Kakar N, Smirin-Yosef P, Vila-Pueyo M, Kornreich L, Thiele H, Bode H, Lagovsky I, Dahary D, Haviv A, Hubshman M, Pasmanik-Chor M, Nürnberg P, Gothelf D, Kubisch C, Shohat M, Macaya A, Borck G. Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum. Am J Hum Genet 2013; 93:524-529. [PMID: 23932106 PMCID: PMC3769928 DOI: 10.1016/j.ajhg.2013.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Epileptic encephalopathies are genetically heterogeneous severe disorders in which epileptic activity contributes to neurological deterioration. We studied two unrelated children presenting with a distinctive early-onset epileptic encephalopathy characterized by refractory epilepsy and absent developmental milestones, as well as thick and short corpus callosum and persistent cavum septum pellucidum on brain MRI. Using whole-exome sequencing, we identified biallelic mutations in seizure threshold 2 (SZT2) in both affected children. The causative mutations include a homozygous nonsense mutation and a nonsense mutation together with an exonic splice-site mutation in a compound-heterozygous state. The latter mutation leads to exon skipping and premature termination of translation, as shown by RT-PCR in blood RNA of the affected boy. Thus, all three mutations are predicted to result in nonsense-mediated mRNA decay and/or premature protein truncation and thereby loss of SZT2 function. Although the molecular role of the peroxisomal protein SZT2 in neuronal excitability and brain development remains to be defined, Szt2 has been shown to influence seizure threshold and epileptogenesis in mice, consistent with our findings in humans. We conclude that mutations in SZT2 cause a severe type of autosomal-recessive infantile encephalopathy with intractable seizures and distinct neuroradiological anomalies.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Pediatric Genetics Unit, Schneider Children’s Medical Center of Israel, Petah Tikva 49202, Israel
| | - Tova Hershkovitz
- Department of Pediatrics B, Rambam Health Care Campus, Haifa 31096, Israel
| | - Eli Heyman
- Department of Pediatric Neurology, Assaf Harofeh Medical Center, Zerifin 70300, Israel
| | - Miquel Raspall-Chaure
- Grup de Recerca en Neurologia Pediàtrica, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | | | - Pola Smirin-Yosef
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marta Vila-Pueyo
- Grup de Recerca en Neurologia Pediàtrica, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Liora Kornreich
- Imaging Department, Schneider Children’s Medical Center of Israel, Petah Tikva 49202, Israel
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Harald Bode
- Division of Pediatric Neurology, Children’s Hospital, University of Ulm, 89075 Ulm, Germany
| | - Irina Lagovsky
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Dvir Dahary
- Toldot Genetics Ltd., Hod Hasharon 45217, Israel
| | - Ami Haviv
- Toldot Genetics Ltd., Hod Hasharon 45217, Israel
| | - Monika Weisz Hubshman
- Pediatric Genetics Unit, Schneider Children’s Medical Center of Israel, Petah Tikva 49202, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Child Psychiatry Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52620, Israel
| | | | - Mordechai Shohat
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Pediatric Genetics Unit, Schneider Children’s Medical Center of Israel, Petah Tikva 49202, Israel
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|