1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025; 99:1643-1747. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
3
|
Zhang N, Wang X, Miao XJ, Zhang XP, Xia XY, Li L, Sun HP. An acquired BMF with FANCL gene heterozygous mutation: Case report. Medicine (Baltimore) 2023; 102:e34036. [PMID: 37327301 PMCID: PMC10270529 DOI: 10.1097/md.0000000000034036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONALE Bone marrow failure (BMF) includes inherited and acquired BMFs. Acquired BMF can be secondary to various factors, such as autoimmune dysfunction, benzene, drugs, radiation, viral infection and so on. Fanconi anemia (FA) complementation group L (FANCL) is an E3 ubiquitin ligase that participates in the repair of DNA damage. Homozygous or compound heterozygous mutations of FANCL can lead to the onset of FA, which is one of the most common inherited BMFs. PATIENT CONCERNS AND DIAGNOSES Here, we report a case of acquired BMF. This patient had a history of benzene exposure for half a year before the onset of the disease, and presented with progressive pancytopenia, especially the reduction of erythrocytes and megakaryocyte, without malformation. Interestingly, this patient and his brother/father had a heterozygous (non-homozygous/compound heterozygous) mutation (Exon9, c.745C > T, p.H249Y) in the FANCL gene. INTERVENTIONS AND OUTCOMES The patient successfully underwent unrelated and fully compatible umbilical cord blood hematopoietic stem cell transplantation. LESSONS SUBSECTIONS We report for the first time an acquired BMF case with FANCL gene heterozygous mutation, and the mutation site (Exon9, c.745C > T, p.H249Y) has never been reported. This case suggests that heterozygous mutations in FANCL gene may be associated with increased susceptibility to acquired BMF. Based on current reports and this case, we speculate that heterozygous mutations in the FA complementation gene may exist in a certain proportion of tumor and acquired BMF patients, but have not been detected. We recommend routine screening for FA complementation gene mutations in tumor and acquired BMF patients in clinical practice. If positive results are found, further screening can be conducted on their families.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao Wang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao-Juan Miao
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xu-Pai Zhang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xin-Yu Xia
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Li Li
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Hao-Ping Sun
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
4
|
George M, Solanki A, Chavan N, Rajendran A, Raj R, Mohan S, Nemani S, Kanvinde S, Munirathnam D, Rao S, Radhakrishnan N, Lashkari HP, Ghildhiyal RG, Manglani M, Shanmukhaiah C, Bhat S, Ramesh S, Cherian A, Junagade P, Vundinti BR. A comprehensive molecular study identified 12 complementation groups with 56 novel FANC gene variants in Indian Fanconi anemia subjects. Hum Mutat 2021; 42:1648-1665. [PMID: 34585473 DOI: 10.1002/humu.24286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.
Collapse
Affiliation(s)
- Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Avani Solanki
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Niranjan Chavan
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Pediatric Hematology, Institute of Child Health and Hospital for Children, Chennai, Tamilnadu, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sheila Mohan
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sandeep Nemani
- Department of Hematology, Usha Hematology Center, Sangli, Maharashtra, India
| | - Shailesh Kanvinde
- Department of Paediatric Hematology Oncology, Deenanath Mangeshkar Hospital and Research Center, Pune, Maharashtra, India
| | - Deendayalan Munirathnam
- Department of Pediatric Oncology, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Sudha Rao
- Department of Paediatric Haemato-Oncology and Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Nita Radhakrishnan
- Department of Paediatric Haematology Oncology, Super Specialty Pediatric Hospital & Post Graduate Teaching Institute, Noida, Uttar Pradesh, India
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Mangalore, India
| | - Radha Gulati Ghildhiyal
- Department of Pediatrics, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Mamta Manglani
- Department of Hematology, Comprehensive Thalassemia Care Center and Bone Marrow Transplantation Center, Mumbai, Maharashtra, India
| | | | - Sunil Bhat
- Department of Paediatric Haematology, Oncology and Blood & Bone Marrow Transplantation, Narayana Health Network Hospitals, Bangalore, India
| | - Sowmyashree Ramesh
- Department of Pediatrics, Vanivilas Hospital, Bangalore, Karnataka, India
| | - Anchu Cherian
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Pritesh Junagade
- Department of stem cell transplantation, Lotus Hospital, Pune, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Heddar A, Misrahi M. Should FANCL heterozygous pathogenic variants be considered as potentially causative of primary ovarian insufficiency? Hum Mutat 2021; 41:1697-1699. [PMID: 32851770 DOI: 10.1002/humu.24077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, AP-HP, Hôpital Paul Brousse, Villejuif, France
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR-S 1193, INSERM, Université Paris Saclay, AP-HP, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
6
|
Donovan FX, Solanki A, Mori M, Chavan N, George M, Selvaa KC, Okuno Y, Muramastsu H, Yoshida K, Shimamoto A, Takaori-Kondo A, Yabe H, Ogawa S, Kojima S, Yabe M, Ramanagoudr-Bhojappa R, Smogorzewska A, Mohan S, Rajendran A, Auerbach AD, Takata M, Chandrasekharappa SC, Vundinti BR. A founder variant in the South Asian population leads to a high prevalence of FANCL Fanconi anemia cases in India. Hum Mutat 2020; 41:122-128. [PMID: 31513304 PMCID: PMC7362330 DOI: 10.1002/humu.23914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, predisposition to cancer, and congenital abnormalities. FA is caused by pathogenic variants in any of 22 genes involved in the DNA repair pathway responsible for removing interstrand crosslinks. FANCL, an E3 ubiquitin ligase, is an integral component of the pathway, but patients affected by disease-causing FANCL variants are rare, with only nine cases reported worldwide. We report here a FANCL founder variant, anticipated to be synonymous, c.1092G>A;p.K364=, but demonstrated to induce aberrant splicing, c.1021_1092del;p.W341_K364del, that accounts for the onset of FA in 13 cases from South Asia, 12 from India and one from Pakistan. We comprehensively illustrate the pathogenic nature of the variant, provide evidence for a founder effect, and propose including this variant in genetic screening of suspected FA patients in India and Pakistan, as well as those with ancestry from these regions of South Asia.
Collapse
Affiliation(s)
- Frank X. Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avani Solanki
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, 13 Floor, New Multistoreyed Building, K.E.M. Hospital Campus, Parel, Mumbai – 400 012. Maharashtra, India
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Centre, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Niranjan Chavan
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, 13 Floor, New Multistoreyed Building, K.E.M. Hospital Campus, Parel, Mumbai – 400 012. Maharashtra, India
| | - Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, 13 Floor, New Multistoreyed Building, K.E.M. Hospital Campus, Parel, Mumbai – 400 012. Maharashtra, India
| | - Kumar C Selvaa
- School of Biotechnology and Bioinformatics, Level 6, D.Y. Patil Deemed to be University, Plot No. 50, Sector 15, CBD Belapur, Navi Mumbai 400 614, Maharashtra, India
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hideki Muramastsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Yamaguchi, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | | | - Aruna Rajendran
- Department of Pediatric Hematology, Institute of Child Health and Hospital for children, Chennai, India
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Centre, Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, 13 Floor, New Multistoreyed Building, K.E.M. Hospital Campus, Parel, Mumbai – 400 012. Maharashtra, India
| |
Collapse
|
7
|
Li N, Ding L, Li B, Wang J, D'Andrea AD, Chen J. Functional analysis of Fanconi anemia mutations in China. Exp Hematol 2018; 66:32-41.e8. [PMID: 30031030 DOI: 10.1016/j.exphem.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
Abstract
Fanconi anemia (FA) is a rare recessive disease characterized by progressive bone marrow failure, congenital abnormalities, and increased incidence of cancers. To date, mutations in 22 genes can cause FA or an FA-like phenotype. In China, in addition to clinical information, FA diagnosis primarily relies on genetic sequencing because the chromosome breakage test is rarely performed. Here, we employed multiple genetic diagnostic tools (DNA sequencing, multiplex ligation-dependent probe amplification, and chromosome microarray) and a variant-based functional assay platform to investigate the genetic cause in 25 Chinese suspected FA patients. A total of 45 distinct candidate variants were detected in six FA genes (FA-A, FA-B, FA-C, FA-D2, FA-G, and FA-J), of which 36 were novel. Eight missense variants and one indel variant were unable to restore FANCD2 mono-ubiquitination and mitomycin C resistance in a panel of FA indicator cell lines, indicating that these mutations are deleterious. Three missense variants (FANCA-L424V, FANCC-E273K, and FANCG-A153G) were harmless. Finally, 23 patients were molecularly diagnosed with FA, consistent with their clinical phenotype. In the FA-A subgroup, large deletions accounted for 14% of the disease-causing variants. We have established a comprehensive molecular diagnostic workflow for Chinese FA patients that can substitute for standard FA cytogenetic analysis.
Collapse
Affiliation(s)
- Niu Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|