1
|
Maldonado-Muñoz MA, Gavino-Vergara A, Rebolledo-Solleiro D. Kabuki syndrome: a comprehensive clinical portrait and genetic insight. BMJ Case Rep 2024; 17:e262515. [PMID: 39719388 DOI: 10.1136/bcr-2024-262515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
This report details the case of a preadolescent female patient diagnosed with Kabuki syndrome, a rare genetic disorder characterised by distinctive facial features, growth delay and cognitive impairment. The patient's medical history includes perinatal complications, alongside challenges in developmental milestones, feeding and psychomotor skills since infancy, prompting further investigation. Genetic testing confirmed the diagnosis, revealing a full deletion of KDM6AThe patient underwent a multidisciplinary approach, addressing various aspects of her condition, which resulted in significant improvements in several areas. However, despite progress, challenges persist in daily tasks and the acquisition of advanced motor skills. This underscores the necessity of integrated management strategies, emphasizing the diagnostic importance of genetic testing that contributes to a deeper understanding of the clinical spectrum and guides targeted therapeutic interventions. Continued research is crucial to further unravel the complexities of this rare genetic disorder and enhance patient care.
Collapse
Affiliation(s)
| | - Alejandro Gavino-Vergara
- Clinical Geneticist, Centro de Rehabilitacion e Inclusion Infantil Teleton Quintana Roo, Cancun, Quintana Roo, Mexico
| | - Daniela Rebolledo-Solleiro
- Facultad de Medicina, Universidad Anahuac Cancun, Cancún, Quintana Roo, Mexico
- Universidad Politecnica de Quintana Roo, Cancun, Quintana Roo, Mexico
| |
Collapse
|
2
|
Niceta M, Ciolfi A, Ferilli M, Pedace L, Cappelletti C, Nardini C, Hildonen M, Chiriatti L, Miele E, Dentici ML, Gnazzo M, Cesario C, Pisaneschi E, Baban A, Novelli A, Maitz S, Selicorni A, Squeo GM, Merla G, Dallapiccola B, Tumer Z, Digilio MC, Priolo M, Tartaglia M. DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism. Eur J Hum Genet 2024; 32:819-826. [PMID: 38528056 PMCID: PMC11220151 DOI: 10.1038/s41431-024-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.
Collapse
Affiliation(s)
- Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University, 00185, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Nardini
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Mathis Hildonen
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
| | - Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmias Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Silvia Maitz
- Genetica Clinica Pediatrica, Fondazione MBBM, ASST Monza Ospedale San Gerardo, 20900, Monza, Italy
| | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Zeynep Tumer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Manuela Priolo
- Medical and Laboratory Genetics, Antonio Cardarelli Hospital, 80131, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
3
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Arisanti D, Dini B, Astari LF, Hasan YTN, Ayudianti P, Kusuma MAS, Shodry S, Herawangsa S, Nurputra DK, Idaiani S, Tse WKF. A Brief Analysis on Clinical Severity of Mandibulofacial Dysostosis Guion-Almeida Type. Cleft Palate Craniofac J 2024; 61:688-696. [PMID: 36317361 DOI: 10.1177/10556656221136177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Genetic variants in EFTUD2 were proven to influence variable phenotypic expressivity in mandibulofacial dysostosis Guion-Almeida type (MFDGA) or mandibulofacial dysostosis with microcephaly (MFDM). Yet, the association between the severity of clinical findings with variants within the EFTUD2 gene has not been established. Thus, we aim to elucidate a possible genotype-phenotype correlation in MFDM. METHODS Forty articles comprising 156 patients were evaluated. The genotype-phenotype correlation was analyzed using a chi-square or Fisher's exact test. RESULTS The proportion of patients with MFDM was higher in Caucasian relative to Asian populations. Although, in general, there was no apparent genotype-phenotype correlation in patients with MFDM, Asians tended to have more severe clinical manifestations than Caucasians. In addition, cardiac abnormality presented in patients with intronic variants located in canonical splice sites was a predisposing factor in affecting MFDM severity. CONCLUSION Altogether, this article provides the pathogenic variants observed in EFTUD2 and possible genotype-phenotype relationships in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, East Java, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | | - Ditya Arisanti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Badariyatud Dini
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Lina Fitria Astari
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Yuliono Trika Nur Hasan
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Prida Ayudianti
- Department of Clinical Medicine, Faculty of Medicine and Health Science, Maulana Malik State Islamic University, Malang, Indonesia
| | - Muhammad A'raaf Sirojan Kusuma
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Syifaus Shodry
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Sarah Herawangsa
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Dian Kesumapramudya Nurputra
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sri Idaiani
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Kyushu University, Faculty of Agriculture, Fukuoka, Fukuoka, Japan
| |
Collapse
|
4
|
Shangguan H, Wang J, Lin J, Huang X, Zeng Y, Chen R. A study on genotypes and phenotypes of short stature caused by epigenetic modification gene variants. Eur J Pediatr 2024; 183:1403-1414. [PMID: 38170291 DOI: 10.1007/s00431-023-05385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs) are caused by genetic mutations, a considerable fraction of which are associated with epigenetic modification. These MDEMs exhibit phenotypic overlap broadly characterized by multiorgan abnormalities. The variant detected in genes associated with epigenetic modification can lead to short stature accompanied with multiple system abnormalities. This study is aimed at presenting and summarizing the diagnostic rate, clinical, and genetic profile of MDEMs-associated short stature. Two hundred and fourteen short-stature patients with multiorgan abnormalities were enrolled. Clinical information and whole exome sequence (WES) were analyzed for these patients. WES identified 33 pathogenic/likely pathogenic variants in 19 epigenetic modulation genes (KMT2A, KMT2D, KDM6A, SETD5, KDM5C, HUWE1, UBE2A, NIPBL, SMC1A, RAD21, CREBBP, CUL4B, BPTF, ANKRD11, CHD7, SRCAP, CTCF, MECP2, UBE3A) in 33 patients (15.4%). Of note, 19 variants had never been reported previously. Furthermore, these 33 variants were associated with 16 different disorders with overlapping clinical features characterized by development delay/intelligence disability (31/33; 93.9%), small hands (14/33; 42.4%), clinodactyly of the 5th finger (14/33; 42.4%), long eyelashes (13/33; 39.4%), and hearing impairment (9/33; 27.3%). Additionally, several associated phenotypes are reported for the first time: clubbing with KMT2A variant, webbed neck with SETD5 variant, retinal detachment with CREBBP variant, sparse lateral eyebrow with HUWE1 variant, and long palpebral fissure with eversion of the lateral third of the low eyelid with SRCAP variant.Conclusions: Our study provided a new conceptual framework for further understanding short stature. Specific clinical findings may indicate that a short-stature patient may have an epigenetic modified gene variant.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Jian Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, Shanghai, 200127, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Yan Zeng
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
5
|
Pitfalls of whole exome sequencing in undefined clinical conditions with a suspected genetic etiology. Genes Genomics 2022; 45:637-655. [PMID: 36454368 DOI: 10.1007/s13258-022-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.
Collapse
|
6
|
Lengyel A, Pinti É, Pikó H, Kristóf Á, Abonyi T, Némethi Z, Fekete G, Haltrich I. Clinical evaluation of rare copy number variations identified by chromosomal microarray in a Hungarian neurodevelopmental disorder patient cohort. Mol Cytogenet 2022; 15:47. [PMID: 36320065 PMCID: PMC9623912 DOI: 10.1186/s13039-022-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders are genetically heterogeneous pediatric conditions. The first tier diagnostic method for uncovering copy number variations (CNVs), one of the most common genetic etiologies in affected individuals, is chromosomal microarray (CMA). However, this methodology is not yet a routine molecular cytogenetic test in many parts of the world, including Hungary. Here we report clinical and genetic data of the first, relatively large Hungarian cohort of patients whose genetic testing included CMA. METHODS Clinical data were retrospectively collected for 78 children who were analyzed using various CMA platforms. Phenotypes of patients with disease-causing variants were compared to patients with negative results using the chi squared/Fisher exact tests. RESULTS A total of 30 pathogenic CNVs were identified in 29 patients (37.2%). Postnatal growth delay (p = 0.05564), pectus excavatum (p = 0.07484), brain imaging abnormalities (p = 0.07848), global developmental delay (p = 0.08070) and macrocephaly (p = 0.08919) were more likely to be associated with disease-causing CNVs. CONCLUSION Our results allow phenotypic expansion of 14q11.2 microdeletions encompassing SUPT16H and CHD8 genes. Variants of unknown significance (n = 24) were found in 17 patients. We provide detailed phenotypic and genetic data of these individuals to facilitate future classification efforts, and spotlight two patients with potentially pathogenic alterations. Our results contribute to unraveling the diagnostic value of rare CNVs.
Collapse
Affiliation(s)
- Anna Lengyel
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Éva Pinti
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Árvai Kristóf
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Tünde Abonyi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zaránd Némethi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Usluer E, Sayın GY, Güneş N, Kasap B, Tüysüz B. Investigation of genetic and phenotypic heterogeneity in 37 Turkish patients with Kabuki and Kabuki-like phenotype. Am J Med Genet A 2022; 188:2976-2987. [PMID: 36097644 DOI: 10.1002/ajmg.a.62944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.
Collapse
Affiliation(s)
- Esra Usluer
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Bezmialem University, Medical School, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Buşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
李 晓, 洪 梦, 戴 朴, 袁 永. [Clinical case analysis and literature review of mandibulofacial dysostosis with microcephaly syndrome]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:36-40. [PMID: 34979617 PMCID: PMC10128212 DOI: 10.13201/j.issn.2096-7993.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 06/14/2023]
Abstract
Objective:To explore the clinical diagnosis, otological treatment and molecular etiology in a rare syndromic hearing loss case characterized by mandibulofacial dysostosis with microcephaly(MFDM). Methods: The proband underwent detailed history collection, systematic physical examination and phenotypic analysis, as well as audiological examination, chest X-ray, temporal bone CT and brain MRI and other imaging examinations. The blood DNA of the proband and his parents was extracted and tested by the whole exom sequencing. The EFTUD2-related-MFDM literatures published by the end of 2020 were searched and sifted in PubMed and CNKI databases,the clinical characteristics of MFDM were summarized. Results:In this study, the patient presented with hypoplasia of auricle, micrognathia, microcephaly, developmental retardation, severe sensorineural hearing loss in both ears, and developmental malformation of middle and inner ear. Genetic analysis revealed a de novo deletion c.623_624delAT in EFTUD2 gene. According to the clinical features and genetic test results, the patient was diagnosed as MFDM. In order to solve the problem of hearing loss, the patient was further performed bilateral cochlear implantation, and part of the electrodes responded well during and after operation. Conclusion:This is the first domestic reported case of MFDM caused by EFTUD2 gene mutation. The key problem of cochlear implantation for this kind of patient is to avoid damaging the malformed facial nerve during the operation.The effect of speech rehabilitation after cochlear implant operation is related to many factors such as intelligence development of the patients.
Collapse
Affiliation(s)
- 晓雨 李
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - 梦迪 洪
- 解放军总医院第一医学中心耳鼻咽喉头颈外科听觉植入中心Auditory Implant Center, Department of Otolaryngology Head and Neck Surgery, First Medical Center of the PLA General Hospital
| | - 朴 戴
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - 永一 袁
- 国家耳鼻咽喉疾病临床医学研究中心 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部 解放军总医院第六医学中心耳显微外科(北京,100048)National Clinical Research Center for Otolaryngologic Diseases, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Department of Otomicrosurgery, Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
9
|
Di Candia F, Fontana P, Paglia P, Falco M, Rosano C, Piscopo C, Cappuccio G, Siano MA, De Brasi D, Mandato C, De Maggio I, Squeo GM, Monica MD, Scarano G, Lonardo F, Strisciuglio P, Merla G, Melis D. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181:171-187. [PMID: 34232366 PMCID: PMC8760211 DOI: 10.1007/s00431-021-04108-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).
Collapse
Affiliation(s)
- Francesca Di Candia
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento, Italy
| | - Pamela Paglia
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo, 1 – 84131 Salerno, Italy
| | - Carmen Rosano
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Carmelo Piscopo
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gerarda Cappuccio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Daniele De Brasi
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Claudia Mandato
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Ilaria De Maggio
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gabriella Maria Squeo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | - Pietro Strisciuglio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Giuseppe Merla
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Melis
- Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy. .,Pediatric Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", (Salerno), Baronissi, Italy. .,Pediatric Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Via San Leonardo, 1 - 84131, Salerno, Italy.
| |
Collapse
|
10
|
So PL, Luk HM, Cheung KW, Hui W, Chung MY, Mak ASL, Lok WY, Yu KPT, Cheng SSW, Hau EWL, Ho S, Lam STS, Lo IFM. Prenatal phenotype of Kabuki syndrome: A case series and literature review. Prenat Diagn 2021; 41:1089-1100. [PMID: 34185329 DOI: 10.1002/pd.5998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Kabuki syndrome (KS) is a genetic disorder characterized by intellectual disability, facial dysmorphism and congenital anomalies. We aim to investigate the prenatal features of fetuses with KS and to provide a comprehensive review of the literature on prenatal sonographic abnormalities associated with KS. METHODS We retrospectively reviewed the prenatal ultrasound findings of all mothers of children with molecularly confirmed KS in Hong Kong, between 1991 and 2019. We also performed systematic review of the literature to identify studies on the prenatal findings in KS. RESULTS We identified 11 cases with KS with detectable fetal ultrasound findings ranging from no detectable abnormalities to a variety of non-specific findings including increased nuchal translucency, pleural effusion, cardiac anomalies, renal anomalies, intrauterine growth restriction, polyhydramnios, oligohydramnios and single umbilical artery. In combining our cases with the 77 cases published, 42 (50.6%) of them had more than one abnormal antenatal ultrasound finding. The most frequent ultrasound features observed were cardiac anomalies (49.4%), followed by polyhydramnios (28.9%), genitourinary anomalies (26.5%), single umbilical artery (15.7%), intrauterine growth restriction (14.5%) and hydrops fetalis/pleural effusion/ascites (12.0%). CONCLUSIONS These cases demonstrate the prenatal phenotypic heterogeneity associated with KS. Although the ultrasound abnormalities are non-specific, KS should be considered in the differential diagnosis when these fetal findings following normal microarray analysis/karyotyping.
Collapse
Affiliation(s)
- Po Lam So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR
| | - Ho Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Ka Wang Cheung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong SAR
| | - Winnie Hui
- Department of Obstetrics & Gynecology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | - Man Yan Chung
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, Hong Kong SAR
| | - Annisa S L Mak
- Department of Obstetrics and Gynecology, Queen Elizabeth Hospital, Hong Kong SAR
| | - Wing Yi Lok
- Department of Obstetrics and Gynecology, United Christian Hospital, Hong Kong SAR
| | - Kris Pui Tak Yu
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | | | - Edgar W L Hau
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Stephanie Ho
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| | - Stephen T S Lam
- Clinical Genetics Service, Hong Kong Sanatorium & Hospital, Hong Kong SAR
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong SAR
| |
Collapse
|
11
|
A novel EFTUD2 mutation identified an adult male with mandibulofacial dysostosis Guion-Almeida type. Clin Dysmorphol 2021; 29:186-188. [PMID: 32541334 DOI: 10.1097/mcd.0000000000000330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
So PL, Luk HM, Yu KPT, Cheng SSW, Hau EWL, Ho SKL, Lam STS, Lo IFM. Clinical and molecular characterization study of Chinese Kabuki syndrome in Hong Kong. Am J Med Genet A 2020; 185:675-686. [PMID: 33314698 DOI: 10.1002/ajmg.a.62003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 11/14/2020] [Indexed: 01/21/2023]
Abstract
Kabuki syndrome (OMIM #147920 and 300867) is a rare genetic disorder characterized by a distinctive facial gestalt, intellectual disability and multiple congenital anomalies. We summarized the clinical features and molecular findings of the Kabuki syndrome (KS) patients diagnosed in Hong Kong between January 1991 and December 2019. There were 21 molecularly confirmed KS. Twenty of them were due to pathogenic KMT2D variants and one patient had KDM6A deletion. Nine KMT2D variants were novel. The clinical phenotype of our Chinese KS patients was largely comparable with that reported in patients of other ethnicities. This study expands the mutation spectrum but also provide important natural history information of Chinese KS in literature.
Collapse
Affiliation(s)
- Po L So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Ho M Luk
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kris P T Yu
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Shirley S W Cheng
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Edgar W L Hau
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephanie K L Ho
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephen T S Lam
- Clinical Genetics Service, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| |
Collapse
|
13
|
Abell K, Hopkin RJ, Bender PL, Jackson F, Smallwood K, Sullivan B, Stottmann RW, Saal HM, Weaver KN. Mandibulofacial dysostosis with microcephaly: An expansion of the phenotype via parental survey. Am J Med Genet A 2020; 185:413-423. [PMID: 33247512 DOI: 10.1002/ajmg.a.61977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
Mandibulofacial dysostosis with microcephaly (MFDM) is due to haploinsufficiency of spliceosomal GTPase EFTUD2. Features include microcephaly, craniofacial dysmorphology, developmental disability, and other anomalies. We surveyed parents of individuals with MFDM to expand knowledge about health, development, and parental concerns. Participants included attendees of the inaugural MFDM family conference in June 2019 and members of the MFDM online group. To explore MFDM variable expressivity, we offered targeted Sanger sequencing for untested parents. Forty-seven parents participated in the survey. 59% of individuals with MFDM were male, with mean age 6.4 years (range 8 months to 49 years). Similar to the literature (n = 123), common features include microcephaly, cleft palate, choanal stenosis, tracheoesophageal fistula, heart problems, and seizures. New information includes airway intervention details, age-based developmental outcomes, rate of vision refractive errors, and lower incidences of prematurity and IUGR. Family concerns focused on development, communication, and increased support. Targeted Sanger sequencing for families of seven individuals demonstrated de novo variants, for a total of 91.9% de novo EFTUD2 variants (n = 34/37). This study reports the largest single cohort of individuals with MFDM, expands phenotypic spectrum and inheritance patterns, improves understanding of developmental outcomes and care needs, and identifies development as the biggest concern for parents.
Collapse
Affiliation(s)
- Katherine Abell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert J Hopkin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Patricia L Bender
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Farrah Jackson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kelly Smallwood
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bonnie Sullivan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Missouri - Kansas City, Kansas City, Missouri, USA.,Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Rolf W Stottmann
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard M Saal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - K Nicole Weaver
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Giles AC, Grill B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev 2020; 15:6. [PMID: 32336296 PMCID: PMC7184716 DOI: 10.1186/s13064-020-00143-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA.
| |
Collapse
|
15
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
16
|
Santos CN, Cardoso MCAC, Turrioni AP, Santo ASM, Paranhos LR. Talon cusp in the temporary dentition of a patient with Kabuki syndrome: Case report with a two‐year follow‐up. SPECIAL CARE IN DENTISTRY 2019; 39:624-630. [DOI: 10.1111/scd.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Catielma Nascimento Santos
- Department of Orthodontic and Pediatric DentistrySchool of DentistryUniversity of São Paulo São Paulo Brazil
| | | | - Ana Paula Turrioni
- Department of Pediatric DentistrySchool of DentistryFederal University of Uberlândia Uberlândia Minas Gerais Brazil
| | | | - Luiz Renato Paranhos
- Department of Preventive and Community DentistrySchool of DentistryFederal University of Uberlândia Uberlândia Minas Gerais Brazil
| |
Collapse
|
17
|
Rosenberg CE, Daly T, Hung C, Hsueh I, Lindsley AW, Bodamer O. Prenatal and perinatal history in Kabuki Syndrome. Am J Med Genet A 2019; 182:85-92. [PMID: 31654559 DOI: 10.1002/ajmg.a.61387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Kabuki syndrome (KS) is a disorder of epigenetic dysregulation due to heterozygous mutations in KMT2D or KDM6A, genes encoding a lysine-specific methyltransferase or demethylase, respectively. The phenotype is highly variable, including congenital cardiac and renal anomalies, developmental delay, hypotonia, failure to thrive, short stature, and immune dysfunction. All affected individuals have characteristic facial features. As KS natural history has not been fully delineated, limited information exists on its prenatal and perinatal history. Two tertiary centers collected retrospective data from individuals with KS (N = 49) using a questionnaire followed by review of medical records. Data from 49 individuals (age range: 7 months-33 years; 37% male; 36 with KMT2D mutations, 2 with KDM6A mutations, and 11 diagnosed clinically) were examined. Polyhydramnios affected 16 of 39 (41%) pregnancies. Abnormal quad screens in four out of nine (44%) pregnancies and reduced placental weights also complicated KS pregnancies. These data comprise the first large dataset on prenatal and perinatal history in individuals with confirmed (genetically or clinically) KS. Over a third of pregnancies were complicated by polyhydramnios, possibly secondary to abnormal craniofacial structures and functional impairment of swallowing. The differential diagnosis for polyhydramnios in the absence of intrauterine growth retardation should include KS.
Collapse
Affiliation(s)
- Chen E Rosenberg
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tara Daly
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Christina Hung
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Irene Hsueh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew W Lindsley
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Broad Metabolism Program, Broad Institute of Harvard University and MIT, Boston, Massachusetts
| |
Collapse
|
18
|
Serrano MDLA, Demarest BL, Tone-Pah-Hote T, Tristani-Firouzi M, Yost HJ. Inhibition of Notch signaling rescues cardiovascular development in Kabuki Syndrome. PLoS Biol 2019; 17:e3000087. [PMID: 31479440 PMCID: PMC6743796 DOI: 10.1371/journal.pbio.3000087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/13/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Kabuki Syndrome patients have a spectrum of congenital disorders, including congenital heart defects, the primary determinant of mortality. Seventy percent of Kabuki Syndrome patients have mutations in the histone methyl-transferase KMT2D. However, the underlying mechanisms that drive these congenital disorders are unknown. Here, we generated and characterized zebrafish kmt2d null mutants that recapitulate the cardinal phenotypic features of Kabuki Syndrome, including microcephaly, palate defects, abnormal ear development, and cardiac defects. The cardiac phenotype consists of a previously unknown vasculogenesis defect that affects endocardium patterning and, consequently, heart ventricle lumen formation. Additionally, zebrafish kmt2d null mutants have angiogenesis defects depicted by abnormal aortic arch development, hyperactive ectopic blood vessel sprouting, and aberrant patterning of the brain vascular plexus. We demonstrate that zebrafish kmt2d null mutants have robust Notch signaling hyperactivation in endocardial and endothelial cells, including increased protein levels of the Notch transcription factor Rbpj. Our zebrafish Kabuki Syndrome model reveals a regulatory link between the Notch pathway and Kmt2d during endothelium and endocardium patterning and shows that pharmacological inhibition of Notch signaling rebalances Rbpj protein levels and rescues the cardiovascular phenotype by enhancing endothelial and endocardial cell proliferation and stabilizing endocardial patterning. Taken together, these findings demonstrate that Kmt2d regulates vasculogenesis and angiogenesis, provide evidence for interactions between Kmt2d and Notch signaling in Kabuki Syndrome, and suggest future directions for clinical research.
Collapse
Affiliation(s)
- Maria de los Angeles Serrano
- Molecular Medicine Program—Neurobiology and Anatomy Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Bradley L. Demarest
- Molecular Medicine Program—Neurobiology and Anatomy Department, University of Utah, Salt Lake City, Utah, United States of America
| | | | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Pediatric Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - H. Joseph Yost
- Molecular Medicine Program—Neurobiology and Anatomy Department, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
19
|
Adam MP, Banka S, Bjornsson HT, Bodamer O, Chudley AE, Harris J, Kawame H, Lanpher BC, Lindsley AW, Merla G, Miyake N, Okamoto N, Stumpel CT, Niikawa N. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet 2018; 56:89-95. [PMID: 30514738 DOI: 10.1136/jmedgenet-2018-105625] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kabuki syndrome (KS) is a clinically recognisable syndrome in which 70% of patients have a pathogenic variant in KMT2D or KDM6A. Understanding the function of these genes opens the door to targeted therapies. The purpose of this report is to propose diagnostic criteria for KS, particularly when molecular genetic testing is equivocal. METHODS An international group of experts created consensus diagnostic criteria for KS. Systematic PubMed searches returned 70 peer-reviewed publications in which at least one individual with molecularly confirmed KS was reported. The clinical features of individuals with known mutations were reviewed. RESULTS The authors propose that a definitive diagnosis can be made in an individual of any age with a history of infantile hypotonia, developmental delay and/or intellectual disability, and one or both of the following major criteria: (1) a pathogenic or likely pathogenic variant in KMT2D or KDM6A; and (2) typical dysmorphic features (defined below) at some point of life. Typical dysmorphic features include long palpebral fissures with eversion of the lateral third of the lower eyelid and two or more of the following: (1) arched and broad eyebrows with the lateral third displaying notching or sparseness; (2) short columella with depressed nasal tip; (3) large, prominent or cupped ears; and (4) persistent fingertip pads. Further criteria for a probable and possible diagnosis, including a table of suggestive clinical features, are presented. CONCLUSION As targeted therapies for KS are being developed, it is important to be able to make the correct diagnosis, either with or without molecular genetic confirmation.
Collapse
Affiliation(s)
- Margaret P Adam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jaqueline Harris
- Departments of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hiroshi Kawame
- Department of Education and Training, Tohoku University School of Medicine, Sendai, Japan
| | - Brendan C Lanpher
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Constanze T Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Norio Niikawa
- President, the Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|