1
|
Denkiewicz-Kruk M, Chaudhry D, Krasilia A, Jedrychowska M, Fijalkowska IJ, Dmowski M. Effects of CDC45 mutations on DNA replication and genome stability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119936. [PMID: 40139510 DOI: 10.1016/j.bbamcr.2025.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Cdc45 is a non-catalytic subunit of the CMG helicase complex that is recruited to the autonomously replicating sequence at the onset of DNA replication. The Cdc45 protein is required for the initiation of DNA replication as well as for nascent DNA strand synthesis. It interacts with Mcm2 and Psf1 elements of CMG helicase, as well as with Sld3, an initiation factor, and Pol2, the catalytic subunit of DNA polymerase epsilon (Pol ε). In this study, we analyzed the effects of amino acid substitutions in the Cdc45 region involved in the interaction of this protein with Mcm2-7 (Cdc45-1), Psf1 (Cdc45-26), and Sld3 (Cdc45-25, Cdc45-35). We found that mutations in CDC45 resulted in defective DNA replication. Under permissive conditions, delayed DNA synthesis was observed. At restrictive temperatures, the mutant cells were unable to efficiently replicate DNA. However, after the initiation of DNA replication under permissive conditions, the four analyzed CDC45 mutants exhibited DNA synthesis under the restrictive conditions. Moreover, we observed increased mutation rates, mainly dependent on DNA polymerase zeta (Pol ζ), as well as increased incidence of replication errors. These findings confirm the essential function of Cdc45 in DNA replication initiation and demonstrate that impaired Cdc45 subunit has an impact on the fidelity of the nascent DNA strand synthesis. The changes in cell function observed in this study, related to defects in Cdc45 function, may help understand some diseases associated with CDC45.
Collapse
Affiliation(s)
- Milena Denkiewicz-Kruk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Deepali Chaudhry
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Alina Krasilia
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Malgorzata Jedrychowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Michal Dmowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Çetinkaya D, Doğan Ari AB, Kiliç E. Meier-Gorlin syndrome type 7: a rare cause of primordial dwarfism: two new cases and literature review. Clin Dysmorphol 2024; 33:167-170. [PMID: 38934085 DOI: 10.1097/mcd.0000000000000504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Duygu Çetinkaya
- Department of Pediatric Genetics, University of Health Sciences, Ankara Bilkent City Children's Hospital, Ankara, Turkey
| | | | | |
Collapse
|
3
|
Schoch K, Ruegg MSG, Fellows BJ, Cao J, Uhrig S, Einsele-Scholz S, Biskup S, Hawarden SRA, Salpietro V, Capra V, Brown CM, Accogli A, Shashi V, Bicknell LS. A second hotspot for pathogenic exon-skipping variants in CDC45. Eur J Hum Genet 2024; 32:786-794. [PMID: 38467731 PMCID: PMC11219862 DOI: 10.1038/s41431-024-01583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Biallelic pathogenic variants in CDC45 are associated with Meier-Gorlin syndrome with craniosynostosis (MGORS type 7), which also includes short stature and absent/hypoplastic patellae. Identified variants act through a hypomorphic loss of function mechanism, to reduce CDC45 activity and impact DNA replication initiation. In addition to missense and premature termination variants, several pathogenic synonymous variants have been identified, most of which cause increased exon skipping of exon 4, which encodes an essential part of the RecJ-orthologue's DHH domain. Here we have identified a second cohort of families segregating CDC45 variants, where patients have craniosynostosis and a reduction in height, alongside common facial dysmorphisms, including thin eyebrows, consistent with MGORS7. Skipping of exon 15 is a consequence of two different variants, including a shared synonymous variant that is enriched in individuals of East Asian ancestry, while other variants in trans are predicted to alter key intramolecular interactions in α/β domain II, or cause retention of an intron within the 3'UTR. Our cohort and functional data confirm exon skipping is a relatively common pathogenic mechanism in CDC45, and highlights the need for alternative splicing events, such as exon skipping, to be especially considered for variants initially predicted to be less likely to cause the phenotype, particularly synonymous variants.
Collapse
Affiliation(s)
- Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Mischa S G Ruegg
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Bridget J Fellows
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Joseph Cao
- Division of Pediatric Radiology, Department of Radiology Duke University School of Medicine, Durham, NC, USA
| | - Sabine Uhrig
- Institute of Clinical Genetics, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Saskia Biskup
- Center for Human Genetics Tuebingen and CeGaT GmbH, Tuebingen, Germany
| | - Samuel R A Hawarden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Nielsen-Dandoroff E, Ruegg MSG, Bicknell LS. The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome. Eur J Hum Genet 2023:10.1038/s41431-023-01359-z. [PMID: 37059840 PMCID: PMC10400559 DOI: 10.1038/s41431-023-01359-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
High-throughput sequencing has become a standard first-tier approach for both diagnostics and research-based genetic testing. Consequently, this hypothesis-free testing manner has revealed the true breadth of clinical features for many established genetic disorders, including Meier-Gorlin syndrome (MGORS). Previously known as ear-patella short stature syndrome, MGORS is characterized by growth delay, microtia, and patella hypo/aplasia, as well as genital abnormalities, and breast agenesis in females. Following the initial identification of genetic causes in 2011, a total of 13 genes have been identified to date associated with MGORS. In this review, we summarise the genetic and clinical findings of each gene associated with MGORS and highlight molecular insights that have been made through studying patient variants. We note interesting observations arising across this group of genes as the number of patients has increased, such as the unusually high number of synonymous variants affecting splicing in CDC45 and a subgroup of genes that also cause craniosynostosis. We focus on the complicated molecular genetics for DONSON, where we examine potential genotype-phenotype patterns using the first 3D structural model of DONSON. The canonical role of all proteins associated with MGORS are involved in different stages of DNA replication and in addition to summarising how patient variants impact on this process, we discuss the potential contribution of non-canonical roles of these proteins to the pathophysiology of MGORS.
Collapse
Affiliation(s)
| | - Mischa S G Ruegg
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Chen J, Zhang P, Peng M, Liu B, Wang X, Du S, Lu Y, Mu X, Lu Y, Wang S, Wu Y. An additional whole-exome sequencing study in 102 panel-undiagnosed patients: A retrospective study in a Chinese craniosynostosis cohort. Front Genet 2022; 13:967688. [PMID: 36118902 PMCID: PMC9481236 DOI: 10.3389/fgene.2022.967688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Craniosynostosis (CRS) is a disease with prematurely fused cranial sutures. In the last decade, the whole-exome sequencing (WES) was widely used in Caucasian populations. The WES largely contributed in genetic diagnosis and exploration on new genetic mechanisms of CRS. In this study, we enrolled 264 CRS patients in China. After a 17-gene-panel sequencing designed in the previous study, 139 patients were identified with pathogenic/likely pathogenic (P/LP) variants according to the ACMG guideline as positive genetic diagnosis. WES was then performed on 102 patients with negative genetic diagnosis by panel. Ten P/LP variants were additionally identified in ten patients, increasing the genetic diagnostic yield by 3.8% (10/264). The novel variants in ANKH, H1-4, EIF5A, SOX6, and ARID1B expanded the mutation spectra of CRS. Then we designed a compatible research pipeline (RP) for further exploration. The RP could detect all seven P/LP SNVs and InDels identified above, in addition to 15 candidate variants found in 13 patients with worthy of further study. In sum, the 17-gene panel and WES identified positive genetic diagnosis for 56.4% patients (149/264) in 16 genes. At last, in our estimation, the genetic testing strategy of “Panel-first” saves 24.3% of the cost compared with “WES only”, suggesting the “Panel-first” is an economical strategy.
Collapse
Affiliation(s)
- Jieyi Chen
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiao Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Lu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiongzheng Mu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| | - Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| |
Collapse
|
6
|
Fu Y, Lv Z, Kong D, Fan Y, Dong B. High abundance of CDC45 inhibits cell proliferation through elevation of HSPA6. Cell Prolif 2022; 55:e13257. [PMID: 35642733 PMCID: PMC9251052 DOI: 10.1111/cpr.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES CDC45 is the core component of CMG (CDC45-MCMs-GINS) complex that plays important role in the initial step of DNA replication in eukaryotic cells. The expression level of cdc45 is under the critical control for the accurate cell cycle progression. Loss-of-function of cdc45 has been demonstrated to inhibit cell proliferation and leads to cell death due to the inhibition of DNA replication and G1-phase arrest. An increasing of CDC45 inhibits cell proliferation as well. Nevertheless, a systematic analysis of the effect of high dose of CDC45 on cell physiology and behaviors is unclear. In the present study, we aimed to investigate the effects and mechanisms of high dose of CDC45 on cell behaviors. MATERIALS AND METHODS We overexpressed cdc45 in cultured cell lines, Ciona and Drosophila embryos, respectively. The cell cycle progression was examined by the BrdU incorporation experiment, flow cytometry and PH3 (phospho-Histone 3) staining. RNA-sequencing analysis and qRT-PCR were carried out to screen the affected genes in HeLa cells overexpressing cdc45. siRNA-mediated knockdown was performed to investigate gene functions in HeLa cells overexpressing cdc45. RESULTS We found that high level of cdc45 from different species (human, mammal, ascidian, and Drosophila) inhibited cell cycle in vitro and in vivo. High dose of CDC45 blocks cells entering into S phase. However, we failed to detect DNA damage and cell apoptosis. We identified hspa6 was the most upregulated gene in HeLa cells overexpressing cdc45 via RNA-seq analysis and qRT-PCR validation. Overexpression of Hs-hspa6 inhibited proliferation rate and DNA replication in HeLa cells, mimicking the phenotype of cdc45 overexpression. RNAi against hspa6 partially rescued the cell proliferation defect caused by high dose of CDC45. CONCLUSIONS Our study suggests that high abundance of CDC45 stops cell cycle. Instead of inducing apoptosis, excessive CDC45 prevents cell entering S phase probably due to promoting hspa6 expression.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
| | - Zhiyi Lv
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Deqing Kong
- Department of BiologyPhilipps UniversityMarburgGermany
| | - Yuping Fan
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
| | - Bo Dong
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
7
|
McQuaid ME, Ahmed K, Tran S, Rousseau J, Shaheen R, Kernohan KD, Yuki KE, Grover P, Dreseris ES, Ahmed S, Dupuis L, Stimec J, Shago M, Al-Hassnan ZN, Tremblay R, Maass PG, Wilson MD, Grunebaum E, Boycott KM, Boisvert FM, Maddirevula S, Faqeih EA, Almanjomi F, Khan ZU, Alkuraya FS, Campeau PM, Kannu P, Campos EI, Wurtele H. Hypomorphic GINS3 variants alter DNA replication and cause Meier-Gorlin syndrome. JCI Insight 2022; 7:155648. [PMID: 35603789 PMCID: PMC9215265 DOI: 10.1172/jci.insight.155648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome–like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.
Collapse
Affiliation(s)
- Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Kashif Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Tran
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ranad Shaheen
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kristin D. Kernohan
- CHEO Research Institute, Ottawa, Ontario, Canada
- Newborn Screening Ontario, CHEO, Ottawa, Ontario, Canada
| | - Kyoko E. Yuki
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prerna Grover
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ema S. Dreseris
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sameen Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Stimec
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Shago
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zuhair N. Al-Hassnan
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Philipp G. Maass
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, and
| | - Fahad Almanjomi
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zaheer Ullah Khan
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Peter Kannu
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Eric I. Campos
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Vakili R, Mobini M, Hatami F, Vakili S, Valizadeh N. Meier-Gorlin syndrome with prenatal ultrasound findings and successful growth hormone therapy: Six years follow-up of a rare case. Radiol Case Rep 2022; 17:1512-1520. [PMID: 35282325 PMCID: PMC8904407 DOI: 10.1016/j.radcr.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
Meire-Gorlin syndrome (MGS) is a rare autosomal recessive disorder characterized by a triad of short stature, microtia, and absent or hypoplastic patella. We report a 5-year-old male affected with the subtype MGS1, secondary to c.c2292t mutation of ORC1 gene. Our patient's features included a triangular face, micrognathia, and delayed motor development. To the edge of our knowledge, this is the first diagnosed Iranian MGS patient and sixth case in the middle east. MGS1 subtype has never shown improvement to growth hormone therapy, therefore underlying molecular defect was suggested to be responsible for patients’ short stature rather than growth hormone deficiency. However, our patients’ growth velocity was improved by growth hormone. We recommend more studies to specify the role of ORC1 gene in this syndrome. In addition, this case report describes the prenatal investigations and sonographic examinations of MGS1 for the first time.
Collapse
|
9
|
Zabnenkova V, Shchagina O, Makienko O, Matyushchenko G, Ryzhkova O. Novel Compound Heterozygous Variants in the CDC6 Gene in a Russian Patient with Meier-Gorlin Syndrome. Appl Clin Genet 2022; 15:1-10. [PMID: 35023948 PMCID: PMC8747802 DOI: 10.2147/tacg.s342804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Meier-Gorlin syndrome (MGS) is a rare genetic syndrome inherited in an autosomal dominant or autosomal recessive manner. The disorder is characterized by bilateral microtia, absence or hypoplasia of the patella, and an intrauterine growth retardation as well as a number of other characteristic features. The cause of the disease is mutations in genes encoding proteins involved in the regulation of the cell cycle (ORC1, ORC4, ORC6, CDT1, CDC6, GMNN, CDC45L, MCM3, MCM5, MCM7, GINS2, and DONSON). Meier-Gorlin syndrome 5 due to mutations in the CDC6 gene is difficult to diagnose, and few clinical data have been described to date. Only one patient (male) with a missense mutation in a homozygous state has been previously reported. This report describes a new clinical case of Meier-Gorlin syndrome 5. This is also the first report of a Russian patient with Meier-Gorlin syndrome. Case Presentation The patient, a female, had extremely low physical development, neonatal progeroid appearance, lipodystrophy, thin skin, partial alopecia, cyanosis of the face, triangular face, microgenia, arachnodactyly, delayed bone age, hepatomegaly, hypoplasia of the labia majora, and hypertrophy of the clitoris in addition to known clinical signs. Differential diagnosis was performed with chromosomal abnormalities and Hutchinson-Gilford progeria. According to the results of sequencing of the clinical exome, the patient had two previously undescribed variants in the CDC6 gene, c.230A>G (p.(Lys77Arg)) and c.232C>T (p.(Gln78Ter)), NM_001254.3, in a compound heterozygous state. Conclusion This case allows us to learn more about the clinical features and nature of MGS 5 and improve the speed of diagnostics and quality of genetic counseling for such families.
Collapse
Affiliation(s)
- Viktoriia Zabnenkova
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Olga Shchagina
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Olga Makienko
- Counselling Unit, Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Galina Matyushchenko
- Counselling Unit, Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Oxana Ryzhkova
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| |
Collapse
|
10
|
Si N, Zhang Z, Huang X, Wang C, Guo P, Pan B, Jiang H. De novo 22q11.2 deletions and auricular findings in two Chinese patients with microtia. Mol Genet Genomic Med 2021; 10:e1862. [PMID: 34971493 PMCID: PMC8801138 DOI: 10.1002/mgg3.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/20/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Congenital microtia is a common craniofacial malformation resulting from both environmental and genetic factors. Recurrent chromosomal imbalances were observed in patients with microtia. The 22q11.2 deletion is one of the most common microdeletions in human beings. The cell division cycle 45 gene (CDC45) embedded in the proximal 22q11.2 deleted region is involved in craniofacial development. However, only a few studies have focused on the 22q11.2 deletion as genetic etiology in microtia patients and studied its associated external ear deformity characteristics in detail. METHODS In this research, a total of 65 patients from north China with sporadic microtia were studied. Copy number variations of CDC45 were screened using AccuCopy assay. The 22q11.2 deletion harboring CDC45 was identified by whole-genome sequencing and targeted next-generation sequencing. A parental test was carried out to determine the origin of the deletion. RESULTS CDC45 copy number loss was identified in two patients with microtia. A set of qPCR assays demonstrated two patients carried a typical proximal 22q11.2 deletion between the low-copy repeats on chromosome 22q11.2 (LCR22A and LCR22D), encompassing CDC45. The 22q11.2 deletions were de novo in each patient. In-depth auricular phenotype assessment showed these two patients have a distinct concha-type ear malformation while other microtia patients have lobule-type microtia among the 65 microtia patient cohort in this study. CONCLUSION Here we present two additional Chinese microtia patients with de novo 22q11.2 proximal deletion harboring CDC45 and further report these patients' distinct ear malformation.
Collapse
Affiliation(s)
- Nuo Si
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Zeya Zhang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xin Huang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Chanchen Wang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Peipei Guo
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Bo Pan
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
11
|
Li X, Zhang LZ, Yu L, Long ZL, Lin AY, Gou CY. Prenatal diagnosis of Meier-Gorlin syndrome 7: a case presentation. BMC Pregnancy Childbirth 2021; 21:381. [PMID: 34000999 PMCID: PMC8130261 DOI: 10.1186/s12884-021-03868-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Background Meier-Gorlin syndrome 7 (MGS7) is a rare autosomal recessive condition. We reported a fetus diagnosed with Meier-Gorlin syndrome 7. The antenatal sonographic images were presented, and compound heterozygous mutations of CDC45 on chromosome 22 were identified by whole-exome sequencing (WES). Case presentation Fetal growth restriction (FGR), craniosynostosis, and brachydactyly of right thumb were found in a fetus of 28th gestational weeks. The fetus was diagnosed as MGS7 clinically. After extensive counseling, the couple opted for prenatal diagnosis by cordocentesis and termination of pregnancy. Karyotype analysis and WES were performed. Chromosomal karyotyping showed that the fetus was 46, XY. There were 2 mutations of CDC45, the causal gene of MGS7 on chromosome 22, which were inherited from the couple respectively were identified by WES. Facial dysmorphism, brachydactyly of right thumb, and genitalia abnormally were proved by postpartum autopsy, and craniosynostosis was confirmed by three-dimensional computed tomography (3D-CT) reconstruction. Conclusions It is possible to detect multiple clinical features of Meier-Gorlin syndrome in prenatal sonography. Deteriorative FGR complicated with craniosynostosis indicates MGS7. Combination of 2D and 3D ultrasonography helps to detect craniosynostosis. The affected fetus was confirmed a compound heterozygote of CDC45 related MGS by whole-exome sequencing, which is critical in identifying rare genetic diseases.
Collapse
Affiliation(s)
- Xia Li
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - Lan-Zhen Zhang
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China.
| | - Lin Yu
- Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhao-Lua Long
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - An-Yun Lin
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - Chen-Yu Gou
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China. .,Fetal Medicine Center, Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, China.
| |
Collapse
|
12
|
Knapp KM, Fellows B, Aggarwal S, Dalal A, Bicknell LS. A synonymous variant in a non-canonical exon of CDC45 disrupts splicing in two affected sibs with Meier-Gorlin syndrome with craniosynostosis. Eur J Med Genet 2021; 64:104182. [PMID: 33639314 DOI: 10.1016/j.ejmg.2021.104182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 01/23/2021] [Indexed: 11/30/2022]
Abstract
Disruption of the initiation of DNA replication is significantly associated with Meier-Gorlin syndrome (MGORS), an autosomal recessive condition of reduced growth, microtia and patellar a/hypoplasia. Biallelic mutations in CDC45, a member of the pre-initiation complex in DNA replication, cause a spectrum of phenotypes ranging from MGORS with craniosynostosis, through to isolated short stature and craniosynostosis. Here we report two affected sibs with MGORS and craniosynostosis, with biallelic variants in CDC45 identified by 10X Chromium whole genome sequencing. One variant is a frameshift mutation, predicted to be pathogenic, and is inherited in trans with a synonymous variant in a non-canonical exon (exon 7) of CDC45. An in vitro splicing assay showed that while the canonical CDC45 exon 6-exon 8 transcript (with skipping of exon 7; numbering as per NM001178010.2) remained as the predominant transcript, the variant allele induced the use of novel splice acceptor sites in intron 6, all of which produced transcripts harbouring premature stop codons. This perturbation of canonical splicing provides evidence that this synonymous variant is indeed a deleterious alteration in this family. This report adds to the initial patient cohort in which several synonymous variants were also described, further highlighting the contribution of this variant type in CDC45. It also reiterates the true potential pathogenicity of synonymous variants, which is a mutation type that is commonly ignored in variant prioritization strategies.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bridget Fellows
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Department of Medical Genetics, Kasturba Medical College, Manipal, Karnataka, India
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|