1
|
Mouchez A, Hoebeke C, Desnous B, Cano A, Fritih R, Fabre A. Hepatic manifestations in VPS53-related pontocerebellar hypoplasia type 2E: A case report. Eur J Med Genet 2025; 74:104996. [PMID: 39842660 DOI: 10.1016/j.ejmg.2025.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Pathogenic variants in VPS53 are associated with pontocerebellar hypoplasia type 2E (PCH2E), characterized by microcephaly, severe neurodevelopmental impairment and epilepsy. We present a case of a female neonate with VPS53 pathogenic variants exhibiting the classic phenotypic features along with liver disease and deafness, which had not been described in previously reported cases. Similarly, while liver abnormalities have been reported in patients with mutations in other genes coding for proteins of the GARP or EARP complex, of which VPS53 is a subunit, liver disease has not been described in PCH2E until now. This case suggests that liver involvement may be an under-recognized feature of PCH2E and, more broadly, in GARP or EARP dysfunction, warranting further investigation.
Collapse
Affiliation(s)
- Auriane Mouchez
- APHM, Timone Enfant, Service de Pédiatrie Multidisciplinaire, Marseille, France
| | - Célia Hoebeke
- APHM, Timone Enfant, Reference Center for Inherited Metabolic Diseases, Marseille, France
| | - Béatrice Desnous
- APHM, Timone Enfant, Department of Pediatric Neurology, Marseille, France
| | - Aline Cano
- APHM, Timone Enfant, Reference Center for Inherited Metabolic Diseases, Marseille, France
| | - Radia Fritih
- APHM, Timone, Department of Pathology and Neuropathology, Marseille, France
| | - Alexandre Fabre
- APHM, Timone Enfant, Service de Pédiatrie Multidisciplinaire, Marseille, France; Aix Marseille Univ, INSERM, MMG, Marseille, France.
| |
Collapse
|
2
|
Bhanudeep S, Koneti BB. VPS51-Related Disorder in a Toddler: A Novel Golgipathy. Neurol India 2025; 73:402-403. [PMID: 40176246 DOI: 10.4103/neurol-india.neurol-india-d-24-00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 04/04/2025]
Affiliation(s)
- Singanamalla Bhanudeep
- Department of Pediatric Neurology, Paramitha Group of Hospitals, Hyderabad, Telangana, India
| | - Bramhini Bhargavi Koneti
- Department of Dermatology, Kaya Clinic, Jubilee Hills, Above Krishna Pearl, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Emam BA, Abdel-Hamid MS, Eid M, Girgis M, Ragab OA, Zaki MS, El-Kiki H, Abdel-Hady S, Abdel-Salam GM. Screening for TSEN54 Variants in Egyptian Patients with Pontocerebellar Malformations. Mol Syndromol 2024; 15:474-480. [PMID: 39634246 PMCID: PMC11614434 DOI: 10.1159/000539364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/14/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Pontocerebellar hypoplasia (PCH) represents a group of rare disorders with prenatal onset and time-dependent loss of brain parenchyma, predominantly affecting the cerebellum and pons with variable involvement of supratentorial structures. Radiologically and pathologically, they are characterized by small cerebellum and pons. Our study aimed to screen for the TSEN54 gene variants in Egyptian patients with PCH for proper counseling and to describe the brain MRI and the clinical phenotype and compare, them to those described in the literature. Methods Thirty patients from thirty Egyptian families with a diagnosis of PCH based on neuroimaging findings were selected. Clinical evaluation, radiological findings, and genetic investigations were done for all patients. Results The common missense variant c.919G>T (p.A307S) was identified in only 6 patients from six unrelated families (6/30; 20%) who showed different degrees of pontocerebellar malformations on brain imaging. Conclusion The presence of a dragonfly/butterfly-like pattern in the coronal section of the cerebellum recommends genetic testing of TSEN54 as a first step. For negative cases, whole-exome sequencing is essential to reach a definite diagnosis and determine the etiology.
Collapse
Affiliation(s)
- Bayoumi A. Emam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Eid
- Medical Cytogenetic Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Marian Girgis
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omar A. Ragab
- Neurosurgery Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Maha S. Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hassan El-Kiki
- Radiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan Abdel-Hady
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada M.H. Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Hecher L, Gorski-Alberts E, Begemann M, Herwig J, Lausberg E, Hillebrand G, Volk AE, Kurth I, Kraft F, Kutsche K. Complex structural variation and nonsense variant in trans cause VPS50-related disorder. J Med Genet 2024; 61:833-838. [PMID: 38876772 DOI: 10.1136/jmg-2024-109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.
Collapse
Affiliation(s)
- Laura Hecher
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Esther Gorski-Alberts
- Klinik für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Klinikum Itzehoe, Itzehoe, Schleswig-Holstein, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Johanna Herwig
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Hillebrand
- Klinik für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Klinikum Itzehoe, Itzehoe, Schleswig-Holstein, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Guo H, Deng Z, Xu Q, Wang Z, Zeng X, Hong X, Wang Q, Sun Y, Yuan H. Genetic and prenatal diagnosis of a Chinese pedigree with pathogenic TOE1 variants causing pontocerebellar hypoplasia type 7. J Matern Fetal Neonatal Med 2023; 36:2250895. [PMID: 37635087 DOI: 10.1080/14767058.2023.2250895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Objective: Biallelic pathogenic variants in TOE1 cause pontocerebellar hypoplasia type 7 (PCH7), a rare neurological condition characterized by psychomotor retardation, spastic paraplegia, seizures, gonadal abnormalities and brain anomalies. Currently, only 14 postnatally diagnosed PCH7 patients have been described. However, the prenatal clinical profile of PCH7 has not yet been reported.Method: Whole-exome sequencing (WES) was performed to screen for causal variants.Results: We report the pedigree of a Chinese woman with two eventful pregnancies with fetuses that showed brain anomalies, including microcephaly, cerebral anomalies, enlarged ventricles, corpus callosum thinning, abnormal lateral fissure, underdeveloped insula and pons and brainstem hypoplasia. Interestingly, corpus callosum thinning was observed in fetus 1 but not in fetus 2. An abnormal lateral fissure and an underdeveloped insula were shown in fetus 2 but not fetus 1. Biallelic variants c.716T > C (p.Phe239Ser) and c.955C > T (p.His319Tyr) in TOE1 were identified in both fetuses.Conclusion: We first describe the prenatal features of a Chinese pedigree with PCH7 caused by biallelic pathogenic variants in TOE1, with phenotypic variability observed even within the same family. Novel phenotypes, an abnormal lateral fissure and an underdeveloped insula were observed in the fetus in our study. These findings will enrich our knowledge of the clinical characteristics, management and genetic counseling of PCH7.
Collapse
Affiliation(s)
- Hongmei Guo
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Zhengxi Deng
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Qiuhong Xu
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Zhong Wang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Xiumei Zeng
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Xiaochun Hong
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Qingming Wang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Yan Sun
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| | - Haiming Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, P.R. China
| |
Collapse
|
7
|
Arrabal L, Muñoz-Pujol G, Medina Martínez I, Gort L, García-Villoria J, Roldán S, Tort F, Ribes A. Functional Evidence of CCDC186 as a New Disease-Associated Gene with Endocrine and Central Nervous System Alterations. Int J Mol Sci 2023; 24:12319. [PMID: 37569695 PMCID: PMC10419233 DOI: 10.3390/ijms241512319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
CCDC186 protein is involved in the maturation of dense-core vesicles (DCVs) in the trans-Golgi network in neurons and endocrine cells. Mutations in genes involved in DCV regulation, other than CCDC186, have been described in patients with neurodevelopmental disorders. To date, only one patient, within a large sequencing study of 1000 cases, and a single case report with variants in CCDC186, had previously been described. However, no functional studies in any of these two cases had been performed. We identified three patients from two gypsy families, unrelated to each other, with mutations in the CCDC186 gene. Clinically, all patients presented with seizures, frontotemporal atrophy, hypomyelination, recurrent infections, and endocrine disturbances such as severe non-ketotic hypoglycemia. Low levels of cortisol, insulin, or growth hormone could only be verified in one patient. All of them had a neonatal onset and died between 7 months and 4 years of age. Whole exome sequencing identified a homozygous variant in the CCDC186 gene (c.2215C>T, p.Arg739Ter) in the index patients of both families. Protein expression studies demonstrated that CCDC186 was almost undetectable in fibroblasts and muscle tissue. These observations correlated with the transcriptomic analysis performed in fibroblasts in one of the patients, which showed a significant reduction of CCDC186 mRNA levels. Our study provides functional evidence that mutations in this gene have a pathogenic effect on the protein and reinforces CCDC186 as a new disease-associated gene. In addition, mutations in CCDC186 could explain the combined endocrine and neurologic alterations detected in our patients.
Collapse
Affiliation(s)
- Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.A.); (I.M.M.); (S.R.)
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, IDIBAPS, CIBERER, 08028 Barcelona, Spain; (G.M.-P.); (L.G.); (J.G.-V.)
| | - Inmaculada Medina Martínez
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.A.); (I.M.M.); (S.R.)
| | - Laura Gort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, IDIBAPS, CIBERER, 08028 Barcelona, Spain; (G.M.-P.); (L.G.); (J.G.-V.)
| | - Judit García-Villoria
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, IDIBAPS, CIBERER, 08028 Barcelona, Spain; (G.M.-P.); (L.G.); (J.G.-V.)
| | - Susana Roldán
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.A.); (I.M.M.); (S.R.)
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, IDIBAPS, CIBERER, 08028 Barcelona, Spain; (G.M.-P.); (L.G.); (J.G.-V.)
| | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, IDIBAPS, CIBERER, 08028 Barcelona, Spain; (G.M.-P.); (L.G.); (J.G.-V.)
| |
Collapse
|
8
|
Khakurel A, Lupashin VV. Role of GARP Vesicle Tethering Complex in Golgi Physiology. Int J Mol Sci 2023; 24:6069. [PMID: 37047041 PMCID: PMC10094427 DOI: 10.3390/ijms24076069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.
Collapse
Affiliation(s)
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
9
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
10
|
Barola S, Parrill AM, Mahmoudzadeh S, Bizargity P, Verma R. A Rare Case Report of 17q23.1q23.2 Microdeletion With Homozygosity of 11p11.2q13.4 in a Newborn. Cureus 2022; 14:e23290. [PMID: 35449653 PMCID: PMC9012598 DOI: 10.7759/cureus.23290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
We present the case of a newborn with 17q23.1q23.2 microdeletion and additional homozygosity of 11p11.2q13.4. In the literature, 17q23.1q23.2 microdeletion syndrome is a novel syndrome reported in nine patients. Our patient is a full-term baby boy admitted to a neonatal intensive care unit for hypoglycemia, respiratory distress, presumed sepsis, and thrombocytopenia. General appearance revealed microcephaly, micrognathia, ankyloglossia, small mouth, and high arch palate. The patient also presented with hypotonia, poor feeding, and poor weight gain in the first week of life followed by hypertonia and tremors from the second week of life. The phenotypic and clinical presentation lead to the genetic investigation of microarray which revealed 17q23.1q23.2 microdeletion and additional homozygosity of 11p11.2q13.4.
Collapse
|
11
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
12
|
Khakurel A, Kudlyk T, Bonifacino JS, Lupashin VV. The Golgi-associated retrograde protein (GARP) complex plays an essential role in the maintenance of the Golgi glycosylation machinery. Mol Biol Cell 2021; 32:1594-1610. [PMID: 34161137 PMCID: PMC8351751 DOI: 10.1091/mbc.e21-04-0169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery. [Media: see text].
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Tetyana Kudlyk
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Vladimir V. Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| |
Collapse
|
13
|
Schneeberger PE, Nampoothiri S, Holling T, Yesodharan D, Alawi M, Knisely AS, Müller T, Plecko B, Janecke AR, Kutsche K. Biallelic variants in VPS50 cause a neurodevelopmental disorder with neonatal cholestasis. Brain 2021; 144:3036-3049. [PMID: 34037727 DOI: 10.1093/brain/awab206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52, and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the TGN is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis, and failure to thrive. Light and transmission electron microscopy of liver from one revealed absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes, and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While transferrin-receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy, and variable atrophy of the cerebellum, cerebrum, and/or brainstem. The term "GARP/EARP deficiency" designates disorders in such individuals.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8010 Graz, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Plecko
- Department of Pediatrics, Division of General Pediatrics, Medical University of Graz, 8010 Graz, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Brugger M, Becker-Dettling F, Brunet T, Strom T, Meitinger T, Lurz E, Borggraefe I, Wagner M. A homozygous truncating variant in CCDC186 in an individual with epileptic encephalopathy. Ann Clin Transl Neurol 2020; 8:278-283. [PMID: 33259146 PMCID: PMC7818090 DOI: 10.1002/acn3.51260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Coiled-Coil Domain Containing Protein 186 (CCDC186) is hypothesized to play an important role in the biogenesis of dense-core vesicles in neurons and endocrine cells. Biallelic loss-of-function variants in the encoding gene CCDC186 have been suggested as a candidate gene for a neurodevelopmental phenotype, but only one patient has been described so far. We report a second patient with a CCDC186-associated phenotype presenting with developmental delay, epileptic encephalopathy, and failure to thrive. Exome sequencing identified a homozygous loss-of-function variant in CCDC186 (NM_018017.2) c.767C> G; p.(Ser256Ter) thus providing further evidence to support CCDC186 as a new disease gene for an autosomal recessive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Melanie Brugger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Fiona Becker-Dettling
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tim Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eberhard Lurz
- Division of Pediatric Gastroenterology, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Childrens Hospital, Ludwig Maximilians University of Munich, Munich, Germany.,Comprensive Epilepsy Center Ludwig, Maximilians University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
15
|
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, Sakagami H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res 2020; 1745:146905. [PMID: 32473257 DOI: 10.1016/j.brainres.2020.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/05/2023]
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuro Shinohara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
16
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
18
|
Ishida M, Bonifacino JS. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-Golgi network. J Cell Biol 2019; 218:3681-3696. [PMID: 31575603 PMCID: PMC6829661 DOI: 10.1083/jcb.201905097] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
SNARE-mediated fusion of endosome-derived transport carriers with the trans-Golgi network (TGN) depends on the concerted action of two types of tethering factors: long coiled-coil tethers of the golgin family, and the heterotetrameric complex GARP. Whereas the golgins mediate long-distance capture of the carriers, GARP promotes assembly of the SNAREs. It remains to be determined, however, how the functions of these tethering factors are coordinated. Herein we report that the ARF-like (ARL) GTPase ARFRP1 functions upstream of two other ARL GTPases, ARL1 and ARL5, which in turn recruit golgins and GARP, respectively, to the TGN. We also show that this mechanism is essential for the delivery of retrograde cargos to the TGN. Our findings thus demonstrate that ARFRP1 is a master regulator of retrograde-carrier tethering to the TGN. The coordinated recruitment of distinct tethering factors by a bifurcated GTPase cascade may be paradigmatic of other vesicular fusion events within the cell.
Collapse
Affiliation(s)
- Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|