1
|
Lin Y, Zhang Y, Ma J, Liu S, Liu Y, Yang C, Zeng C, Luo X. Two Chinese Patients of Auriculocondylar Syndrome 2: A Novel PLCB4 Splicing Variant and 5-Year Follow-up. Cleft Palate Craniofac J 2025; 62:914-920. [PMID: 38414442 DOI: 10.1177/10556656241234575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
ObjectiveAuriculocondylar syndrome (ARCND) is a set of rare craniofacial malformations characterized by variable micrognathia, ear malformations, and mandibular condyle hypoplasia, and other accompanying features with phenotypic complexity. ARCND2 caused by pathogenic variants in the PLCB4 gene is a very rare disease with less than 50 patients reported and only 36 different variants of the PLCB4 gene recorded in HGMD. This study aims to enrich the patient resources, clinical data and mutational spectrum of ARCND2.DesignCase series study.SettingGuangzhou Women and Children's Medical Center and Guangdong Women and Children Hospital.PatientsTwo Chinese patients with ARCND2.Main Outcome MeasuresClinical, radiological and molecular findings.ResultsBoth the two patients presented with craniofacial and ear malformations, and feeding difficulties. Whole exome sequencing identified two different variants of the PLCB4 gene in these two patients with a heterozygous allele and a de novo mode of inheritance respectively. Patient 1 carried a known pathogenic c.1861C > T(p.Arg621Cys) missense variant, whereas Patient 2 had a novel c.225 + 1G > A splicing variant. Sanger sequencing confirmed the presence of PLCB4 variants in the proband and absence in the unaffected parents. These two PLCB4 variants were suggested as disease-causing candidates for these two patients. During a 5-year follow-up, Patient 2 gradually manifested crowded teeth, underweight, motor delay and intellectual disability.ConclusionsIn this study, we report two Chinese patients with ARCND2, describe their clinical and mutational features, and share a 5-year follow-up of one patient. Our study adds two additional patients to ARCND2, reveals a novel PLCB4 variant, and expands the phenotypic and genotypic spectrum.
Collapse
Affiliation(s)
- Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Ye Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Jian Ma
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Shu Liu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yongxi Liu
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xianqiong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| |
Collapse
|
2
|
Lee DK, Jin X, Choi PR, Cui Y, Che X, Lee S, Hur K, Kim HJ, Choi JY. Phospholipase C β4 promotes RANKL-dependent osteoclastogenesis by interacting with MKK3 and p38 MAPK. Exp Mol Med 2025; 57:323-334. [PMID: 39894822 PMCID: PMC11873240 DOI: 10.1038/s12276-025-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 02/04/2025] Open
Abstract
Phospholipase C β (PLCβ) is involved in diverse biological processes, including inflammatory responses and neurogenesis; however, its role in bone cell function is largely unknown. Among the PLCβ isoforms (β1-β4), we found that PLCβ4 was the most highly upregulated during osteoclastogenesis. Here we used global knockout and osteoclast lineage-specific PLCβ4 conditional knockout (LysM-PLCβ4-/-) mice as subjects and demonstrated that PLCβ4 is a crucial regulator of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation. The deletion of PLCβ4, both globally and in the osteoclast lineage, resulted in a significant reduction in osteoclast formation and the downregulation of osteoclast marker genes. Notably, male LysM-PLCβ4-/- mice presented greater bone mass and fewer osteoclasts in vivo than their wild-type littermates, without altered osteoblast function. Mechanistically, we found that PLCβ4 forms a complex with p38 mitogen-activated protein kinase (MAPK) and MAPK kinase 3 (MKK3) in response to RANKL-induced osteoclast differentiation, thereby modulating p38 activation. An immunofluorescence assay further confirmed the colocalization of PLCβ4 with p38 after RANKL exposure. Moreover, p38 activation rescued impaired osteoclast formation and restored the reduction in p38 phosphorylation caused by PLCβ4 deficiency. Thus, our findings reveal that PLCβ4 controls osteoclastogenesis via the RANKL-dependent MKK3-p38 MAPK pathway and that PLCβ4 may be a potential therapeutic candidate for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Poo-Reum Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ying Cui
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Repo PE, Jakkula E, Hiltunen J, Putkuri H, Staskiewicz-Tuikkanen A, Järvinen RS, Täll M, Raivio V, Al-Jamal RT, Kivelä TT, Turunen JA. Pathogenic Germline Variants in Uveal Melanoma Driver and BAP1-Associated Genes in Finnish Patients with Uveal Melanoma. Pigment Cell Melanoma Res 2025; 38:e13198. [PMID: 39344744 DOI: 10.1111/pcmr.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Uveal melanoma (UM) is a rare yet aggressive eye cancer causing over 50% mortality from metastasis. Familial UM, amounting to 1%-6% of patients in Finland and the United States, mostly lack identified genetic cause, while 8% show associations with other cancer syndromes. We searched novel genetic associations for predisposition to UM, additional to already studied BAP1 and MBD4, by using targeted amplicon sequencing of 19 genes associated with UM, BAP1, or renal cell carcinoma in 270 consecutively enrolled Finnish patients with UM. Key UM drivers GNAQ, GNA11, CYSLTR2, PLCB4, EIF1AX, and SF3B1 lacked pathogenic germline variants. One patient carried the pathogenic BRCA1 variant c.3626del p.(Leu1209*), and one harbored a novel truncating MET variant c.252C > G p.(Tyr84*), classified as likely pathogenic. FLCN and BRCA2, previously identified with pathogenic variants in patients with UM, did not have such variants in our cohort. Two patients were heterozygous for a pathogenic recessive BLM variant c.2824-2A > T. None of the carriers of identified variants had familial UM. We identified BRCA1 and MET as genes with pathogenic germline variants in Finnish UM patients, each with a frequency of 0.4% (95% confidence interval, 0-2).
Collapse
Affiliation(s)
- Pauliina E Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eveliina Jakkula
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juho Hiltunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Heidi Putkuri
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | | | | | - Martin Täll
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Virpi Raivio
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rana'a T Al-Jamal
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Ophthalmic Genetics and Rare eye Diseases Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Shi Y, Rong L, Liu S, Liu Y, Zong C, Lu J, Shang H, Xue Y, Tian L. Novel GNAI3 mutation in a Chinese family with auriculocondylar syndrome and treatment of severe dentofacial deformities: a 5-year follow-up case report. BMC Oral Health 2024; 24:803. [PMID: 39014351 PMCID: PMC11251236 DOI: 10.1186/s12903-024-04575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is an extremely rare autosomal dominant or recessive condition that typically manifests as question mark ears (QMEs), mandibular condyle hypoplasia, and micrognathia. Severe dental and maxillofacial malformations present considerable challenges in patients' lives and clinical treatment. Currently, only a few ARCND cases have been reported worldwide, but most of them are related to genetic mutations, clinical symptoms, and ear correction; there are few reports concerning the treatment of dentofacial deformities. CASE PRESENTATION Here, we report a rare case of ARCND in a Chinese family. A novel insertional mutation in the guanine nucleotide-binding protein alpha-inhibiting activity polypeptide 3 (GNAI3) was identified in the patient and their brother using whole-exome sequencing. After a multidisciplinary consultation and examination, sequential orthodontic treatment and craniofacial surgery, including distraction osteogenesis and orthognathic surgery, were performed using three-dimensional (3D) digital technology to treat the patient's dentofacial deformity. A good prognosis was achieved at the 5-year follow-up, and the patient returned to normal life. CONCLUSIONS ARCND is a monogenic and rare condition that can be diagnosed based on its clinical triad of core features. Molecular diagnosis plays a crucial role in the diagnosis of patients with inconspicuous clinical features. We present a novel insertion variation in GNAI3, which was identified in exon 2 of chromosome 110116384 in a Chinese family. Sequential therapy with preoperative orthodontic treatment combined with distraction osteogenesis and orthognathic surgery guided by 3D digital technology may be a practical and effective method for treating ARCND.
Collapse
Affiliation(s)
- Yulin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Liang Rong
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, 30 Fucheng Road, Beijing, 100089, China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Yiwen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Chunlin Zong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Jinbiao Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Hongtao Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Yang Xue
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China.
| |
Collapse
|
5
|
Zhang Y, Zhao Y, Dai L, Liu Y, Shi Z. Auriculocondylar syndrome 2 caused by a novel PLCB4 variant in a male Chinese neonate: A case report and review of the literature. Mol Genet Genomic Med 2024; 12:e2441. [PMID: 38618928 PMCID: PMC11017300 DOI: 10.1002/mgg3.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is a rare congenital craniofacial developmental malformation syndrome of the first and second pharyngeal arches with external ear malformation at the junction between the lobe and helix, micromaxillary malformation, and mandibular condylar hypoplasia. Four subtypes of ARCND have been described so far, that is, ARCND1 (OMIM # 602483), ARCND2 (ARCND2A, OMIM # 614669; ARCND2B, OMIM # 620458), ARCND3 (OMIM # 615706), and ARCND4 (OMIM # 620457). METHODS This study reports a case of ARCND2 resulting from a novel pathogenic variant in the PLCB4 gene, and summarizes PLCB4 gene mutation sites and phenotypes of ARCND2. RESULTS The proband, a 5-day-old male neonate, was referred to our hospital for respiratory distress. Micrognathia, microstomia, distinctive question mark ears, as well as mandibular condyle hypoplasia were identified. Trio-based whole-exome sequencing identified a novel missense variant of NM_001377142.1:c.1928C>T (NP_001364071.1:p.Ser643Phe) in the PLCB4 gene, which was predicted to impair the local structural stability with a result that the protein function might be affected. From a review of the literature, only 36 patients with PLCB4 gene mutations were retrieved. CONCLUSION As with other studies examining familial cases of ARCND2, incomplete penetrance and variable expressivity were observed within different families' heterozygous mutations in PLCB4 gene. Although, motor and intellectual development are in the normal range in the vast majority of patients with ARCND2, long-term follow-up and assessment are still required.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yuwei Zhao
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Liying Dai
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yu Liu
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Zifeng Shi
- Radiology Department, Center of Imaging DiagnosisAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| |
Collapse
|
6
|
El Fizazi K, Bouramtane A, Abbassi M, El Asri YA, Askander O, El Fahime M, Ouldim K, Ridal M, Bouguenouch L. A homozygous missense variant in the PLCB4 gene causes severe phenotype of auriculocondylar syndrome type 2. Am J Med Genet A 2023; 191:2673-2678. [PMID: 37596802 DOI: 10.1002/ajmg.a.63375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Auriculocondylar syndrome (ARCND) is a rare craniofacial birth defect characterized by malformations in the mandible and external ear (Question Mark Ear). Genetically, three distinct subtypes of ARCND (ARCND1, ARCND2, and ARCND3) have been identified. ARCND2 is linked to pathogenic variants in the PLCB4 gene (phospholipase C β4). PLCB4 is a key effector of the EDN1-EDNRA pathway involved in craniofacial development via the induction, migration, and maintenance of neural crest cells. ARCND2 is typically inherited in an autosomal dominant pattern, with recessive inheritance pattern being rare. In this study, we report the first homozygous missense variant (NM_000933.4: c.2050G>A: p.(Gly684Arg)) in the PLCB4 gene causing ARCND in a 3-year-old patient with a severe clinical phenotype of the syndrome. The patient presented with typical craniofacial ARCND features, in addition to intestinal transit defect, macropenis, and hearing loss. These findings further delineate the phenotypic spectrum of ARCND associated with autosomal recessive PLCB4 loss of function variants. Notably, our results provide further evidence that these variants can result in a more severe and diverse manifestations of the syndrome. Clinicians should consider the rare features of this condition for better management of patients.
Collapse
Affiliation(s)
- Khawla El Fizazi
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Abdelhamid Bouramtane
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Meriame Abbassi
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Yasser Ali El Asri
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Omar Askander
- Superior Institute of Biological and Paramedical Sciences, Faculty of Medical Sciences, Mohamed VI Polytechnic University, Benguerir, Morocco
| | - Mustapha El Fahime
- National Center for Scientific and Technological Research, Rabat, Morocco
| | - Karim Ouldim
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Mohammed Ridal
- Department of Otorhinolaryngology, Hassan II University Hospital, Fez, Morocco
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Anatomy, Microsurgery and Experimental Surgery, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| |
Collapse
|
7
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
8
|
Sobahy TM, Motwalli O, Alazmi M. AllelePred: A Simple Allele Frequencies Ensemble Predictor for Different Single Nucleotide Variants. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:796-801. [PMID: 35239491 DOI: 10.1109/tcbb.2022.3155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND & OBJECTIVE Genomic medicine stands to be revolutionized by understanding single nucleotide variants (SNVs) and their expression in single-gene disorders (Mendelian diseases). Computational tools can play a vital role in the exploration of such variations and their pathogenicity. Consequently, we developed the ensemble prediction tool AllelePred to identify deleterious SNVs and disease causative genes. RESULTS The model utilizes different population genetics backgrounds and restricted criteria for features selection to help generate high accuracy results. In comparison to other tools, such as Eigen, PROVEAN, and fathmm-MKL our classifier achieves higher accuracy (98%), precision (96%), F1 score (93%), and coverage (100%) for different types of coding variants. The new method was also compared against a bioinformatics analytical workflow, which uses gnomAD overall AFs (less than 1%) and CADD (scaled C-score of at least 15). Furthermore, this research highlights the stature of genetic variant sharing and curation. We accumulated a list of highly probable deleterious variants and recommended further experimental validation before medical diagnostic usage. CONCLUSIONS The ensemble prediction tool AllelePred enables increased accuracy in recognizing deleterious SNVs and the genetic determinants in real clinical data.
Collapse
|
9
|
El-Attar EA, Helmy Elkaffas RM, Aglan SA, Naga IS, Nabil A, Abdallah HY. Genomics in Egypt: Current Status and Future Aspects. Front Genet 2022; 13:797465. [PMID: 35664315 PMCID: PMC9157251 DOI: 10.3389/fgene.2022.797465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Egypt is the third most densely inhabited African country. Due to the economic burden and healthcare costs of overpopulation, genomic and genetic testing is a huge challenge. However, in the era of precision medicine, Egypt is taking a shift in approach from “one-size-fits all” to more personalized healthcare via advancing the practice of medical genetics and genomics across the country. This shift necessitates concrete knowledge of the Egyptian genome and related diseases to direct effective preventive, diagnostic and counseling services of prevalent genetic diseases in Egypt. Understanding disease molecular mechanisms will enhance the capacity for personalized interventions. From this perspective, we highlight research efforts and available services for rare genetic diseases, communicable diseases including the coronavirus 2019 disease (COVID19), and cancer. The current state of genetic services in Egypt including availability and access to genetic services is described. Drivers for applying genomics in Egypt are illustrated with a SWOT analysis of the current genetic/genomic services. Barriers to genetic service development in Egypt, whether economic, geographic, cultural or educational are discussed as well. The sensitive topic of communicating genomic results and its ethical considerations is also tackled. To understand disease pathogenesis, much can be gained through the advancement and integration of genomic technologies via clinical applications and research efforts in Egypt. Three main pillars of multidisciplinary collaboration for advancing genomics in Egypt are envisaged: resources, infrastructure and training. Finally, we highlight the recent national plan to establish a genome center that will aim to prepare a map of the Egyptian human genome to discover and accurately determine the genetic characteristics of various diseases. The Reference Genome Project for Egyptians and Ancient Egyptians will initialize a new genomics era in Egypt. We propose a multidisciplinary governance system in Egypt to support genomic medicine research efforts and integrate into the healthcare system whilst ensuring ethical conduct of data.
Collapse
Affiliation(s)
- Eman Ahmed El-Attar
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
- *Correspondence: Eman Ahmed El-Attar,
| | | | - Sarah Ahmed Aglan
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Iman S. Naga
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hoda Y. Abdallah
- Medical Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Li X, Yao R, Chang G, Li Q, Song C, Li N, Ding Y, Li J, Chen Y, Wang Y, Huang X, Shen Y, Zhang H, Wang J, Wang X. Clinical Profiles and Genetic Spectra of 814 Chinese Children With Short Stature. J Clin Endocrinol Metab 2022; 107:972-985. [PMID: 34850017 PMCID: PMC8947318 DOI: 10.1210/clinem/dgab863] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/25/2022]
Abstract
CONTEXT Data and studies based on exome sequencing for the genetic evaluation of short stature are limited, and more large-scale studies are warranted. Some factors increase the likelihood of a monogenic cause of short stature, including skeletal dysplasia, severe short stature, and small for gestational age (SGA) without catch-up growth. However, whether these factors can serve as predictors of molecular diagnosis remains unknown. OBJECTIVE We aimed to explore the diagnostic efficiency of the associated risk factors and their exome sequences for screening. METHODS We defined and applied factors that increased the likelihood of monogenic causes of short stature in diagnostic genetic tests based on next-generation sequencing (NGS) in 814 patients with short stature and at least 1 other factor. RESULTS Pathogenic/likely pathogenic (P/LP) variants in genes, copy number variations, and chromosomal abnormalities were identified in 361 patients. We found P/LP variants among 111 genes, and RASopathies comprised the most important etiology. Short stature combined with other phenotypes significantly increased the likelihood of a monogenic cause, including skeletal dysplasia, facial dysmorphism, and intellectual disability, compared with simple severe short stature (<-3 SD scores). We report novel candidate pathogenic genes, KMT2C for unequivocal growth hormone insensitivity and GATA6 for SGA. CONCLUSION Our study identified the diagnostic characteristics of NGS in short stature with different risk factors. Our study provides novel insights into the current understanding of the etiology of short stature in patients with different phenotypes.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolism disease, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongnian Shen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Peart LS, Gonzalez J, Bivona S, Latchman K, Torres L, Tekin M. Bilateral choanal stenosis in auriculocondylar syndrome caused by a PLCB4 variant. Am J Med Genet A 2022; 188:1307-1310. [PMID: 34995019 DOI: 10.1002/ajmg.a.62634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Auriculocondylar syndrome (ARCND) is characterized by a distinguished feature of question mark ears and a variation of other minor and major malformations. Monoallelic or biallelic PLCB4 variants have been reported in a subset of affected individuals, referred to as ARCND2. We report on a 3-year-old female with ARCND who presented at birth with question mark ears, micrognathia, and bilateral choanal stenosis that was characterized by difficulty in breathing. She was found to be heterozygous for a novel PLCB4 variant, p.Glu358Gly. Respiratory distress is rare in autosomal dominant ARCND2 and choanal stenosis has not been reported. Our study expands the clinical phenotype of ARCND by adding choanal stenosis as a finding and suggests that PLCB4 play a role in the development of choanal structures.
Collapse
Affiliation(s)
- Lé Shon Peart
- Division of Clinical and Translational Genetics, Dr John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joanna Gonzalez
- Division of Clinical and Translational Genetics, Dr John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie Bivona
- Division of Clinical and Translational Genetics, Dr John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kumarie Latchman
- Division of Clinical and Translational Genetics, Dr John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Leonardo Torres
- Department of Otolaryngology, Jackson Memorial Hospital, University of Miami, Miami, Florida, USA
| | | | - Mustafa Tekin
- Division of Clinical and Translational Genetics, Dr John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Meng L, Yuan L, Ni J, Fang M, Guo S, Cai H, Qin J, Cai Q, Zhang M, Hu F, Ma J, Zhang Y. Mir24-2-5p suppresses the osteogenic differentiation with Gnai3 inhibition presenting a direct target via inactivating JNK-p38 MAPK signaling axis. Int J Biol Sci 2021; 17:4238-4253. [PMID: 34803495 PMCID: PMC8579458 DOI: 10.7150/ijbs.60536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Huayang Cai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jinwei Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qi Cai
- Department of Stomatology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Mengnan Zhang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
14
|
Tsai DJ, Fang WH, Wu LW, Tai MC, Kao CC, Huang SM, Chen WT, Hsiao PJ, Chiu CC, Su W, Wu CC, Su SL. The Polymorphism at PLCB4 Promoter (rs6086746) Changes the Binding Affinity of RUNX2 and Affects Osteoporosis Susceptibility: An Analysis of Bioinformatics-Based Case-Control Study and Functional Validation. Front Endocrinol (Lausanne) 2021; 12:730686. [PMID: 34899595 PMCID: PMC8657146 DOI: 10.3389/fendo.2021.730686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Genome-wide association studies have identified numerous genetic variants that are associated with osteoporosis risk; however, most of them are present in the non-coding regions of the genome and the functional mechanisms are unknown. In this study, we aimed to investigate the potential variation in runt domain transcription factor 2 (RUNX2), which is an osteoblast-specific transcription factor that normally stimulates bone formation and osteoblast differentiation, regarding variants within RUNX2 binding sites and risk of osteoporosis in postmenopausal osteoporosis (PMOP). METHODS We performed bioinformatics-based prediction by combining whole genome sequencing and chromatin immunoprecipitation sequencing to screen functional SNPs in the RUNX2 binding site using data from the database of Taiwan Biobank; Case-control studies with 651 postmenopausal women comprising 107 osteoporosis patients, 290 osteopenia patients, and 254 controls at Tri-Service General Hospital between 2015 and 2019 were included. The subjects were examined for bone mass density and classified into normal and those with osteopenia or osteoporosis by T-scoring with dual-energy X-ray absorptiometry. Furthermore, mRNA expression and luciferase reporter assay were used to provide additional evidence regarding the associations identified in the association analyses. Chi-square tests and logistic regression were mainly used for statistical assessment. RESULTS Through candidate gene approaches, 3 SNPs in the RUNX2 binding site were selected. A novel SNP rs6086746 in the PLCB4 promoter was identified to be associated with osteoporosis in Chinese populations. Patients with AA allele had higher risk of osteoporosis than those with GG+AG (adjusted OR = 6.89; 95% confidence intervals: 2.23-21.31, p = 0.001). Moreover, the AA genotype exhibited lower bone mass density (p < 0.05). Regarding mRNA expression, there were large differences in the correlation between PLCB4 and different RUNX2 alleles (Cohen's q = 0.91). Functionally, the rs6086746 A allele reduces the RUNX2 binding affinity, thus enhancing the suppression of PLCB4 expression (p < 0.05). CONCLUSIONS Our results provide further evidence to support the important role of the SNP rs6086746 in the etiology of osteopenia/osteoporosis, thereby enhancing the current understanding of the susceptibility to osteoporosis. We further studied the mechanism underlying osteoporosis regulation by PLCB4.
Collapse
Affiliation(s)
- Dung-Jang Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Wei Wu
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Cheng Kao
- Superintendent’s Office, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Teing Chen
- Division of Thoracic Medicine, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, ROC, Taiwan
| | - Po-Jen Hsiao
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Chiu
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan, Taiwan
| | - Wen Su
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sui-Lung Su
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Sui-Lung Su,
| |
Collapse
|
15
|
Bukowska-Olech E, Sowińska-Seidler A, Łojek F, Popiel D, Walczak-Sztulpa J, Jamsheer A. Further phenotypic delineation of the auriculocondylar syndrome type 2 with literature review. J Appl Genet 2020; 62:107-113. [PMID: 33131036 PMCID: PMC7822771 DOI: 10.1007/s13353-020-00591-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
Auriculocondylar syndrome (ACS) is an ultra-rare disorder that arises from developmental defects of the first and second pharyngeal arches. Three subtypes of ACS have been described so far, i.e., ACS1 (MIM: 602483), ACS2 (MIM: 600810), and ACS3 (MIM: 131240). The majority of patients, however, are affected by ACS2, which results from the mutations in the PLCB4 gene. Herein, we have described an 8-year-old male patient presenting with ACS2 and summarized the molecular and phenotypic spectrum of the syndrome. We have also compared the clinical features of our case to three other previously described cases (one sporadic and two familial) harboring the same heterozygous missense variant c.1862G>A, p.Arg621His in the PLCB4 gene. The mutation was detected using whole-exome sequencing (WES). Due to low coverage of WES and suspicion of somatic mosaicism, the variant was additionally reassessed by deep targeted next-generation sequencing panel of genes related to the craniofacial disorders, and next confirmed by Sanger sequencing. ACS2 presents high intra- and interfamilial phenotypic heterogeneity that impedes reaching an exact clinical and molecular diagnosis. Thus, describing additional cases, carrying even the known mutation, but resulting in variable phenotypes, is essential for better understanding of such orphan Mendelian diseases.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Filip Łojek
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Delfina Popiel
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| | - Joanna Walczak-Sztulpa
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland. .,Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland.
| |
Collapse
|