1
|
Denkiewicz-Kruk M, Chaudhry D, Krasilia A, Jedrychowska M, Fijalkowska IJ, Dmowski M. Effects of CDC45 mutations on DNA replication and genome stability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119936. [PMID: 40139510 DOI: 10.1016/j.bbamcr.2025.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Cdc45 is a non-catalytic subunit of the CMG helicase complex that is recruited to the autonomously replicating sequence at the onset of DNA replication. The Cdc45 protein is required for the initiation of DNA replication as well as for nascent DNA strand synthesis. It interacts with Mcm2 and Psf1 elements of CMG helicase, as well as with Sld3, an initiation factor, and Pol2, the catalytic subunit of DNA polymerase epsilon (Pol ε). In this study, we analyzed the effects of amino acid substitutions in the Cdc45 region involved in the interaction of this protein with Mcm2-7 (Cdc45-1), Psf1 (Cdc45-26), and Sld3 (Cdc45-25, Cdc45-35). We found that mutations in CDC45 resulted in defective DNA replication. Under permissive conditions, delayed DNA synthesis was observed. At restrictive temperatures, the mutant cells were unable to efficiently replicate DNA. However, after the initiation of DNA replication under permissive conditions, the four analyzed CDC45 mutants exhibited DNA synthesis under the restrictive conditions. Moreover, we observed increased mutation rates, mainly dependent on DNA polymerase zeta (Pol ζ), as well as increased incidence of replication errors. These findings confirm the essential function of Cdc45 in DNA replication initiation and demonstrate that impaired Cdc45 subunit has an impact on the fidelity of the nascent DNA strand synthesis. The changes in cell function observed in this study, related to defects in Cdc45 function, may help understand some diseases associated with CDC45.
Collapse
Affiliation(s)
- Milena Denkiewicz-Kruk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Deepali Chaudhry
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Alina Krasilia
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Malgorzata Jedrychowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Michal Dmowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Çetinkaya D, Doğan Ari AB, Kiliç E. Meier-Gorlin syndrome type 7: a rare cause of primordial dwarfism: two new cases and literature review. Clin Dysmorphol 2024; 33:167-170. [PMID: 38934085 DOI: 10.1097/mcd.0000000000000504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Duygu Çetinkaya
- Department of Pediatric Genetics, University of Health Sciences, Ankara Bilkent City Children's Hospital, Ankara, Turkey
| | | | | |
Collapse
|
3
|
Schoch K, Ruegg MSG, Fellows BJ, Cao J, Uhrig S, Einsele-Scholz S, Biskup S, Hawarden SRA, Salpietro V, Capra V, Brown CM, Accogli A, Shashi V, Bicknell LS. A second hotspot for pathogenic exon-skipping variants in CDC45. Eur J Hum Genet 2024; 32:786-794. [PMID: 38467731 PMCID: PMC11219862 DOI: 10.1038/s41431-024-01583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Biallelic pathogenic variants in CDC45 are associated with Meier-Gorlin syndrome with craniosynostosis (MGORS type 7), which also includes short stature and absent/hypoplastic patellae. Identified variants act through a hypomorphic loss of function mechanism, to reduce CDC45 activity and impact DNA replication initiation. In addition to missense and premature termination variants, several pathogenic synonymous variants have been identified, most of which cause increased exon skipping of exon 4, which encodes an essential part of the RecJ-orthologue's DHH domain. Here we have identified a second cohort of families segregating CDC45 variants, where patients have craniosynostosis and a reduction in height, alongside common facial dysmorphisms, including thin eyebrows, consistent with MGORS7. Skipping of exon 15 is a consequence of two different variants, including a shared synonymous variant that is enriched in individuals of East Asian ancestry, while other variants in trans are predicted to alter key intramolecular interactions in α/β domain II, or cause retention of an intron within the 3'UTR. Our cohort and functional data confirm exon skipping is a relatively common pathogenic mechanism in CDC45, and highlights the need for alternative splicing events, such as exon skipping, to be especially considered for variants initially predicted to be less likely to cause the phenotype, particularly synonymous variants.
Collapse
Affiliation(s)
- Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Mischa S G Ruegg
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Bridget J Fellows
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Joseph Cao
- Division of Pediatric Radiology, Department of Radiology Duke University School of Medicine, Durham, NC, USA
| | - Sabine Uhrig
- Institute of Clinical Genetics, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Saskia Biskup
- Center for Human Genetics Tuebingen and CeGaT GmbH, Tuebingen, Germany
| | - Samuel R A Hawarden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Nielsen-Dandoroff E, Ruegg MSG, Bicknell LS. The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome. Eur J Hum Genet 2023:10.1038/s41431-023-01359-z. [PMID: 37059840 PMCID: PMC10400559 DOI: 10.1038/s41431-023-01359-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
High-throughput sequencing has become a standard first-tier approach for both diagnostics and research-based genetic testing. Consequently, this hypothesis-free testing manner has revealed the true breadth of clinical features for many established genetic disorders, including Meier-Gorlin syndrome (MGORS). Previously known as ear-patella short stature syndrome, MGORS is characterized by growth delay, microtia, and patella hypo/aplasia, as well as genital abnormalities, and breast agenesis in females. Following the initial identification of genetic causes in 2011, a total of 13 genes have been identified to date associated with MGORS. In this review, we summarise the genetic and clinical findings of each gene associated with MGORS and highlight molecular insights that have been made through studying patient variants. We note interesting observations arising across this group of genes as the number of patients has increased, such as the unusually high number of synonymous variants affecting splicing in CDC45 and a subgroup of genes that also cause craniosynostosis. We focus on the complicated molecular genetics for DONSON, where we examine potential genotype-phenotype patterns using the first 3D structural model of DONSON. The canonical role of all proteins associated with MGORS are involved in different stages of DNA replication and in addition to summarising how patient variants impact on this process, we discuss the potential contribution of non-canonical roles of these proteins to the pathophysiology of MGORS.
Collapse
Affiliation(s)
| | - Mischa S G Ruegg
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Meier-Gorlin Syndrome: Clinical Misdiagnosis, Genetic Testing and Functional Analysis of ORC6 Mutations and the Development of a Prenatal Test. Int J Mol Sci 2022; 23:ijms23169234. [PMID: 36012502 PMCID: PMC9408996 DOI: 10.3390/ijms23169234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Meier−Gorlin syndrome (MGS) is a rare genetic developmental disorder that causes primordial proportional dwarfism, microtia, the absence of or hypoplastic patellae and other skeletal anomalies. Skeletal symptoms overlapping with other syndromes make MGS difficult to diagnose clinically. We describe a 3-year-old boy with short stature, recurrent respiratory infections, short-rib dysplasia, tower head and facial dysmorphisms who was admitted to the Tomsk Genetic Clinic to verify a clinical diagnosis of Jeune syndrome. Clinical exome sequencing revealed two variants (compound heterozygosity) in the ORC6 gene: c.2T>C(p.Met1Thr) and c.449+5G>A. In silico analysis showed the pathogenicity of these two mutations and predicted a decrease in donor splicing site strength for c.449+5G>A. An in vitro minigene assay indicated that variant c.449+5G>A causes complete skipping of exon 4 in the ORC6 gene. The parents requested urgent prenatal testing for MGS for the next pregnancy, but it ended in a miscarriage. Our results may help prevent MGS misdiagnosis in the future. We also performed in silico and functional analyses of ORC6 mutations and developed a restriction fragment length polymorphism and haplotype-based short-tandem-repeat assay for prenatal genetic testing for MGS. These findings should elucidate MGS etiology and improve the quality of genetic counselling for affected families.
Collapse
|
6
|
Huang S, Wu H, Qi Y, Wei L, Lv X, He Y. Case Report: Balanced Reciprocal Translocation t (17; 22) (p11.2; q11.2) and 10q23.31 Microduplication in an Infertile Male Patient Suffering From Teratozoospermia. Front Genet 2022; 13:797813. [PMID: 35719406 PMCID: PMC9204271 DOI: 10.3389/fgene.2022.797813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
Two chromosomal abnormalities are described in an infertile man suffering from teratozoospermia: balanced reciprocal translocation t (17; 22) (p11.2; q11.2) and a microduplication in the region 10q23.31. Twenty genes located on the breakpoints of translocation (e.g., ALKBH5, TOP3A, SPECC1L, and CDC45) are selected due to their high expression in testicular tissues and might be influenced by chromosome translocation. Four genes located on the breakpoints of microduplication including FLJ37201, KIF20B, LINC00865, and PANK1 result in an increased dosage of genes, representing an imbalance in the genome. These genes have been reported to be associated with developmental disorders/retardation and might be risk factors affecting spermatogenesis. Bioinformatics analysis is carried out on these key genes, intending to find the pathogenic process of reproduction in the context of the translocation and microduplication encountered in the male patient. The combination of the two chromosomal abnormalities carries additional risks for gametogenesis and genomic instability and is apparently harmful to male fertility. Overall, our findings could contribute to the knowledge of male infertility caused by genetic factors.
Collapse
Affiliation(s)
- Shan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunwei Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
McQuaid ME, Ahmed K, Tran S, Rousseau J, Shaheen R, Kernohan KD, Yuki KE, Grover P, Dreseris ES, Ahmed S, Dupuis L, Stimec J, Shago M, Al-Hassnan ZN, Tremblay R, Maass PG, Wilson MD, Grunebaum E, Boycott KM, Boisvert FM, Maddirevula S, Faqeih EA, Almanjomi F, Khan ZU, Alkuraya FS, Campeau PM, Kannu P, Campos EI, Wurtele H. Hypomorphic GINS3 variants alter DNA replication and cause Meier-Gorlin syndrome. JCI Insight 2022; 7:155648. [PMID: 35603789 PMCID: PMC9215265 DOI: 10.1172/jci.insight.155648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome–like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.
Collapse
Affiliation(s)
- Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Kashif Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Tran
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ranad Shaheen
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kristin D. Kernohan
- CHEO Research Institute, Ottawa, Ontario, Canada
- Newborn Screening Ontario, CHEO, Ottawa, Ontario, Canada
| | - Kyoko E. Yuki
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prerna Grover
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ema S. Dreseris
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sameen Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Stimec
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Shago
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zuhair N. Al-Hassnan
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Philipp G. Maass
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, and
| | - Fahad Almanjomi
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zaheer Ullah Khan
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Peter Kannu
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Eric I. Campos
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
9
|
Nelakurti DD, Rossetti T, Husbands AY, Petreaca RC. Arginine Depletion in Human Cancers. Cancers (Basel) 2021; 13:6274. [PMID: 34944895 PMCID: PMC8699593 DOI: 10.3390/cancers13246274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Arginine is encoded by six different codons. Base pair changes in any of these codons can have a broad spectrum of effects including substitutions to twelve different amino acids, eighteen synonymous changes, and two stop codons. Four amino acids (histidine, cysteine, glutamine, and tryptophan) account for over 75% of amino acid substitutions of arginine. This suggests that a mutational bias, or "purifying selection", mechanism is at work. This bias appears to be driven by C > T and G > A transitions in four of the six arginine codons, a signature that is universal and independent of cancer tissue of origin or histology. Here, we provide a review of the available literature and reanalyze publicly available data from the Catalogue of Somatic Mutations in Cancer (COSMIC). Our analysis identifies several genes with an arginine substitution bias. These include known factors such as IDH1, as well as previously unreported genes, including four cancer driver genes (FGFR3, PPP6C, MAX, GNAQ). We propose that base pair substitution bias and amino acid physiology both play a role in purifying selection. This model may explain the documented arginine substitution bias in cancers.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Tiffany Rossetti
- Biology Undergraduate Program, The Ohio State University, Marion, OH 43302, USA;
| | - Aman Y. Husbands
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43215, USA
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Jin P, Yan K, Ye S, Qian Y, Wu Z, Wang M, Xu Y, Xu Y, Dong M. Case Report: A Synonymous Mutation in NF1 Located at the Non-canonical Splicing Site Leading to Exon 45 Skipping. Front Genet 2021; 12:772958. [PMID: 34868260 PMCID: PMC8640503 DOI: 10.3389/fgene.2021.772958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 01/14/2023] Open
Abstract
Synonymous mutations are generally considered non-pathogenic because it did not alter the amino acids of the encoded protein. Publications of the associations between synonymous mutations and abnormal splicing have increased recently, however, not much observations available described the synonymous mutations at the non-canonical splicing sites leading to abnormal splicing. In this pedigree, the proband was diagnosed Neurofibromatosis type I due to the presence of typical cafe’ au lait macules and pectus carinatum. Whole-exome sequencing identified a synonymous mutation c.6795C > T (p.N2265N) of the NF1 gene which was located at the non-canonical splicing sites. Reverse transcription polymerase chain reaction followed by Sanger sequencing was carried out, and the skipping of exon 45 was observed. Therefore, the pathogenicity of the synonymous mutation c.6795C > T was confirmed. Our finding expanded the spectrum of pathogenic mutations in Neurofibromatosis type I and provided information for genetic counseling.
Collapse
Affiliation(s)
- Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Yan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Shaofen Ye
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zaigui Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaomiao Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| |
Collapse
|