1
|
Hilal ML, Rosina E, Pedini G, Restivo L, Bagni C. Dysregulation of the mTOR-FMRP pathway and synaptic plasticity in an environmental model of ASD. Mol Psychiatry 2025; 30:1937-1951. [PMID: 39604505 PMCID: PMC12014490 DOI: 10.1038/s41380-024-02805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Autism Spectrum Disorder (ASD) is caused by genetic, epigenetic, and environmental factors. Mutations in the human FMR1 gene, encoding the Fragile X Messenger Ribonucleoprotein 1 (FMRP), cause the most common monogenic form of ASD, the Fragile X Syndrome (FXS). This study explored the interaction between the FMR1 gene and a viral-like infection as an environmental insult, focusing on the impact on core autistic-like behaviors and the mGluR1/5-mTOR pathway. Pregnant heterozygous Fmr1 mouse females were exposed to maternal immune activation (MIA), by injecting the immunostimulant Poly (I:C) at the embryonic stage 12.5, simulating viral infections. Subsequently, ASD-like behaviors were analyzed in the adult offspring, at 8-10 weeks of age. MIA exposure in wild-type mice led to ASD-like behaviors in the adult offspring. These effects were specifically confined to the intrauterine infection, as immune activation at later stages, namely puberty (Pubertal Immune Activation, PIA) at post-natal day 35 or adulthood (Adult Immune Activation, AIA) at post-natal day 56, did not alter adult behavior. Importantly, combining the Fmr1 mutation with MIA exposure did not intensify core autistic-like behaviors, suggesting an occlusion effect. Mechanistically, MIA provided a strong activation of the mGluR1/5-mTOR pathway, leading to increased LTP and downregulation of FMRP specifically in the hippocampus. Finally, FMRP modulates mTOR activity via TSC2. These findings further strengthen the key role of the mGluR1/5-mTOR pathway in causing ASD-like core symptoms.
Collapse
Affiliation(s)
- Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Hôpitaux du Léman, 74200, Thonon-les-Bains, France
| | - Eleonora Rosina
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Leonardo Restivo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
2
|
Sciaraffa N, Santoni D, Li Greci A, Genovese SI, Coronnello C, Arancio W. Transcripts derived from AmnSINE1 repetitive sequences are depleted in the cortex of autism spectrum disorder patients. FRONTIERS IN BIOINFORMATICS 2025; 5:1532981. [PMID: 40270680 PMCID: PMC12015672 DOI: 10.3389/fbinf.2025.1532981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Aims Autism spectrum disorder (ASD) is a brain developmental disability with a not-fully clarified etiogenesis. Current ASD research largely focuses on coding regions of the genome, but up to date much less is known about the contribution of non-coding elements to ASD risk. The non-coding genome is largely made of DNA repetitive sequences (RS). Although RS were considered slightly more than "junk DNA", today RS have a recognized role in almost every aspect of human biology, especially in developing human brain. Our aim was to test if RS transcription may play a role in ASD. Methods Global RS transcription was firstly investigated in postmortem dorsolateral prefrontal cortex of 13 ASD patients and 39 matched controls. Results were validated in independent datasets. Results AmnSINE1 was the only RS significantly downregulated in ASD specimens. The role of AmnSINE1 in ASD has been investigated at multiple levels, showing that the 1,416 genes containing AmnSINE1 are associated with nervous system development and autism susceptibility. This has been confirmed in a different experimental setting, such as in organoid models of the human cerebral cortex, harboring different ASD causative mutations. AmnSINE1 related genes are transcriptionally co-regulated and are involved not only in brain formation but can specifically be involved in ASD development. Looking for a possible direct role of AmnSINE1 non-coding transcripts in ASD, we report that AmnSINE1 transcripts may alter the miRNA regulatory landscape for genes involved in neurogenesis. Conclusion Our findings provide preliminary evidence supporting a role for AmnSINE1 in ASD development.
Collapse
Affiliation(s)
| | - Daniele Santoni
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy (IASI-CNR), Rome, Italy
| | - Andrea Li Greci
- Advanced Data Analysis Group, Ri. MED Foundation, Palermo, Italy
| | | | | | - Walter Arancio
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| |
Collapse
|
3
|
Tamada K, Takumi T. Neurodevelopmental impact of CNV models in ASD: Recent advances and future directions. Curr Opin Neurobiol 2025; 92:103001. [PMID: 40090136 DOI: 10.1016/j.conb.2025.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication impairments and restricted, repetitive behaviors. ASD exhibits a strong genetic basis, with rare and common genetic variants contributing to its etiology. Copy number variations (CNVs), deletions or duplications of chromosomal segments, have emerged as key contributors to ASD risk. Rare CNVs often demonstrate large effect sizes and can directly cause ASD, while common variants collectively exert subtle influences. Recent advances have identified numerous ASD-associated CNVs, including recurrent loci such as 1q21.1, 2p16.3, 7q11.23, 15q11.2, 15q11-q13, 16p11.2 and 22q11.2. Mouse models carrying these CNVs have provided profound insights into the underlying neurobiological mechanisms. Recent studies integrating transcriptomic, proteomic, and functional imaging approaches have revealed alterations in synaptic function, neuronal differentiation, myelination, metabolic pathways, and circuit connectivity. Notably, investigations leveraging conditional knockout models, high magnetic field MRI, and single-cell analyses highlight disruptions in excitatory-inhibitory balance, white matter integrity, and dynamic gene regulatory networks. Parallel human-based approaches, including iPSC-derived neurons, cerebral organoids, and large-scale single-nucleus sequencing, are combined with animal model data. These integrative strategies promise to refine our understanding of ASD's genetic architecture, bridging the gap between fundamental discoveries in model organisms and clinically relevant biomarkers, subtypes, and therapeutic targets in humans. This review summarizes key findings from recent CNV mouse model studies and highlights emerging technologies applied to human ASD samples. Finally, we outline prospects for translating findings from mouse studies to humans. By illuminating both unique and convergent genetic mechanisms, these advances offer a critical framework for unraveling etiological complexity in ASD.
Collapse
Affiliation(s)
- Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| |
Collapse
|
4
|
Costa CIS, Madanelo L, Wang JYT, da Silva Campos G, De Sanctis Girardi AC, Scliar M, Monfardini F, de Cássia Mingroni Pavanello R, Cória VR, Vibranovski MD, Krepischi AC, Lourenço NCV, Zatz M, Yamamoto GL, Zachi EC, Passos-Bueno MR. Understanding rare variant contributions to autism: lessons from dystrophin-deficient model. NPJ Genom Med 2025; 10:18. [PMID: 40050609 PMCID: PMC11885547 DOI: 10.1038/s41525-025-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Duchenne and Becker Muscular Dystrophy are dystrophinopathies with a prevalence of 1:5000-6000 males, caused by pathogenic variants in DMD. These conditions are often accompanied by neurodevelopmental disorders (NDDs) like autism (ASD; ~20%) and intellectual disability (ID; ~30%). However, their low penetrance in dystrophinopathies suggests additional contributing factors. In our study, 83 individuals with dystrophinopathies were clinically evaluated and categorized based on ASD (36 individuals), ID risk (12 individuals), or controls (35 individuals). Exome sequencing analysis revealed an enrichment of risk de novo variants (DNVs) in ASD-DMD individuals (adjusted p value = 0.0356), with the number of DNVs correlating with paternal age (p value = 0.0133). Additionally, DMD-ASD individuals showed a higher average of rare risk variants (RRVs) compared to DMD-Controls (adjusted p value = 0.0285). Gene ontology analysis revealed an enrichment of extracellular matrix-related genes, especially collagens, and Ehlers-Danlos syndrome genes in ASD-DMD and DMD-ID groups. These findings support an oligogenic model for ASD in dystrophinopathies, highlighting the importance of investigating homogenized samples to elucidate ASD's genetic architecture.
Collapse
Affiliation(s)
- Claudia Ismania Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luciana Madanelo
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Cristina De Sanctis Girardi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rita de Cássia Mingroni Pavanello
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vivian Romanholi Cória
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Dulcetti Vibranovski
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Cristina Krepischi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila Cristina Vilaça Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Guilherme Lopes Yamamoto
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
5
|
Jan SM, Fahira A, Hassan ESG, Abdelhameed AS, Wei D, Wadood A. Integrative approaches to m6A and m5C RNA modifications in autism spectrum disorder revealing potential causal variants. Mamm Genome 2025; 36:280-292. [PMID: 39738578 DOI: 10.1007/s00335-024-10095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that currently affects approximately 1-2% of the global population. Genome-wide studies have identified several loci associated with ASD; however, pinpointing causal variants remains elusive. Therefore, functional studies are essential to discover potential therapeutics for ASD. RNA modification plays a crucial role in the post-transcriptional regulation of mRNA, with m6A and m5C being the most prevalent internal modifications. Recent research indicates their involvement in the regulation of key genes associated with ASD. In this study, we conducted an integrative genomic analysis of ASD, incorporating m6A and m5C variants, followed by cis-eQTL, gene differential expression, and gene enrichment analyses to identify causal variants from a genome-wide study of ASD. We identified 20,708 common m6A-SNPs and 2,407 common m5C-SNPs. Among these, 647 m6A-SNPs exhibited cis-eQTL signals with a p-value < 0.05, while only 81 m5C-SNPs with a p-value < 0.05 showed cis-eQTL signals. Most of these were functional loss variants, with 38 variants representing the most significant common m6A/m5C-SNPs associated with key ASD-related genes. In the gene differential expression analysis, seven proximal genes corresponding to significant m6A/m5C-SNPs were differentially expressed in at least one of the three microarray gene expression profiles of ASD. Key differentially expressed genes corresponding to m6A/m5C cis-variants included KIAA1671 (rs5752063, rs12627825), INTS1 (rs67049052, rs10237910), VSIG10 (rs7965350), TJP2 (rs3812536), FAM167A (rs9693108), TMEM8A (rs1802752), and NUP43 (rs3924871, rs7818, rs9383844, rs9767113). Cell-specific cis-eQTL analysis for proximal gene identification, combined with gene expression datasets from single-cell RNA-seq analysis, would validate the causal relationship of gene regulation in brain-specific regions, and experimental validation in cell lines would achieve the goal of precision medicine.
Collapse
Affiliation(s)
- Syed Mansoor Jan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Design of Guangdong Medical University, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Eman S G Hassan
- Pharmacology Department, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Dongqing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
6
|
Granata P, Zito A, Cocciadiferro D, Novelli A, Pessina C, Mazza T, Ferri M, Piccinelli P, Luoni C, Termine C, Fasano M, Casalone R. Unveiling genetic insights: Array-CGH and WES discoveries in a cohort of 122 children with essential autism spectrum disorder. BMC Genomics 2024; 25:1186. [PMID: 39654053 PMCID: PMC11629504 DOI: 10.1186/s12864-024-11077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Autistic Spectrum Disorder (ASD) is a neurodevelopmental disorder with a strong genetic component and high heterogeneity. Essential ASD refers to patients who do not have other comorbidities. This study aimed to investigate the genetic basis of essential ASD using whole exome sequencing (WES) and array-comparative genomic hybridization (array-CGH). RESULTS In a cohort of 122 children with essential ASD, WES detected 382 variants across 223 genes, while array-CGH identified 46 copy number variants (CNVs). The combined use of WES and array-CGH revealed pathogenic variants in four patients (3.1% detection rate) and likely pathogenic variants in 34 patients (27.8% detection rate). Only one patient had a pathogenic CNV (0.8% detection rate). Including likely pathogenic variants, the overall detection rate was 31.2%. Additionally, 33 de novo heterozygous sequence variants were identified by WES, with three classified as pathogenic and 13 as likely pathogenic. Sequence variants were found in 85 genes already associated with ASD, and 138 genes not previously included in the SFARI dataset were identified as potential new candidate genes. CONCLUSIONS The study enhances genetic understanding of essential ASD and identifies new candidate genes of interest. The findings suggest that using both array-CGH and WES in patients with essential ASD can improve the detection of pathogenic and likely pathogenic genetic variants, contributing to better diagnosis and potentially guiding future research and treatment strategies.
Collapse
Affiliation(s)
- Paola Granata
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| | - Alessandra Zito
- School of Medical Genetics, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Chiara Pessina
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| | - Tommaso Mazza
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, S. Giovanni, Rotondo, Italy
| | - Matteo Ferri
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Paolo Piccinelli
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Chiara Luoni
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Cristiano Termine
- Child Neuropsychiatry Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, via Manara 7, Busto Arsizio, Italy.
- Center of Neuroscience, University of Insubria, Busto Arsizio, Italy.
| | - Rosario Casalone
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| |
Collapse
|
7
|
Lazar SM, Challman TD, Myers SM. Etiologic Evaluation of Children with Autism Spectrum Disorder. Pediatr Clin North Am 2024; 71:179-197. [PMID: 38423715 DOI: 10.1016/j.pcl.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Autism spectrum disorder (ASD) is clinically and etiologically heterogeneous. A causal genetic variant can be identified in approximately 20% to 25% of affected individuals with current clinical genetic testing, and all patients with an ASD diagnosis should be offered genetic etiologic evaluation. We suggest that exome sequencing with copy number variant coverage should be the first-line etiologic evaluation for ASD. Neuroimaging, neurophysiologic, metabolic, and other biochemical evaluations can provide insight into the pathophysiology of ASD but should be recommended in the appropriate clinical circumstances.
Collapse
Affiliation(s)
- Steven M Lazar
- Section of Pediatric Neurology and Developmental Neuroscience, Meyer Center for Developmental Pediatrics & Autism, Baylor College of Medicine - Texas Children's Hospital, 6701 Fannin Street Suite 1250, Houston, TX 77030, USA.
| | - Thomas D Challman
- Geisinger Autism & Developmental Medicine Institute, Geisinger Commonwealth School of Medicine, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, USA
| | - Scott M Myers
- Geisinger Autism & Developmental Medicine Institute, Geisinger Commonwealth School of Medicine, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, USA
| |
Collapse
|