1
|
Cheng J, Xue C, Yang M, Wang X, Xu Z, Li N, Zhang X, Feng X, Liu X, Liu Y, Liu SF, Yang Z. Dense Perovskite Thick Film Enabled by Saturated Solution Filling for Sensitive X-ray Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36649-36657. [PMID: 38961051 DOI: 10.1021/acsami.4c08706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Thick polycrystalline perovskite films synthesized by using solution processes show great potential in X-ray detection applications. However, due to the evaporation of the solvent, many pinholes and defects appear in the thick films, which deteriorate their optoelectronic properties and diminish their X-ray detection performance. Therefore, the preparation of large area and dense perovskite thick films is desired. Herein, we propose an effective strategy of filling the pores with a saturated precursor solution. By adding the saturated perovskite solution to the polycrystalline perovskite thick film, the original perovskite film will not be destroyed because of the solution-solute equilibrium relationship. Instead, it promotes in situ crystal growth within the thick film during the annealing process. The loosely packed grains in the original thick perovskite film are connected, and the pores and defects are partially filled and fixed. Finally, a much denser perovskite thick film with improved optoelectronic properties has been obtained. The optimized thick film exhibits an X-ray sensitivity of 1616.01 μC Gyair-1 cm-2 under an electric field of 44.44 V mm-1 and a low detection limit of 28.64 nGyair s-1 under an electric field of 22.22 V mm-1. These values exceed the 323.86 μC Gyair-1 cm-2 and 40.52 nGyair s-1 of the pristine perovskite thick film measured under the same conditions. The optimized thick film also shows promising working stability and X-ray imaging capability.
Collapse
Affiliation(s)
- Jiatian Cheng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chengzhi Xue
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Yang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xi Wang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ziwei Xu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | | | - Xiaolong Feng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xinmei Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yucheng Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhou Yang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Wang Z, Wu D, Huang Q, Guo L, Wang Y, Chen W, Wang F, Du J, Liu Z, Hu Z, Leng Y, Lai J, He P, Tang X. Tellurium-Doped 0D Organic-Inorganic Hybrid Lead-Free Perovskite for X-ray Imaging. Inorg Chem 2023; 62:19006-19014. [PMID: 37930938 DOI: 10.1021/acs.inorgchem.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The application of X-ray imaging in military, industrial flaw detection, and medical examination is inseparable from the wide application of scintillator materials. In order to substitute for lead, lower costs, and reduce self-absorption, organic-inorganic hybrid lead-free perovskite scintillators are emerging as a new option. In this work, novel (TEA)2Zr1-xTexCl6 perovskite microcrystals (MCs) were successfully synthesized by a hydrothermal method, with Te4+ doping, which leads to yellow triplet-state self-trapped excitons emission. The emission peak of (TEA)2Zr1-xTexCl6 located at 605 nm under X-ray excitation, which was applied to X-ray imaging, shows a clear wiring structure inside the USB connector. The detection limit (DL) of 820 nGyair/s for (TEA)2Zr0.9Te0.1Cl6 is well below the dose rate corresponding to a standard medical X-ray diagnosis is 5.5 μGyair/s. This work opens up a new path for organic-inorganic hybrid lead-free scintillators.
Collapse
Affiliation(s)
- Zixian Wang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing400065, P. R. China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Qiang Huang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing400065, P. R. China
| | - Linfeng Guo
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing400065, P. R. China
| | - Yijia Wang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing400065, P. R. China
| | - Fei Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800Shanghai, P. R. China
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024Hangzhou, P. R. China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800Shanghai, P. R. China
| | - Zhiping Hu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024Hangzhou, P. R. China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800Shanghai, P. R. China
| | - Jun'an Lai
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Peng He
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing400044, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou450001, P. R. China
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing400065, P. R. China
| |
Collapse
|
3
|
Tao S, Tian Z, Bai L, Wang W, Xu Y, Kuang C, Liu X. Tri-directional x-ray phase contrast multimodal imaging using one hexagonal mesh modulator. Phys Med Biol 2023; 68:195017. [PMID: 37652041 DOI: 10.1088/1361-6560/acf5c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Objective. X-ray phase contrast imaging is a promising technique for future clinical diagnostic as it can provide enhanced contrast in soft tissues compared to traditional x-ray attenuation-contrast imaging. However, the strict requirements on the x-ray coherence and the precise alignment of optical elements limit its applications towards clinical use. To solve this problem, mesh-based x-ray phase contrast imaging method with one hexagonal mesh is proposed for easy alignment and better image visualization.Approach. The mesh produces structured illuminations and the detector captures its distortions to reconstruct the absorption, differential phase contrast (DPC) and dark-field (DF) images of the sample. In this work, we fabricated a hexagonal mesh to simultaneously retrieve DPC and DF signals in three different directions with single shot. A phase retrieval algorithm to obtain artifacts-free phase from DPC images with three different directions is put forward and false color dark-field image is also reconstructed with tri-directional images. Mesh-shifting method based on this hexagonal mesh modulator is also proposed to reconstruct images with better image quality at the expense of increased dose.Main results. In numerical simulations, the proposed hexagonal mesh outperforms the traditional square mesh in image evaluation metrics performance and false color visualization with the same radiation dose. The experimental results demonstrate its feasiblity in real imaging systems and its advantages in quantitive imaging and better visualization. The proposed hexagonal mesh is easy to fabricate and can be successfully applied to x-ray source with it spot size up to 300μm.Significance. This work opens new possibilities for quantitative x-ray non-destructive imaging and may also be instructive for research fields such as x-ray structured illumination microscopy (SIM), x-ray spectral imaging and x-ray phase contrast and dark-field computed tomography (CT).
Collapse
Affiliation(s)
- Siwei Tao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Zonghan Tian
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ling Bai
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yueshu Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 315100, People's Republic of China
| | - Cuifang Kuang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 315100, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Xu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 315100, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| |
Collapse
|
4
|
Zhang H, Dai H, Hao X, Wang Y, Xing C, Lu Q, Li J, Fu Y, Gao M, Chen Z, Cao Y, Zhu J. Airy-type X-ray states generated using 3/2 flat diffractive optics. OPTICS EXPRESS 2023; 31:18063-18071. [PMID: 37381524 DOI: 10.1364/oe.492003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/30/2023]
Abstract
X-rays have developed into an essential tool in variety of fields, such as biology, materials, chemistry, and physics etc. Numerous X-ray types, including the orbital angular momentum (OAM), the Laguerre-Gauss, and the Hermite-Gauss states, have been proposed. This greatly enhances the depth of application of X-ray. The X-ray states described above are mostly produced by binary amplitude diffraction elements. In light of this, this paper proposes a flat X-ray diffraction grating based on caustic theory to generate Airy-type X-ray. It is proved by the simulation of multislice method that the proposed grating can generate the Airy beam in the X-ray field. The results show that the generated beams have a secondary parabolic trajectory deflection with the propagation distance, which is consistent with the theory. Inspired by the success of Airy beam in light-sheet microscope, the Airy-type X-ray can be anticipated to enable novel image capability for bio or nanoscience.
Collapse
|
5
|
van Gogh S, Rawlik M, Pereira A, Spindler S, Mukherjee S, Zdora MC, Stauber M, Alaifari R, Varga Z, Stampanoni M. Towards clinical-dose grating interferometry breast CT with fused intensity-based iterative reconstruction. OPTICS EXPRESS 2023; 31:9052-9071. [PMID: 36860006 DOI: 10.1364/oe.484123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
X-ray grating interferometry CT (GI-CT) is an emerging imaging modality which provides three complementary contrasts that could increase the diagnostic content of clinical breast CT: absorption, phase, and dark-field. Yet, reconstructing the three image channels under clinically compatible conditions is challenging because of severe ill-conditioning of the tomographic reconstruction problem. In this work we propose to solve this problem with a novel reconstruction algorithm that assumes a fixed relation between the absorption and the phase-contrast channel to reconstruct a single image by automatically fusing the absorption and phase channels. The results on both simulations and real data show that, enabled by the proposed algorithm, GI-CT outperforms conventional CT at a clinical dose.
Collapse
|
6
|
Imaging fetal anatomy. Semin Cell Dev Biol 2022; 131:78-92. [PMID: 35282997 DOI: 10.1016/j.semcdb.2022.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Due to advancements in ultrasound techniques, the focus of antenatal ultrasound screening is moving towards the first trimester of pregnancy. The early first trimester however remains in part, a 'black box', due to the size of the developing embryo and the limitations of contemporary scanning techniques. Therefore there is a need for images of early anatomical developmental to improve our understanding of this area. By using new imaging techniques, we can not only obtain better images to further our knowledge of early embryonic development, but clear images of embryonic and fetal development can also be used in training for e.g. sonographers and fetal surgeons, or to educate parents expecting a child with a fetal anomaly. The aim of this review is to provide an overview of the past, present and future techniques used to capture images of the developing human embryo and fetus and provide the reader newest insights in upcoming and promising imaging techniques. The reader is taken from the earliest drawings of da Vinci, along the advancements in the fields of in utero ultrasound and MR imaging techniques towards high-resolution ex utero imaging using Micro-CT and ultra-high field MRI. Finally, a future perspective is given about the use of artificial intelligence in ultrasound and new potential imaging techniques such as synchrotron radiation-based CT to increase our knowledge regarding human development.
Collapse
|
7
|
Harrison KD, Sales E, Hiebert BD, Panahifar A, Zhu N, Arnason T, Swekla KJ, Pivonka P, Chapman LD, Cooper DM. Direct Assessment of Rabbit Cortical Bone Basic Multicellular Unit Longitudinal Erosion Rate: A 4D Synchrotron-Based Approach. J Bone Miner Res 2022; 37:2244-2258. [PMID: 36069373 PMCID: PMC10091719 DOI: 10.1002/jbmr.4700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022]
Abstract
Cortical bone remodeling is carried out by basic multicellular units (BMUs), which couple resorption to formation. Although fluorochrome labeling has facilitated study of BMU formative parameters since the 1960s, some resorptive parameters, including the longitudinal erosion rate (LER), have remained beyond reach of direct measurement. Indeed, our only insights into this spatiotemporal parameter of BMU behavior come from classical studies that indirectly inferred LER. Here, we demonstrate a 4D in vivo method to directly measure LER through in-line phase contrast synchrotron imaging. The tibias of rabbits (n = 15) dosed daily with parathyroid hormone were first imaged in vivo (synchrotron micro-CT; day 15) and then ex vivo 14 days later (conventional micro-CT; day 29). Mean LER assessed by landmarking the co-registered scans was 23.69 ± 1.73 μm/d. This novel approach holds great promise for the direct study of the spatiotemporal coordination of bone remodeling, its role in diseases such as osteoporosis, as well as related treatments. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kim D Harrison
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Erika Sales
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Beverly D Hiebert
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada.,Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
| | - Terra Arnason
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kurtis J Swekla
- Animal Care and Research Support Office, Office of the Vice President of Research, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - L Dean Chapman
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Ml Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
van Gogh S, Mukherjee S, Xu J, Wang Z, Rawlik M, Varga Z, Alaifari R, Schönlieb CB, Stampanoni M. Iterative phase contrast CT reconstruction with novel tomographic operator and data-driven prior. PLoS One 2022; 17:e0272963. [PMID: 36048759 PMCID: PMC9436132 DOI: 10.1371/journal.pone.0272963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/31/2022] [Indexed: 11/21/2022] Open
Abstract
Breast cancer remains the most prevalent malignancy in women in many countries around the world, thus calling for better imaging technologies to improve screening and diagnosis. Grating interferometry (GI)-based phase contrast X-ray CT is a promising technique which could make the transition to clinical practice and improve breast cancer diagnosis by combining the high three-dimensional resolution of conventional CT with higher soft-tissue contrast. Unfortunately though, obtaining high-quality images is challenging. Grating fabrication defects and photon starvation lead to high noise amplitudes in the measured data. Moreover, the highly ill-conditioned differential nature of the GI-CT forward operator renders the inversion from corrupted data even more cumbersome. In this paper, we propose a novel regularized iterative reconstruction algorithm with an improved tomographic operator and a powerful data-driven regularizer to tackle this challenging inverse problem. Our algorithm combines the L-BFGS optimization scheme with a data-driven prior parameterized by a deep neural network. Importantly, we propose a novel regularization strategy to ensure that the trained network is non-expansive, which is critical for the convergence and stability analysis we provide. We empirically show that the proposed method achieves high quality images, both on simulated data as well as on real measurements.
Collapse
Affiliation(s)
- Stefano van Gogh
- Department of Electrical Engineering and Information Technology, ETH Zürich and University of Zürich, Zürich, Switzerland
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
- * E-mail:
| | - Subhadip Mukherjee
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jinqiu Xu
- Department of Electrical Engineering and Information Technology, ETH Zürich and University of Zürich, Zürich, Switzerland
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Zhentian Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Tsinghua University, Beijing, China
| | - Michał Rawlik
- Department of Electrical Engineering and Information Technology, ETH Zürich and University of Zürich, Zürich, Switzerland
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Zsuzsanna Varga
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Rima Alaifari
- Department of Mathematics, ETH Zürich, Zürich, Switzerland
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Marco Stampanoni
- Department of Electrical Engineering and Information Technology, ETH Zürich and University of Zürich, Zürich, Switzerland
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| |
Collapse
|
9
|
van Gogh S, Wang Z, Rawlik M, Etmann C, Mukherjee S, Schönlieb CB, Angst F, Boss A, Stampanoni M. INSIDEnet: Interpretable nonexpansive data-efficient network for denoising in grating interferometry breast CT. Med Phys 2022; 49:3729-3748. [PMID: 35257395 PMCID: PMC9311686 DOI: 10.1002/mp.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Breast cancer is the most common malignancy in women. Unfortunately, current breast imaging techniques all suffer from certain limitations: they are either not fully three-dimensional, have insufficient resolution or low soft-tissue contrast. Grating Interferometry Breast Computed Tomography (GI-BCT) is a promising X-ray phase contrast modality that could overcome these limitations by offering high soft-tissue contrast and excellent 3D resolution. To enable the transition of this technology to clinical practice, dedicated data processing algorithms must be developed in order to effectively retrieve the signals of interest from the measured raw data. METHODS This article proposes a novel denoising algorithm which can cope with the high noise amplitudes and heteroscedasticity which arise in GI-BCT when operated in a low-dose regime to effectively regularize the ill-conditioned GI-BCT inverse problem. We present a data-driven algorithm called INSIDEnet which combines different ideas such as multiscale image processing, transform-domain filtering, transform learning and explicit orthogonality to build an Interpretable NonexpanSIve Data-Efficient network (INSIDEnet). RESULTS We apply the method to simulated breast phantom datasets and to real data acquired on a GI-BCT prototype and show that the proposed algorithm outperforms traditional state-of-the-art filters and is competitive with deep neural networks. The strong inductive bias given by the proposed model's architecture allows to reliably train the algorithm with very limited data while providing high model interpretability, thus offering a great advantage over classical convolutional neural networks (CNNs). CONCLUSIONS The proposed INSIDEnet is highly data-efficient, interpretable and outperforms state-of-the-art CNNs when trained on very limited training data. We expect the proposed method to become an important tool as part of a dedicated Plug-and-Play GI-BCT reconstruction framework, needed to translate this promising technology to the clinics.
Collapse
Affiliation(s)
- Stefano van Gogh
- Paul Scherrer Institute, Photon Science Division, X-ray tomography group, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland.,ETH Zürich, Department for Electrical Engineering and Information Technology, X-ray tomography group, Gloriastrasse 35, Zürich, 8092, Switzerland
| | - Zhentian Wang
- Tsinghua University, Department of Engineering Physics, Haidian District, Beijing, 100084, China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University) of Ministry of Education, Haidian District, Beijing, 100084, China
| | - Michał Rawlik
- Paul Scherrer Institute, Photon Science Division, X-ray tomography group, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland.,ETH Zürich, Department for Electrical Engineering and Information Technology, X-ray tomography group, Gloriastrasse 35, Zürich, 8092, Switzerland
| | - Christian Etmann
- University of Cambridge, Cambridge Image Analysis group, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| | - Subhadip Mukherjee
- University of Cambridge, Cambridge Image Analysis group, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| | - Carola-Bibiane Schönlieb
- University of Cambridge, Cambridge Image Analysis group, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| | - Florian Angst
- University Hospital Zürich, Institute for diagnostic and interventional Radiology, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Andreas Boss
- University Hospital Zürich, Institute for diagnostic and interventional Radiology, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Photon Science Division, X-ray tomography group, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland.,ETH Zürich, Department for Electrical Engineering and Information Technology, X-ray tomography group, Gloriastrasse 35, Zürich, 8092, Switzerland
| |
Collapse
|
10
|
Tu J, Brennan PC, Lewis S, Tavakoli Taba S. A bibliometric and social network analysis perspective of X-ray phase-contrast imaging in medical imaging. J Med Radiat Sci 2022; 69:37-46. [PMID: 34383367 PMCID: PMC8892418 DOI: 10.1002/jmrs.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/10/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Phase-contrast imaging (PCI) is a novel technology that can visualise variations in X-ray refraction (phase contrast) in addition to differences in X-ray attenuation (absorption contrast). Compared to radiography using conventional methods (i.e. absorption-based imaging), PCI techniques can potentially produce images with higher contrast-to-noise ratio and superior spatial resolution at the same or lower radiation doses. This has led PCI to be explored for implementation in medical imaging. While interest in this research field is increasing, the whole body of PCI research in medical imaging has been under-investigated. This paper provides an overview of PCI literature and then focusses on evaluating its development within the scope of medical imaging. METHODS Bibliographic data between 1995 and 2018 were used to visualise collaboration networks between countries, institutions and authors. Social network analysis techniques were implemented to measure these networks in terms of centrality and cohesion. These techniques also assisted in the exploration of underlying research paradigms of clinical X-ray PCI investigations. RESULTS Forty-one countries, 592 institutions and 2073 authors contributed 796 investigations towards clinical PCI research. The most influential contributors and network collaboration characteristics were identified. Italy was the most influential country, with the European Synchrotron Radiation Facility being the most influential institution. At an author level, F. Pfeiffer was found to be the most influential researcher. Among various PCI techniques, grating interferometry was the most investigated, while computed tomography was the most frequently examined modality. CONCLUSIONS By gaining an understanding of collaborations and trends within clinical X-ray PCI research, the links between existing collaborators were identified, which can aid future collaborations between emerging and established collaborators. Moreover, exploring the paradigm of past investigations can shape future research - well-researched PCI techniques may be studied to bring X-ray PCI closer to clinical implementation, or the potential of seldom-investigated techniques may be explored.
Collapse
Affiliation(s)
- Jessica Tu
- Medical Image Optimisation and Perception Group (MIOPeG)Sydney School of Health SciencesFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Patrick C. Brennan
- Medical Image Optimisation and Perception Group (MIOPeG)Sydney School of Health SciencesFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Sarah Lewis
- Medical Image Optimisation and Perception Group (MIOPeG)Sydney School of Health SciencesFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Seyedamir Tavakoli Taba
- Medical Image Optimisation and Perception Group (MIOPeG)Sydney School of Health SciencesFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
11
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Chingo Aimacaña CM, Pila KO, Quinchiguango Perez DA, Debut A, Attia MF, Santos-Oliveira R, Whitehead DC, Reinoso C, Alexis F, Dahoumane SA. Bimodal Ultrasound and X-ray Bioimaging Properties of Particulate Calcium Fluoride Biomaterial. Molecules 2021; 26:5447. [PMID: 34576919 PMCID: PMC8472579 DOI: 10.3390/molecules26185447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Ultrasound (US) and X-ray imaging are diagnostic methods that are commonly used to image internal body structures. Several organic and inorganic imaging contrast agents are commercially available. However, their synthesis and purification remain challenging, in addition to posing safety issues. Here, we report on the promise of widespread, safe, and easy-to-produce particulate calcium fluoride (part-CaF2) as a bimodal US and X-ray contrast agent. Pure and highly crystalline part-CaF2 is obtained using a cheap commercial product. Scanning electron microscopy (SEM) depicts the morphology of these particles, while energy-dispersive X-ray spectroscopy (EDS) confirms their chemical composition. Diffuse reflectance ultraviolet-visible spectroscopy highlights their insulating behavior. The X-ray diffraction (XRD) pattern reveals that part-CaF2 crystallizes in the face-centered cubic cell lattice. Further analyses regarding peak broadening are performed using the Scherrer and Williamson-Hall (W-H) methods, which pinpoint the small crystallite size and the presence of lattice strain. X-ray photoelectron spectroscopy (XPS) solely exhibits specific peaks related to CaF2, confirming the absence of any contamination. Additionally, in vitro cytotoxicity and in vivo maximum tolerated dose (MTD) tests prove the biocompatibility of part-CaF2. Finally, the results of the US and X-ray imaging tests strongly signal that part-CaF2 could be exploited in bimodal bioimaging applications. These findings may shed a new light on calcium fluoride and the opportunities it offers in biomedical engineering.
Collapse
Affiliation(s)
| | - Kevin O. Pila
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (K.O.P.); (D.A.Q.P.)
| | - Dilan A. Quinchiguango Perez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (K.O.P.); (D.A.Q.P.)
| | - Alexis Debut
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador;
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro 23070-200, Brazil
| | | | - Carlos Reinoso
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100650, Ecuador; (C.M.C.A.); (C.R.)
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (K.O.P.); (D.A.Q.P.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (K.O.P.); (D.A.Q.P.)
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
13
|
Yao S, Chen Y, Tian X, Jiang R. Pneumonia Detection Using an Improved Algorithm Based on Faster R-CNN. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8854892. [PMID: 33968160 PMCID: PMC8081632 DOI: 10.1155/2021/8854892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Accepted: 02/14/2021] [Indexed: 12/02/2022]
Abstract
Pneumonia remains a threat to human health; the coronavirus disease 2019 (COVID-19) that began at the end of 2019 had a major impact on the world. It is still raging in many countries and has caused great losses to people's lives and property. In this paper, we present a method based on DeepConv-DilatedNet of identifying and localizing pneumonia in chest X-ray (CXR) images. Two-stage detector Faster R-CNN is adopted as the structure of a network. Feature Pyramid Network (FPN) is integrated into the residual neural network of a dilated bottleneck so that the deep features are expanded to preserve the deep feature and position information of the object. In the case of DeepConv-DilatedNet, the deconvolution network is used to restore high-level feature maps into its original size, and the target information is further retained. On the other hand, DeepConv-DilatedNet uses a popular fully convolution architecture with computation shared on the entire image. Then, Soft-NMS is used to screen boxes and ensure sample quality. Also, K-Means++ is used to generate anchor boxes to improve the localization accuracy. The algorithm obtained 39.23% Mean Average Precision (mAP) on the X-ray image dataset from the Radiological Society of North America (RSNA) and got 38.02% Mean Average Precision (mAP) on the ChestX-ray14 dataset, surpassing other detection algorithms. So, in this paper, an improved algorithm that can provide doctors with location information of pneumonia lesions is proposed.
Collapse
Affiliation(s)
- Shangjie Yao
- Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Zhejiang 310027, China
| | - Yaowu Chen
- Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Zhejiang 310027, China
| | - Xiang Tian
- Institute of Advanced Digital Technology and Instrumentation, Zhejiang University and State Key Laboratory of Industrial Control Technology, Zhejiang University, Zhejiang 310027, China
| | - Rongxin Jiang
- Institute of Advanced Digital Technology and Instrumentation, Zhejiang University and State Key Laboratory of Industrial Control Technology, Zhejiang University, Zhejiang 310027, China
| |
Collapse
|
14
|
Kjeldsen RB, Kristensen MN, Gundlach C, Thamdrup LHE, Müllertz A, Rades T, Nielsen LH, Zór K, Boisen A. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices. ACS Biomater Sci Eng 2021; 7:2538-2547. [PMID: 33856194 DOI: 10.1021/acsbiomaterials.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscale devices are promising tools to overcome specific challenges within oral drug delivery. Despite the availability of advanced high-quality imaging techniques, visualization and tracking of microscale devices in the gastrointestinal (GI) tract is still a challenge. This work explores the possibilities of applying planar X-ray imaging and computed tomography (CT) scanning for visualization and tracking of microscale devices in the GI tract of rats. Microcontainers (MCs) are an example of microscale devices that have shown great potential as an oral drug delivery system. Barium sulfate (BaSO4) loaded into the cavity of the MCs increases their overall X-ray contrast, which allows them to be easily tracked. The BaSO4-loaded MCs are quantitatively tracked throughout the entire GI tract of rats by planar X-ray imaging and visualized in 3D by CT scanning. The majority of the BaSO4-loaded MCs are observed to retain in the stomach for 0.5-2 h, enter the cecum after 3-4 h, and leave the cecum and colon 8-10 h post-administration. The imaging approaches can be adopted and used with other types of microscale devices when investigating GI behavior in, for example, preclinical trials and potential clinical studies.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maja Nørgaard Kristensen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Abstract
Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.
Collapse
|
16
|
Chingo Aimacaña CM, Quinchiguango Perez DA, Rocha Pinto S, Debut A, Attia MF, Santos-Oliveira R, Whitehead DC, Terencio T, Alexis F, Dahoumane SA. Polytetrafluoroethylene-like Nanoparticles as a Promising Contrast Agent for Dual Modal Ultrasound and X-ray Bioimaging. ACS Biomater Sci Eng 2021; 7:1181-1191. [PMID: 33590748 DOI: 10.1021/acsbiomaterials.0c01635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various noninvasive imaging techniques are used to produce deep-tissue and high-resolution images for biomedical research and clinical purposes. Organic and inorganic bioimaging agents have been developed to enhance the resolution and contrast intensity. This paper describes the synthesis of polytetrafluoroethylene-like nanoparticles (PTFE≈ NPs), their characterization, biological activity, and bioimaging properties. Transmission electron microscopy (TEM) images showed the shape and the size of the as-obtained small and ultrasmall PTFE≈ NPs. Fourier transform infrared spectroscopy (FTIR) confirmed the PTFE-like character of the samples. X-ray diffraction (XRD) enabled the determination of the crystallization system, cell lattice, and index of crystallinity of the material in addition to the presence of titania (TiO2) as the contamination. These findings were corroborated by X-ray photoelectron spectroscopy (XPS) that identifies the chemical states of the elements present in the samples along with their atomic percentages allowing the determination of both the purity index of the sample and the nature of the impurities. Additionally, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) was used to further assess the optical properties of the materials. Importantly, PTFE≈ NPs showed significant in vitro and in vivo biocompatibility. Lastly, PTFE≈ NPs were tested for their ultrasound and X-ray contrast properties. Our encouraging preliminary results open new avenues for PTFE-like nanomaterials as a suitable multifunctional contrast agent for biomedical imaging applications. Combined with suitable surface chemistry and morphology design, these findings shed light to new opportunities offered by PTFE nanoparticles in the ever-booming biomedical field.
Collapse
Affiliation(s)
| | | | - Suyene Rocha Pinto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, 21941906 Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, 23070200 Rio de Janeiro, Brazil
| | - Alexis Debut
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Mohamed F Attia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, 21941906 Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, 23070200 Rio de Janeiro, Brazil
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, 100650 Urcuquí, Ecuador
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, 100650 Urcuquí, Ecuador
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, 100650 Urcuquí, Ecuador
| |
Collapse
|
17
|
Omoumi FH, Ghani MU, Wong MD, Li Y, Zheng B, Yan A, Jenkins PA, Wu X, Liu H. The Potential of Utilizing Mid-Energy X-Rays for In-Line Phase Sensitive Breast Cancer Imaging. BIOMEDICAL SPECTROSCOPY AND IMAGING 2020; 9:89-102. [PMID: 34141562 PMCID: PMC8208526 DOI: 10.3233/bsi-200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The objective of this study is to demonstrate the potential of utilizing mid-energy x-rays for in-line phase-sensitive breast cancer imaging by phantom studies. METHODS The midenergy (50-80kV) in-line phase sensitive imaging prototype was used to acquire images of the contrast-detail mammography (CDMAM) phantom, an ACR accreditation phantom, and an acrylic edge phantom. The low-dose mid-energy phase-sensitive images were acquired at 60 kV with a radiation dose of 0.9 mGy, while the high-energy phase-sensitive images were acquired at 90 kV with a radiation dose of 1.2 mGy. The Phase-Attenuation Duality (PAD) principle for soft tissue was used for the phase retrieval. A blind observer study was conducted and paired-sample T-test were performed to compare the mean differences in the two imaging systems. RESULTS The correct detection ratio for the CDMAM phantom for phase-contrast images acquired by the low-dose mid-energy system was 56.91%, whereas images acquired by the high-energy system correctly revealed only 40.97% of discs. The correct detection ratios were 57.88% and 43.41% for phase-retrieved images acquired by the low-dose mid-energy and high-energy imaging systems, respectively. The reading scores for all three groups of objects in the ACR phantom were higher for the mid energy imaging system as compared to the high-energy system for both phase-contrast and phase- retrieved images. The calculated edge enhancement index (EEI) from the acrylic edge phantom image for the mid-energy system was higher than that calculated for the high-energy imaging system. The quantitative analyses showed a higher Contrast to Noise Ratio (CNR) as well as a higher Figure of Merit (FOM) in images acquired by the low-dose mid-energy imaging system. CONCLUSION The PAD based retrieval method can be applied in mid-energy system without remarkably affecting the image quality, and in fact, it improves the lesion detectability with a patient dose saving of 25%.
Collapse
Affiliation(s)
- F H Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| | - M U Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| | - M D Wong
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| | - Y Li
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| | - B Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| | - A Yan
- Department of Radiology, The University of Alabama at Birmingham, AL 35249, U.S.A
| | - P A Jenkins
- Department of Radiology and Imaging Science, The University of Utah School of Medicine, Salt Lake- City, UT 74132, U.S.A
| | - X Wu
- Department of Radiology, The University of Alabama at Birmingham, AL 35249, U.S.A
| | - H Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 73019, U.S.A
| |
Collapse
|
18
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
19
|
In vivo monitoring of bone microstructure by propagation-based phase-contrast computed tomography using monochromatic synchrotron light. J Transl Med 2020; 100:72-83. [PMID: 31641229 DOI: 10.1038/s41374-019-0337-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Hard X-ray phase-contrast imaging is sensitive to density variation in objects and shows a dose advantage for in vivo observation over absorption-contrast imaging. We examined the capability of propagation-based phase-contrast tomography (PB-PCT) with single-distance phase retrieval for tracking of bone structure and mineral changes using monochromatic synchrotron light. Female mice underwent ovariectomy and drill-hole surgery in the right tibial diaphysis and were divided into two groups: OVX and OVX-E (n = 6 each); the latter group was treated with intraperitoneal administration of 14,15-epoxyeicosatrienoic acid (14,15-EET) for promoting bone repair. Age-matched mice subjected to sham ovariectomy and drill-hole surgery (Sham) were also prepared (n = 6). In vivo CT scans of the drilled defect were acquired 3, 7, and 11 days after surgery, and tomographic images were matched by three-dimensional registration between successive time points for monitoring the process of defect filling. In addition, using absorption-contrast CT as the reference method, the validity of PB-PCT was evaluated in one mouse by comparing images of tibial metaphyseal bone between the two methods in terms of bone geometry as well as the measure of mineralization. Although phase retrieval is strictly valid only for single-material objects, PB-PCT, with its lower radiation dose, could provide a depiction of bone structure similar to that from absorption-contrast CT. There was a significant correlation of linear absorption coefficients between the two methods, indicating the possibility of a rough estimate of the measure of mineralization by PB-PCT. Indeed, delayed bone regeneration (OVX vs. Sham) and the efficacy of 14,15-EET for improving osteoporotic bone repair (OVX-E vs. OVX) could be detected in both bone volume and mineralization by PB-PCT. Thus, in combination with single-distance phase retrieval, PB-PCT would have great potential for providing a valuable tool to track changes in bone structure and mineralization, and for evaluating the effects of therapeutic interventions as well.
Collapse
|
20
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
21
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
22
|
Agrawal AK, Singh B, Kashyap YS, Shukla M, Manjunath BS, Gadkari SC. Gamma-irradiation-induced micro-structural variations in flame-retardant polyurethane foam using synchrotron X-ray micro-tomography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1797-1807. [PMID: 31490172 DOI: 10.1107/s1600577519009792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Flame-retardant polyurethane foams are potential packing materials for the transport casks of highly active nuclear materials for shock absorption and insulation purposes. Exposure of high doses of gamma radiation causes cross-linking and chain sectioning of macromolecules in this polymer foam, which leads to reorganization of their cellular microstructure and thereby variations in physico-mechanical properties. In this study, in-house-developed flame-retardant rigid polyurethane foam samples were exposed to gamma irradiation doses in the 0-20 kGy range and synchrotron radiation X-ray micro-computed tomography (SR-µCT) imaging was employed for the analysis of radiation-induced morphological variations in their cellular microstructure. Qualitative and quantitative analysis of SR-µCT images has revealed significant variations in the average cell size, shape, wall thickness, orientations and spatial anisotropy of the cellular microstructure in polyurethane foam.
Collapse
Affiliation(s)
- A K Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - B Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Y S Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M Shukla
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - B S Manjunath
- Reactor Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - S C Gadkari
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
23
|
Yin HX, Zhang P, Wang Z, Liu YF, Liu Y, Xiao TQ, Yang ZH, Xian JF, Zhao PF, Li J, Lv H, Ding HY, Liu XH, Zhu JM, Wang ZC. Investigation of inner ear anatomy in mouse using X-ray phase contrast tomography. Microsc Res Tech 2019; 82:953-960. [PMID: 30636063 DOI: 10.1002/jemt.23121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022]
Abstract
A thorough understanding of inner ear anatomy is important for investigators. However, investigation of the mouse inner ear is difficult due to the limitations of imaging techniques. X-ray phase contrast tomography increases contrast 100-1,000 times compared with conventional X-ray imaging. This study aimed to investigate inner ear anatomy in a fresh post-mortem mouse using X-ray phase contrast tomography and to provide a comprehensive atlas of microstructures with less tissue deformation. All experiments were performed in accordance with our institution's guidelines on the care and use of laboratory animals. A fresh mouse cadaver was scanned immediately after sacrifice using an inline phase contrast tomography system. Slice images were reconstructed using a filtered back-projection (FBP) algorithm. Standardized axial and coronal planes were adjusted with a multi-planar reconstruction method. Some three-dimensional (3D) objects were reconstructed by surface rendering. The characteristic features of microstructures, including otoconia masses of the saccular and utricular maculae, superior and inferior macula cribrosae, single canal, modiolus, and osseous spiral lamina, were described in detail. Spatial positions and relationships of the vestibular structures were exhibited in 3D views. This study investigated mouse inner ear anatomy and provided a standardized presentation of microstructures. In particular, otoconia masses were visualized in their natural status without contrast for the first time. The comprehensive anatomy atlas presented in this study provides an excellent reference for morphology studies of the inner ear.
Collapse
Affiliation(s)
- Hong-Xia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun-Fu Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Comparative Medical Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Beijing, China
| | - Ti-Qiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun-Fang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue-Huan Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian-Ming Zhu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Vegso K, Wu Y, Takano H, Hoshino M, Momose A. Development of pink-beam 4D phase CT for in-situ observation of polymers under infrared laser irradiation. Sci Rep 2019; 9:7404. [PMID: 31118428 PMCID: PMC6531456 DOI: 10.1038/s41598-019-43589-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
Four-dimensional phase computed tomography (4D phase CT) by an X-ray Talbot interferometer (XTI) with white synchrotron radiation has ever been demonstrated at a temporal resolution of about 1 s for soft-matter samples. However, the radiation damage to samples caused by white synchrotron radiation occasionally hampers our understanding of the sample dynamical properties. Based on the fact that XTI functions with X-rays of a bandwidth up to ca. 10% with performance comparable to that by monochromatic X-rays, filtering white synchrotron radiation to generate a 'pink-beam' of a 10% bandwidth is effective to reduce radiation damage without degrading the image quality and temporal resolution. We have therefore developed pink-beam 4D phase CT at SPring-8, Japan by installing a multilayer mirror with a 10% bandwidth and a 25 keV central photon energy. XTI optimal at this photon energy was built downstream, and a CMOS-based X-ray detector was used to achieve fast image acquisitions with an exposure time of 1 ms (or 0.5 ms) per moiré image. The resultant temporal resolution of pink-beam 4D phase CT was 2 s (1 s). We applied the pink-beam 4D phase CT to in-situ observation of polypropylene, poly(methyl methacrylate), and polycarbonate under infrared laser irradiation (1064 nm). The dynamics of melting, bubbling, and ashing were successfully visualized in 3D movies without problematic radiation damage by synchrotron radiation.
Collapse
Affiliation(s)
- Karol Vegso
- JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Masato Hoshino
- JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Atsushi Momose
- JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan. .,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
25
|
Burgos J, Falcó V, Almirante B. Chemical pharmacotherapy for hospital-acquired pneumonia in the elderly. Expert Opin Pharmacother 2019; 20:423-434. [PMID: 30614744 DOI: 10.1080/14656566.2018.1559820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hospital-acquired pneumonia (HAP) is a potentially serious infection that primarily affects older patients. The number of patients affected by multidrug-resistant (MDR) bacteria is increasing, including infection from strains of Staphylococcus aureus, Enterobacteriaceae, and Pseudomonas aeruginosa. AREAS COVERED This article focuses specifically on HAP, excluding patients afflicted by ventilator-associated pneumonia (VAP). The pathogenesis and clinical features of HAP in the elderly are discussed as well as specific drug pharmacokinetic and pharmacodynamic considerations in elderly patients. The current recommended guidelines for the management of HAP are also discussed. Finally, the authors provide evidence on the empirical therapy used for the treatment of HAP and widely consider specific-pathogen treatment of HAP in elderly patients. EXPERT OPINION In patients not at risk of MDR organism infection, antibiotics including piperacillin-tazobactam, cefepime, carbapenems or fluorquinolones are recommended. However, the emergence of MDR organisms as causal agents of HAP makes it necessary to accurately assess risk factors to these pathogens and revise our knowledge on specific antimicrobial susceptibility patterns from each institution. The authors believe that broader-spectrum empiric antibiotic therapies that target P. aeruginosa and methicillin-resistant S. aureus are best recommended in elderly patients at risk of HAP infection by MDR strains.
Collapse
Affiliation(s)
- Joaquin Burgos
- a Infectious Diseases Department , University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona , Spain
| | - Vicenç Falcó
- a Infectious Diseases Department , University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona , Spain
| | - Benito Almirante
- a Infectious Diseases Department , University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona , Spain
| |
Collapse
|
26
|
Fractal Dimension Analysis of High-Resolution X-Ray Phase Contrast Micro-Tomography Images at Different Threshold Levels in a Mouse Spinal Cord. CONDENSED MATTER 2018. [DOI: 10.3390/condmat3040048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fractal analysis is a powerful method for the morphological study of complex systems that is increasingly applied to biomedical images. Spatial resolution and image segmentation are crucial for the discrimination of tissue structures at the multiscale level. In this work, we have applied fractal analysis to high-resolution X-ray phase contrast micro-tomography (XrPCμT) images in both uninjured and injured tissue of a mouse spinal cord. We estimated the fractal dimension (FD) using the box-counting method on tomographic slices segmented at different threshold levels. We observed an increased FD in the ipsilateral injured hemicord compared with the contralateral uninjured tissue, which was almost independent of the chosen threshold. Moreover, we found that images exhibited the highest fractality close to the global histogram threshold level. Finally, we showed that the FD estimate largely depends on the image histogram regardless of tissue appearance. Our results demonstrate that the pre-processing of XrPCμT images is critical to fractal analysis and the estimation of FD.
Collapse
|
27
|
Presentation of gaps around endodontic access cavity restoration by phase contrast-enhanced micro-CT. Clin Oral Investig 2018; 23:2371-2381. [DOI: 10.1007/s00784-018-2680-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/01/2018] [Indexed: 11/26/2022]
|
28
|
Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study. Sci Rep 2018; 8:12118. [PMID: 30108321 PMCID: PMC6092347 DOI: 10.1038/s41598-018-30545-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022] Open
Abstract
Some cultured and natural pearls can be reliably distinguished by visual inspection and by the use of lens and microscope. However, assessing the origin of the pearls could be not straightforward since many different production techniques can now be found in the pearl market, for example in salt or freshwater environments, with or without a rigid nucleus. This wide range of products requires the use of new effective scientific techniques. Indeed, X-ray radiography has been used by gemologists since last century as the only safe and non-destructive way to visually inspect the interior of a pearl, and recently, also X-ray computed micro-tomography was used to better visualize the inner parts of the gems. In this study we analyzed samples of natural and cultured pearls by means of two non-destructive techniques: the X-ray Phase-Contrast Imaging (PCI) and the Neutron Imaging (NI). PCI and NI results will be combined for the first time, to better visualize the pearls internal morphology, thus giving relevant indications on the pearl formation process.
Collapse
|
29
|
Wu Z, Gao K, Wang Z, Wei C, Wali F, Zan G, Wei W, Zhu P, Tian Y. Direct information retrieval after 3D reconstruction in grating-based X-ray phase-contrast computed tomography. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1222-1228. [PMID: 29979185 PMCID: PMC6038613 DOI: 10.1107/s1600577518008019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Grating-based X-ray differential phase-contrast imaging has attracted a great amount of attention and has been considered as a potential imaging method in clinical medicine because of its compatibility with the traditional X-ray tube source and the possibility of a large field of view. Moreover, phase-contrast computed tomography provides three-dimensional phase-contrast visualization. Generally, two-dimensional information retrieval performed on every projection is required prior to three-dimensional reconstruction in phase-contrast computed tomography. In this paper, a three-dimensional information retrieval method to separate absorption and phase information directly from two reconstructed images is derived. Theoretical derivations together with numerical simulations have been performed to confirm the feasibility and veracity of the proposed method. The advantages and limitations compared with the reverse projection method are also discussed. Owing to the reduced data size and the absence of a logarithm operation, the computational time for information retrieval is shortened by the proposed method. In addition, the hybrid three-dimensional images of absorption and phase information were reconstructed using an absorption reconstruction algorithm, hence the existing data pre-processing methods and iterative reconstruction algorithms in absorption reconstruction may be utilized in phase reconstruction immediately.
Collapse
Affiliation(s)
- Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Kun Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Zhili Wang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Chenxi Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Faiz Wali
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Guibin Zan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Wenbin Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Peiping Zhu
- Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|
30
|
Reliability and validity of MicroScribe-3DXL system in comparison with radiographic cephalometric system: Angular measurements. Int Orthod 2018; 16:314-327. [DOI: 10.1016/j.ortho.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Barmou MM, Hussain SF, Abu Hassan MI. Fiabilité et validité du système MicroScribe-3DXL par rapport au système céphalométrique radiographique : mesures angulaires. Int Orthod 2018; 16:314-327. [DOI: 10.1016/j.ortho.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Morphometric Analysis of Rat Spinal Cord Angioarchitecture by Phase Contrast Radiography: From 2D to 3D Visualization. Spine (Phila Pa 1976) 2018; 43:E504-E511. [PMID: 28885295 DOI: 10.1097/brs.0000000000002408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An advanced imaging of vasculature with synchrotron radiation X-ray in a rat model. OBJECTIVE To develop the potential for quantitative assessment of vessel network from two-dimensional (2D) to 3D visualization by synchrotron radiation X-ray phase contrast tomography (XPCT) in rat spinal cord model. SUMMARY OF BACKGROUND DATA Investigation of microvasculature contributes to the understanding of pathological development of spinal cord injury. A few of X-ray imaging is available to visualize vascular architecture without usage of angiography or invasive casting preparation. METHODS A rat spinal cord injury model was produced by modified Allen method. Histomorphometric detection was simultaneously analyzed by both histology and XPCT from 2D to 3D visualization. The parameters including tissue lesion area, microvessel density, vessel diameter, and frequency distribution of vessel diameter were evaluated. RESULTS XPCT rendered the microvessels as small as capillary scale with a pixel size of 3.7 μm. It presented a high linear concordance for characterizing the 2D vascular morphometry compared with the histological staining (r = 0.8438). In the presence of spinal cord injury model, 3D construction quantified the significant angioarchitectural deficiency in the injury epicenter of cord lesion (P<0.01). CONCLUSION XPCT has a great potential to detect the smallest vascular network with pixel size up to micron dimension. It is inferred that the loss of abundant microvessels (≤40 μm) is responsible for local ischemia and neural dysfunction. XPCT holds a promise for morphometric analysis from 2D to 3D imaging in experimental model of neurovascular disorders. LEVEL OF EVIDENCE N/A.
Collapse
|
33
|
|
34
|
Fedon C, Rigon L, Arfelli F, Dreossi D, Quai E, Tonutti M, Tromba G, Cova MA, Longo R. Dose and diagnostic performance comparison between phase-contrast mammography with synchrotron radiation and digital mammography: a clinical study report. J Med Imaging (Bellingham) 2018; 5:013503. [PMID: 29430473 DOI: 10.1117/1.jmi.5.1.013503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Two dosimetric quantities [mean glandular dose (MGD) and entrance surface air kerma (ESAK)] and the diagnostic performance of phase-contrast mammography with synchrotron radiation (MSR) are compared to conventional digital mammography (DM). Seventy-one patients (age range, 41 to 82 years) underwent MSR after a DM examination if questionable or suspicious breast abnormalities were not clarified by ultrasonography. The MGD and the ESAK delivered in both examinations were evaluated and compared. Two on-site radiologists rated the images in consensus according to the Breast Imaging Reporting and Data System assessment categories, which were then correlated with the final diagnoses by means of statistical generalized linear models (GLMs). Receiver operating characteristic curves were also used to assess the diagnostic performance by comparing the area under the curve (AUC). An important MGD and ESAK reduction was observed in MSR due to the monoenergetic beam. In particular, an average 43% reduction was observed for the MGD and a reduction of more than 50% for the ESAK. GLM showed higher diagnostic accuracy, especially in terms of specificity, for MSR, confirmed by AUC analysis ([Formula: see text]). The study design implied that the population was characterized by a high prevalence of disease and that the radiologists, who read the DM images before referring the patient to MSR, could have been influenced in their assessments. Within these limitations, the use of synchrotron radiation with the phase-contrast technique applied to mammography showed an important dose reduction and a higher diagnostic accuracy compared with DM. These results could further encourage research on the translation of x-ray phase-contrast imaging into the clinics.
Collapse
Affiliation(s)
- Christian Fedon
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Luigi Rigon
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| | - Fulvia Arfelli
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Elisa Quai
- University of Trieste, Department of Physics, Trieste, Italy
| | - Maura Tonutti
- Azienda Sanitaria Universitaria Integrata di Trieste, Department of Radiology, Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Maria Assunta Cova
- Azienda Sanitaria Universitaria Integrata di Trieste, Department of Radiology, Trieste, Italy.,University of Trieste, Department of Medical, Surgical and Health Sciences, Trieste, Italy
| | - Renata Longo
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| |
Collapse
|
35
|
Dicken A, Spence D, Rogers K, Prokopiou D, Evans P. Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging. Analyst 2018; 143:4849-4853. [DOI: 10.1039/c8an01537f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To retrieve crystallographic information from extended sample volumes requires a high-energy probe.
Collapse
Affiliation(s)
- Anthony Dicken
- Imaging Science Group
- Nottingham Trent University
- Nottingham
- UK
| | - Daniel Spence
- Imaging Science Group
- Nottingham Trent University
- Nottingham
- UK
| | - Keith Rogers
- Cranfield Forensic Institute
- Cranfield University
- UK
| | | | - Paul Evans
- Imaging Science Group
- Nottingham Trent University
- Nottingham
- UK
| |
Collapse
|
36
|
Pingel J, Nielsen MS, Lauridsen T, Rix K, Bech M, Alkjaer T, Andersen IT, Nielsen JB, Feidenhansl R. Injection of high dose botulinum-toxin A leads to impaired skeletal muscle function and damage of the fibrilar and non-fibrilar structures. Sci Rep 2017; 7:14746. [PMID: 29116170 PMCID: PMC5677119 DOI: 10.1038/s41598-017-14997-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
Botulinum-toxin A (BoNT/A) is used for a wide range of conditions. Intramuscular administration of BoNT/A inhibits the release of acetylcholine at the neuromuscular junction from presynaptic motor neurons causing muscle-paralysis. The aim of the present study was to investigate the effect of high dose intramuscular BoNT/A injections (6 UI = 60 pg) on muscle tissue. The gait pattern of the rats was significantly affected 3 weeks after BoNT/A injection. The ankle joint rotated externally, the rats became flat footed, and the stride length decreased after BoNT/A injection. Additionally, there was clear evidence of microstructural changes on the tissue level by as evidenced by 3D imaging of the muscles by Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM). Both the fibrillar and the non-fibrillar tissues were affected. The volume fraction of fibrillary tissue was reduced significantly and the non-fibrillar tissue increased. This was accompanied by a loss of the linear structure of the muscle tissue. Furthermore, gene expression analysis showed a significant upregulation of COL1A1, MMP-2, TGF-b1, IL-6, MHCIIA and MHCIIx in the BoNT/A injected leg, while MHVIIB was significantly downregulated. IN CONCLUSION The present study reveals that high dose intramuscular BoNT/A injections cause microstructural damage of the muscle tissue, which contributes to impaired gait.
Collapse
Affiliation(s)
- Jessica Pingel
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Kristian Rix
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martin Bech
- Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden
| | - Tine Alkjaer
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ida Torp Andersen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - R Feidenhansl
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- European XFEL, Hamburg, Germany
| |
Collapse
|
37
|
Dicken AJ, Evans JPO, Rogers KD, Prokopiou D, Godber SX, Wilson M. Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam. OPTICS EXPRESS 2017; 25:21321-21328. [PMID: 29041431 DOI: 10.1364/oe.25.021321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a novel imaging architecture to collect range encoded diffraction patterns from overlapping samples in a single conical shell projection. The patterns were measured in the dark area encompassed by the beam via a centrally positioned aperture optically coupled to a pixelated energy-resolving detector. We show that a single exposure measurement of 0.3 mAs enables d-spacing values to be calculated. The axial positions of the samples were not required and the resultant measurements were robust in the presence of crystallographic textures. Our results demonstrate rapid volumetric materials characterization and the potential for a direct imaging method, which is of great relevance to applications in medicine, non-destructive testing and security screening.
Collapse
|
38
|
Baneva Y, Bliznakova K, Cockmartin L, Marinov S, Buliev I, Mettivier G, Bosmans H, Russo P, Marshall N, Bliznakov Z. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast. Phys Med 2017; 41:78-86. [DOI: 10.1016/j.ejmp.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 12/01/2022] Open
|
39
|
Comparison of Synchrotron Radiation-based Propagation Phase Contrast Imaging and Conventional Micro-computed Tomography for Assessing Intervertebral Discs and Endplates in a Murine Model. Spine (Phila Pa 1976) 2017; 42:E883-E889. [PMID: 28187077 DOI: 10.1097/brs.0000000000002110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The synchrotron radiation-based micro-computed tomography (SRμCT) and micro-CT (μCT) were applied to comparatively assess the intervertebral disc (IVD) and endplate (EP). OBJECTIVE To explore a new approach to evaluate the detailed structure of the IVD and EP during maturation and aging in a murine model. SUMMARY OF BACKGROUND DATA Till date, methods to observe the morphological changes in the IVD and EP from rodents have been relatively limited. SRμCT has been recognized as a potential way to visualize the structures containing sclerous and soft tissue. Our study focused on comparing the capacity of SRμCT and μCT in evaluating the detailed structure of the IVD and EP. METHODS Both SRμCT and μCT were performed to depict the structure of spinal tissue from 4-month-old mice. Then, the imaging quality was evaluated in the three-dimensional (3D) reconstructed model. Further, the changes in the EP and IVD during the maturation and aging process were assessed morphologically and quantitatively using SRμCT. RESULTS The 3D reconstructed model of the EP from both μCT and SRμCT provided detailed information on its inner structure. However, the IVD was only depicted using SRμCT. Multi-angle observations of the 3D structure of EP and IVD from mice of different ages (15 days, 2 months, 4 months, and 18 months) were dynamically performed by SRμCT. Quantitative evaluations indicated that the total volume of EP and IVD, the average height of IVD and the canal-total volume ratio of EP increased from 15-day-old mice to 4-month-old mice and decreased in 18-month-old mice. CONCLUSION The EP and IVD were clearly visualized using SRμCT. Compared with μCT, SRμCT provided a better ultrahigh resolution image of soft tissue and hard tissue simultaneously, which makes it a promising approach for the noninvasive study of disc degeneration. LEVEL OF EVIDENCE N /A.
Collapse
|
40
|
Luo R, Wu Z, Xiong Y, Wei C, Zhang X, Hu R, Wang L, Guo L, Liu G, Tian Y. Optimization of grating duty cycle in non-interferometric grating-based X-ray phase contrast imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:085102. [PMID: 28863686 DOI: 10.1063/1.4996507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Grating-based X-ray phase contrast imaging technology is one of the most potential imaging methods in real applications. It can be classified into two categories: interferometry and non-interferometric imaging. The non-interferometric grating-based X-ray phase contrast imaging (NIGPCI) instrument has a great advantage in the forthcoming commercial applications for the flexible system design and the use of large periodic gratings. The performance of the NIGPCI instrument depends on its angular sensitivity to a great extent. Therefore, good angular sensitivity is mandatory in order to obtain high quality phase-contrast images. Several parameters, such as the X-ray spectrum, the inter-grating distances, and the parameters of the three gratings, influence the angular sensitivity of the imaging system. However, the quantitative relationship between the angular sensitivity and grating duty cycle is unclear. Therefore, this paper is devoted to revealing their internal relation by theoretical deduction and emulation of the imaging process with the theories of linear system and Fourier optics. Furthermore, a quantitative analysis method to optimize the duty cycles of gratings is proposed and its applicability to a general NIGPCI system is verified.
Collapse
Affiliation(s)
- Ronghui Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Ying Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Chenxi Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xiaobo Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Renfang Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Lei Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Liang Guo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| |
Collapse
|
41
|
Ewan V, Hellyer T, Newton J, Simpson J. New horizons in hospital acquired pneumonia in older people. Age Ageing 2017; 46:352-358. [PMID: 28338911 DOI: 10.1093/ageing/afx029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Approximately 1.5% of hospital patients develop hospital acquired pneumonia. Aspiration is the major risk factor for pneumonia and is associated with reduced ability to mechanically clear respiratory pathogens into the stomach. Currently non-invasive methods of diagnosing hospital acquired pneumonia are less robust than invasive methods, and lead to over-diagnosis. Accurate diagnosis is key to surveillance, prevention and treatment of HAP, and also to improving outcomes; newer imaging modalities such as phase contrast X-ray imaging and nanoparticle enhanced magnetic resonance imaging may help. Potential preventative strategies such as systematic swallowing assessment in non-stroke patients, and interventions such as improving oral hygiene need further, robust randomised controlled trials. Antibiotics are likely to continue to be the mainstay of treatment, and new antibiotics such as ceftobiprole are likely to have a role in treating hospital acquired pneumonia. Given the spread of antimicrobial resistance, alternative treatment strategies including bacteriophages, peptides and antibodies are under investigation. Reducing the incidence of hospital acquired pneumonia could decrease length of hospital stay, reduce inappropriate antibiotic use, and both improve functional outcomes and mortality in our increasingly aged population.
Collapse
Affiliation(s)
- Victoria Ewan
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Thomas Hellyer
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Julia Newton
- Newcastle University, Clinical Academic Office, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Simpson
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| |
Collapse
|
42
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 822] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|
43
|
Li B, Zhang Y, Wu W, Du G, Cai L, Shi H, Chen S. Neovascularization of hepatocellular carcinoma in a nude mouse orthotopic liver cancer model: a morphological study using X-ray in-line phase-contrast imaging. BMC Cancer 2017; 17:73. [PMID: 28122521 PMCID: PMC5264465 DOI: 10.1186/s12885-017-3073-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model. Methods A human hepatocellular carcinoma HCCLM3 xenograft model was established in nude mice. Xenografts were sampled each week for 4 weeks and fixed to analyze tissue characteristics and neovascularization using SR-based X-ray in-line phase contrast computed tomography (IL-XPCT) without any contrast agent. Results The effect of the energy level and object–to-detector distance on phase-contrast difference was in good agreement with the theory of IL-PCI. Boundaries between the tumor and adjacent normal tissues at week 1 were clearly observed in two-dimensional phase contrast projection imaging. A quantitative contrast difference was observed from weeks 1 to 4. Moreover, 3D image reconstruction of hepatocellular carcinoma (HCC) samples showed blood vessels inside the tumor were abnormal. The smallest blood vessels measured approximately 20 μm in diameter. The tumor vascular density initially increased and then decreased gradually over time. The maximum tumor vascular density was 4.29% at week 2. Conclusion IL-XPCT successfully acquired images of neovascularization in HCC xenografts in nude mice.
Collapse
Affiliation(s)
- Beilei Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guohao Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liang Cai
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shaoliang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
44
|
Jian J, Zhang W, Yang H, Zhao X, Xuan R, Li D, Hu C. Phase-contrast CT: Qualitative and Quantitative Evaluation of Capillarized Sinusoids and Trabecular Structure in Human Hepatocellular Carcinoma Tissues. Acad Radiol 2017; 24:67-75. [PMID: 27818006 DOI: 10.1016/j.acra.2016.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE AND OBJECTIVES Capillarization of sinusoids and change of trabecular thickness are the main histologic features in hepatocellular carcinoma (HCC). Of particular interest are the three-dimensional (3D) visualization and quantitative evaluation of such alterations in the HCC progression. X-ray phase-contrast computed tomography (PCCT) is an emerging imaging method that provides excellent image contrast for soft tissues. This study aimed to explore the potential of in-line PCCT in microstructure imaging of capillarized sinusoids and trabecular structure in human HCC tissues and to quantitatively evaluate the alterations of those fine structures during the development of HCC. MATERIALS AND METHODS This project was designed as an ex vivo experimental study. The study was approved by the institutional review board, and informed consent was obtained from the patients. Eight human resected HCC tissue samples were imaged using in-line PCCT. After histologic processing, PCCT images and histopathologic data were matched. Fine structures in HCC tissues were revealed. Quantitative analyses of capillarized sinusoids (ie, percentage of sinusoidal area [PSA], sinusoidal volume) and trabecular structure (ie, trabecular thickness, surface-area-to-volume ratio [SA/V]) in low-grade (well or moderately differentiated) and high-grade (poorly differentiated) HCC groups were performed. RESULTS Using PCCT, the alterations of capillarized sinusoids and trabecular structure were clearly observed in 3D geometry, which was confirmed by the corresponding histologic sections. The 3D qualitative analyses of sinusoids in the high-grade HCC group were significantly different (P < 0.05) in PSA (7.8 ± 2.5%) and sinusoidal volume (2.9 ± 0.6 × 107 µm3) from those in the low-grade HCC group (PSA, 12.9 ± 2.2%; sinusoidal volume, 2.4 ± 0.3 × 107 µm3). Moreover, the 3D quantitative evaluation of the trabecular structure in the high-grade HCC group showed a significant change (P < 0.05) in the trabecular thickness (87.8 ± 15.6 µm) and SA/V (2.2 ± 1.3 × 103 µm-1) compared to the low-grade HCC group (trabecular thickness, 75.9 ± 7.1 µm; SA/V, 7.5 ± 1.3 × 103 µm-1). CONCLUSIONS This study provides insights into the 3D alterations of microstructures such as capillarized sinusoids and the trabecular structure at a micrometer level, which might allow for an improved understanding of the development of HCC.
Collapse
|
45
|
Cooper DML, Kawalilak CE, Harrison K, Johnston BD, Johnston JD. Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? Curr Osteoporos Rep 2016; 14:187-98. [PMID: 27623679 DOI: 10.1007/s11914-016-0319-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is growing recognition of the role of micro-architecture in osteoporotic bone loss and fragility. This trend has been driven by advances in imaging technology, which have enabled a transition from measures of mass to micro-architecture. Imaging trabecular bone has been a key research focus, but advances in resolution have also enabled the detection of cortical bone micro-architecture, particularly the network of vascular canals, commonly referred to as 'cortical porosity.' This review aims to provide an overview of what this level of porosity is, why it is important, and how it can be characterized by imaging. Moving beyond a 'trabeculocentric' view of bone loss holds the potential to improve diagnosis and monitoring of interventions. Furthermore, cortical porosity is intimately linked to the remodeling process, which underpins bone loss, and thus a larger potential exists to improve our fundamental understanding of bone health through imaging of both humans and animal models.
Collapse
Affiliation(s)
- D M L Cooper
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada.
| | - C E Kawalilak
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| | - K Harrison
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - B D Johnston
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - J D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada
| |
Collapse
|
46
|
Cao Y, Yin X, Zhang J, Wu T, Li D, Lu H, Hu J. Visualization of mouse spinal cord intramedullary arteries using phase- and attenuation-contrast tomographic imaging. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:966-974. [PMID: 27359146 DOI: 10.1107/s1600577516006482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/17/2016] [Indexed: 06/06/2023]
Abstract
Many spinal cord circulatory disorders present the substantial involvement of small vessel lesions. The central sulcus arteries supply nutrition to a large part of the spinal cord, and, if not detected early, lesions in the spinal cord will cause irreversible damage to the function of this organ. Thus, early detection of these small vessel lesions could potentially facilitate the effective diagnosis and treatment of these diseases. However, the detection of such small vessels is beyond the capability of current imaging techniques. In this study, an imaging method is proposed and the potential of phase-contrast imaging (PCI)- and attenuation-contrast imaging (ACI)-based synchrotron radiation for high-resolution tomography of intramedullary arteries in mouse spinal cord is validated. The three-dimensional vessel morphology, particularly that of the central sulcus arteries (CSA), detected with these two imaging models was quantitatively analyzed and compared. It was determined that both PCI- and ACI-based synchrotron radiation can be used to visualize the physiological arrangement of the entire intramedullary artery network in the mouse spinal cord in both two dimensions and three dimensions at a high-resolution scale. Additionally, the two-dimensional and three-dimensional vessel morphometric parameter measurements obtained with PCI are similar to the ACI data. Furthermore, PCI allows efficient and direct discrimination of the same branch level of the CSA without contrast agent injection and is expected to provide reliable biological information regarding the intramedullary artery. Compared with ACI, PCI might be a novel imaging method that offers a powerful imaging platform for evaluating pathological changes in small vessels and may also allow better clarification of their role in neurovascular disorders.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Dongzhe Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
47
|
Fatima A, Kataria S, Guruprasad KN, Agrawal AK, Singh B, Sarkar PS, Shripathi T, Kashyap Y, Sinha A. Synchrotron X-ray phase contrast imaging of leaf venation in soybean (Glycine max) after exclusion of solar UV (280-400 nm) radiation. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:795-801. [PMID: 27140160 DOI: 10.1107/s1600577516003507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The hydraulic efficiency of a leaf depends on its vascular structure as this is responsible for transport activities. To investigate the effect of exclusion of UVAB and UVB radiation from the solar spectrum on the micro-structure of leaves of soybean (Glycine max, variety JS-335), a field experiment was conducted using synchrotron-based phase contrast imaging (PCI). Plants were grown in specially designed UV exclusion chambers, and wrapped with filters that excluded UVB (280-315 nm) or UVAB (280-400 nm), or transmitted all the ambient solar UV (280-400 nm) radiation (filter control). Qualitative observation of high-resolution X-ray PCI images obtained at 10 keV has shown the differences in major and minor vein structures of the leaves. The mid-rib width of the middle leaflet of third trifoliate leaves, for all treatments, were obtained using quantitative image analysis. The width of the mid-rib of the middle leaflet of third trifoliate leaves of UVB excluded plants was found to be more compared to leaves of filter control plants, which are exposed to ambient UV. The mid-rib or the main conducting vein transports water and sugars to the whole plant; therefore, mid-rib enhancement by the exclusion of solar UV radiation possibly implies enhancement in the leaf area which in turn causes an increased rate of photosynthesis.
Collapse
Affiliation(s)
- A Fatima
- UGC-DAE, Consortium for Scientific Research, University Campus, Khandwa Road, Indore (MP), India
| | - S Kataria
- School of Life Sciences, DAVV, Khandwa Road, Indore (MP), India
| | - K N Guruprasad
- School of Life Sciences, DAVV, Khandwa Road, Indore (MP), India
| | - A K Agrawal
- Neutron and X-ray Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - B Singh
- Neutron and X-ray Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - P S Sarkar
- Neutron and X-ray Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - T Shripathi
- UGC-DAE, Consortium for Scientific Research, University Campus, Khandwa Road, Indore (MP), India
| | - Y Kashyap
- Neutron and X-ray Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - A Sinha
- Neutron and X-ray Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| |
Collapse
|
48
|
Olubamiji AD, Izadifar Z, Zhu N, Chang T, Chen X, Eames BF. Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:802-812. [PMID: 27140161 DOI: 10.1107/s1600577516002344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell-laden hybrid constructs over time. Second, optimization of inline PCI-CT was performed by investigating three sample-to-detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42-day culture period. The results showed that there was progressive secretion of cartilage-specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge-enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR-inline-PCI-CT images. Summarily, SR-inline-PCI-CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42-day culture period.
Collapse
Affiliation(s)
- Adeola D Olubamiji
- Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - Zohreh Izadifar
- Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - Ning Zhu
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N 2V3
| | - Tuanjie Chang
- Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Xiongbiao Chen
- Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - B Frank Eames
- Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A9
| |
Collapse
|
49
|
Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS NANO 2016; 10:3918-35. [PMID: 27043181 PMCID: PMC4846476 DOI: 10.1021/acsnano.6b01401] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Achieving effective treatment of deep-seated tumors is a major challenge for traditional photodynamic therapy (PDT) due to difficulties in delivering light into the subsurface. Thanks to their great tissue penetration, X-rays hold the potential to become an ideal excitation source for activating photosensitizers (PS) that accumulate in deep tumor tissue. Recently, a wide variety of nanoparticles have been developed for this purpose. The nanoparticles are designed as carriers for loading various kinds of PSs and can facilitate the activation process by transferring energy harvested from X-ray irradiation to the loaded PS. In this review, we focus on recent developments of nanoscintillators with high energy transfer efficiency, their rational designs, as well as potential applications in next-generation PDT. Treatment of deep-seated tumors by using radioisotopes as an internal light source will also be discussed.
Collapse
Affiliation(s)
- Anyanee Kamkaew
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Corresponding Author: Feng Chen: ; Weibo Cai:
| | - Yonghua Zhan
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Rebecca L. Majewski
- Department of Biomedical Engineering, University of Wisconsin - Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
- Corresponding Author: Feng Chen: ; Weibo Cai:
| |
Collapse
|
50
|
Montgomery JE, Wesolowski MJ, Wolkowski B, Chibbar R, Snead ECR, Singh J, Pettitt M, Malhi PS, Barboza T, Adams G. Demonstration of synchrotron x-ray phase contrast imaging computed tomography of infiltrative transitional cell carcinoma of the prostatic urethra in a dog. J Med Imaging (Bellingham) 2016; 3:015504. [PMID: 27014719 DOI: 10.1117/1.jmi.3.1.015504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/25/2016] [Indexed: 11/14/2022] Open
Abstract
Prostatic urethral transitional cell carcinoma with prostatic invasion in a dog was imaged with abdominal radiography and abdominal ultrasonography antemortem. Synchrotron in-line x-ray phase contrast imaging computed tomography (XPCI-CT) was performed on the prostate ex vivo at the Canadian Light Source Synchrotron and compared to histology. XPCI-CT imaging provides greater soft tissue contrast than conventional absorption-based x-ray imaging modalities, permitting visualization of regions of inflammatory cell infiltration, differentiation of invasive versus noninvasive tumor regions, and areas of necrosis and mineralization. This represents the first report of XPCI-CT images of an invasive prostatic urothelial neoplasm in a dog.
Collapse
Affiliation(s)
- James E Montgomery
- University of Saskatchewan , College of Medicine, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Michal J Wesolowski
- University of Saskatchewan , Department of Medical Imaging, College of Medicine, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Bailey Wolkowski
- University of Saskatchewan , Department of Animal and Poultry Science, College of Agriculture and Bioresources, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Rajni Chibbar
- University of Saskatchewan , Department of Pathology and Laboratory Medicine, College of Medicine, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Elisabeth C R Snead
- University of Saskatchewan , Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Jaswant Singh
- University of Saskatchewan , Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Murray Pettitt
- University of Saskatchewan , Department of Animal and Poultry Science, College of Agriculture and Bioresources, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Pritpal S Malhi
- Prairie Diagnostic Services , 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Trinita Barboza
- University of Saskatchewan , Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Gregg Adams
- University of Saskatchewan , Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|