1
|
Tang L, Yao L, Li G. CyberKnife Versus Four-Dimensional Computed Tomography-Guided Stereotactic Body Radiation Therapy in the Treatment of Lung Cancer: A Case Report. Cureus 2025; 17:e82138. [PMID: 40357075 PMCID: PMC12068358 DOI: 10.7759/cureus.82138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
Stereotactic body radiation therapy (SBRT) has emerged as a critical therapeutic option for treating lung and other solid tumors. Two prominent high-precision SBRT techniques currently in use are four-dimensional computed tomography-guided linear accelerator-based SBRT (4DCT-SBRT) and CyberKnife. This case presents a patient diagnosed with two distinct pulmonary lesions, each treated separately using 4DCT-SBRT and CyberKnife. By comparing target delineation, dose distribution, lesion response, and the capability to spare normal tissues, we evaluate the specific advantages of CyberKnife for particular clinical scenarios.
Collapse
Affiliation(s)
- Lingrong Tang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, CHN
| | - Lei Yao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, CHN
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, CHN
| |
Collapse
|
2
|
Olovsson N, Wikström K, Flejmer A, Ahnesjö A, Dasu A. Impact of setup and geometric uncertainties on the robustness of free-breathing photon radiotherapy of small lung tumors. Phys Med 2024; 123:103396. [PMID: 38943799 DOI: 10.1016/j.ejmp.2024.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
PURPOSE Respiratory motion and patient setup error both contribute to the dosimetric uncertainty in radiotherapy of lung tumors. Managing these uncertainties for free-breathing treatments is usually done by margin-based approaches or robust optimization. However, breathing motion can be irregular and concerns have been raised for the robustness of the treatment plans. We have previously reported the dosimetric effects of the respiratory motion, without setup uncertainties, in lung tumor photon radiotherapy using free-breathing images. In this study, we include setup uncertainty. METHODS Tumor positions from cine-CT images acquired in free-breathing were combined with per-fraction patient shifts to simulate treatment scenarios. A total of 14 patients with 300 tumor positions were used to evaluate treatment plans based on 4DCT. Four planning methods aiming at delivering 54 Gy as median tumor dose in three fractions were compared. The planning methods were denoted robust 4D (RB4), isodose to the PTV with a central higher dose (ISD), the ISD method normalized to the intended median tumor dose (IRN) and homogeneous fluence to the PTV (FLU). RESULTS For all planning methods 95% of the intended dose was achieved with at least 90% probability with RB4 and FLU having equal CTV D50% values at this probability. FLU gave the most consistent results in terms of CTV D50% spread and dose homogeneity. CONCLUSIONS Despite the simulated patient shifts and tumor motions being larger than observed in the 4DCTs the dosimetric impact was suggested to be small. RB4 or FLU are recommended for the planning of free-breathing treatments.
Collapse
Affiliation(s)
- Nils Olovsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Kenneth Wikström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Flejmer
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden; Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexandru Dasu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| |
Collapse
|
3
|
Li J, Tang H, Lv M, Liao X, Zhang P, Zhao B, Wong PK, Hu Y. Force-Position Hybrid Control for Robot Assisted Thoracic-Abdominal Puncture With Respiratory Movement. IEEE Robot Autom Lett 2024; 9:5262-5268. [DOI: 10.1109/lra.2024.3386017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Affiliation(s)
- Jinhang Li
- Department of Electromechanical Engineering, University of Macau, Macau, China
| | - Huajie Tang
- Harbin Institute of Technology, Shenzhen, China
| | - Mingyang Lv
- Harbin Institute of Technology, Shenzhen, China
| | - Xiangyun Liao
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baoliang Zhao
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Macau, China
| | - Ying Hu
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
4
|
Fujimoto D, Takatsu J, Hara N, Oshima M, Tomihara J, Segawa E, Inoue T, Shikama N. Dosimetric comparison of four-dimensional computed tomography based internal target volume against variations in respiratory motion during treatment between volumetric modulated arc therapy and three-dimensional conformal radiotherapy in lung stereotactic body radiotherapy. Radiol Phys Technol 2024; 17:143-152. [PMID: 37930563 DOI: 10.1007/s12194-023-00757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
This study focused on the dosimetric impact of variations in respiratory motion during lung stereotactic body radiotherapy (SBRT). Dosimetric comparisons between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) were performed using four-dimensional computed tomography (4DCT)-based internal target volumes (ITV). We created retrospective plans for ten patients with lung cancer who underwent SBRT using 3DCRT and VMAT techniques. A Delta4 Phantom + (ScandiDos, Uppsala, Sweden) was used to evaluate the dosimetric robustness of 4DCT-based ITV against variations in respiratory motion during treatment. We analyzed respiratory motion during treatment. Dose-volume histogram parameters were evaluated for the 95% dose (D95%) to the planning target volume (PTV) contoured on CT images obtained under free breathing. The correlations between patient respiratory parameters and dosimetric errors were also evaluated. In the phantom study, the average PTV D95% dose differences for all fractions were - 2.9 ± 4.4% (- 16.0 - 1.2%) and - 2.0 ± 2.8% (- 11.2 - 0.7%) for 3DCRT and VMAT, respectively. The average dose difference was < 3% for both 3DCRT and VMAT; however, in 5 out of 42 fractions in 3DCRT, the difference in PTV D95% was > 10%. Dosimetric errors were correlated with respiratory amplitude and velocity, and differences in respiratory amplitude between 4DCT and treatment days were the main factors causing dosimetric errors. The overall average dose error of the PTV D95% was small; however, both 3DCRT and VMAT cases exceeding 10% error were observed. Larger errors occurred with amplitude variation or baseline drift, indicating limited robustness of 4DCT-based ITV.
Collapse
Affiliation(s)
- Daimu Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Naoya Hara
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Masaki Oshima
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Tomihara
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Eisuke Segawa
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Tatsuya Inoue
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Radiology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
5
|
SHIRATO H. Biomedical advances and future prospects of high-precision three-dimensional radiotherapy and four-dimensional radiotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:389-426. [PMID: 37821390 PMCID: PMC10749389 DOI: 10.2183/pjab.99.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Biomedical advances of external-beam radiotherapy (EBRT) with improvements in physical accuracy are reviewed. High-precision (±1 mm) three-dimensional radiotherapy (3DRT) can utilize respective therapeutic open doors in the tumor control probability curve and in the normal tissue complication probability curve instead of the one single therapeutic window in two-dimensional EBRT. High-precision 3DRT achieved higher tumor control and probable survival rates for patients with small peripheral lung and liver cancers. Four-dimensional radiotherapy (4DRT), which can reduce uncertainties in 3DRT due to organ motion by real-time (every 0.1-1 s) tumor-tracking and immediate (0.1-1 s) irradiation, have achieved reduced adverse effects for prostate and pancreatic tumors near the digestive tract and with similar or better tumor control. Particle beam therapy improved tumor control and probable survival for patients with large liver tumors. The clinical outcomes of locally advanced or multiple tumors located near serial-type organs can theoretically be improved further by integrating the 4DRT concept with particle beams.
Collapse
Affiliation(s)
- Hiroki SHIRATO
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Yang P, Ge X, Tsui T, Liang X, Xie Y, Hu Z, Niu T. Four-Dimensional Cone Beam CT Imaging Using a Single Routine Scan via Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1495-1508. [PMID: 37015393 DOI: 10.1109/tmi.2022.3231461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel method is proposed to obtain four-dimensional (4D) cone-beam computed tomography (CBCT) images from a routine scan in patients with upper abdominal cancer. The projections are sorted according to the location of the lung diaphragm before being reconstructed to phase-sorted data. A multiscale-discriminator generative adversarial network (MSD-GAN) is proposed to alleviate the severe streaking artifacts in the original images. The MSD-GAN is trained using simulated CBCT datasets from patient planning CT images. The enhanced images are further used to estimate the deformable vector field (DVF) among breathing phases using a deformable image registration method. The estimated DVF is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction approach to generate 4D CBCT images. The proposed MSD-GAN is compared with U-Net on the performance of image enhancement. Results show that the proposed method significantly outperforms the total variation regularization-based iterative reconstruction approach and the method using only MSD-GAN to enhance original phase-sorted images in simulation and patient studies on 4D reconstruction quality. The MSD-GAN also shows higher accuracy than the U-Net. The proposed method enables a practical way for 4D-CBCT imaging from a single routine scan in upper abdominal cancer treatment including liver and pancreatic tumors.
Collapse
|
7
|
Terunuma T, Sakae T, Hu Y, Takei H, Moriya S, Okumura T, Sakurai H. Explainability and controllability of patient-specific deep learning with attention-based augmentation for markerless image-guided radiotherapy. Med Phys 2023; 50:480-494. [PMID: 36354286 PMCID: PMC10100026 DOI: 10.1002/mp.16095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We reported the concept of patient-specific deep learning (DL) for real-time markerless tumor segmentation in image-guided radiotherapy (IGRT). The method was aimed to control the attention of convolutional neural networks (CNNs) by artificial differences in co-occurrence probability (CoOCP) in training datasets, that is, focusing CNN attention on soft tissues while ignoring bones. However, the effectiveness of this attention-based data augmentation has not been confirmed by explainable techniques. Furthermore, compared to reasonable ground truths, the feasibility of tumor segmentation in clinical kilovolt (kV) X-ray fluoroscopic (XF) images has not been confirmed. PURPOSE The first aim of this paper was to present evidence that the proposed method provides an explanation and control of DL behavior. The second purpose was to validate the real-time lung tumor segmentation in clinical kV XF images for IGRT. METHODS This retrospective study included 10 patients with lung cancer. Patient-specific and XF angle-specific image pairs comprising digitally reconstructed radiographs (DRRs) and projected-clinical-target-volume (pCTV) images were calculated from four-dimensional computer tomographic data and treatment planning information. The training datasets were primarily augmented by random overlay (RO) and noise injection (NI): RO aims to differentiate positional CoOCP in soft tissues and bones, and NI aims to make a difference in the frequency of occurrence of local and global image features. The CNNs for each patient-and-angle were automatically optimized in the DL training stage to transform the training DRRs into pCTV images. In the inference stage, the trained CNNs transformed the test XF images into pCTV images, thus identifying target positions and shapes. RESULTS The visual analysis of DL attention heatmaps for a test image demonstrated that our method focused CNN attention on soft tissue and global image features rather than bones and local features. The processing time for each patient-and-angle-specific dataset in the training stage was ∼30 min, whereas that in the inference stage was 8 ms/frame. The estimated three-dimensional 95 percentile tracking error, Jaccard index, and Hausdorff distance for 10 patients were 1.3-3.9 mm, 0.85-0.94, and 0.6-4.9 mm, respectively. CONCLUSIONS The proposed attention-based data augmentation with both RO and NI made the CNN behavior more explainable and more controllable. The results obtained demonstrated the feasibility of real-time markerless lung tumor segmentation in kV XF images for IGRT.
Collapse
Affiliation(s)
- Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yachao Hu
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan.,Center Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hideyuki Takei
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Shunsuke Moriya
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Toshiyuki Okumura
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hideyuki Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| |
Collapse
|
8
|
Olofsson N, Wikström K, Flejmer A, Ahnesjö A, Dasu A. Dosimetric robustness of lung tumor photon radiotherapy evaluated from multiple event CT imaging. Phys Med 2022; 103:1-10. [PMID: 36182764 DOI: 10.1016/j.ejmp.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Intrafractional respiratory motion is a concern for lung tumor radiotherapy but full evaluation of its impact is hampered by the lack of images representing the true motion. This study presents a novel evaluation using free-breathing images acquired over realistic treatment times to study the dosimetric impact of respiratory motion in photon radiotherapy. METHODS Cine-CT images of 14 patients with lung cancer acquired during eight minutes of free-breathing at three occasions were used to simulate dose tracking of four different planning methods. These methods aimed to deliver 54 Gy in three fractions to D50% of the target and were denoted as robust 4D (RB4), homogeneous fluence to the ITV (FLU) and an isodose prescription to the ITV with a high central dose (ISD), concurrently renormalized (IRN). Differences in dose coverage probability and homogeneity between the methods were quantified. Correlations between underdosage and attributes regarding the tumor and its motion were investigated. RESULTS Despite tumor motion amplitudes being larger than in the 4DCT all but FLU achieved the intended CTV D50% for the cohort average. For all methods but IRN at least 93% of the patients would have received 95% of the intended dose. No differences in D50% were found between RB4 and ISD nor IRN. However, RB4 led to better homogeneity. CONCLUSIONS Tumor motion in free-breathing not covered by the 4DCT had a small impact on dose. The RB4 is recommended for planning of free-breathing treatments. No factor was found that consistently correlated dose degradation with patient or motion attributes.
Collapse
Affiliation(s)
- Nils Olofsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kenneth Wikström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Anna Flejmer
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexandru Dasu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| |
Collapse
|
9
|
Gulyas I, Trnkova P, Knäusl B, Widder J, Georg D, Renner A. A novel bone suppression algorithm in intensity‐based 2D/3D image registration for real‐time tumour motion monitoring: development and phantom‐based validation. Med Phys 2022; 49:5182-5194. [PMID: 35598307 PMCID: PMC9540269 DOI: 10.1002/mp.15716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Real‐time tumor motion monitoring (TMM) is a crucial process for intra‐fractional respiration management in lung cancer radiotherapy. Since the tumor can be partly or fully located behind the ribs, the TMM is challenging. Purpose The aim of this work was to develop a bone suppression (BS) algorithm designed for real‐time 2D/3D marker‐less TMM to increase the visibility of the tumor when overlapping with bony structures and consequently to improve the accuracy of TMM. Method A BS method was implemented in the in‐house developed software for ultrafast intensity‐based 2D/3D tumor registration (Fast Image‐based Registration [FIRE]). The method operates on both, digitally reconstructed radiograph (DRR) and intra‐fractional X‐ray images. The bony structures are derived from computed tomography data by thresholding during ray‐casting, and the resulting bone DRR is subtracted from intra‐fractional X‐ray images to obtain a soft‐tissue‐only image for subsequent tumor registration. The accuracy of TMM utilizing BS was evaluated within a retrospective phantom study with nine different 3D‐printed tumor phantoms placed in the in‐house developed Advanced Radiation DOSimetry (ARDOS) breathing phantom. A 24 mm craniocaudal tumor motion, including rib eclipses, was simulated, and X‐ray images were acquired on the Elekta Versa HD Linac in the lateral and posterior–anterior directions. An error assessment for BS images was evaluated with respect to the ground truth tumor position. Results A total error (root mean square error) of 0.87 ± 0.23 mm and 1.03 ± 0.26 mm was found for posterior–anterior and lateral imaging; the mean time for BS was 8.03 ± 1.54 ms. Without utilizing BS, TMM failed in all X‐ray images since the registration algorithm focused on the rib position due to the predominant intensity of this tissue within DRR and X‐ray images. Conclusion The BS algorithm developed and implemented improved the accuracy, robustness, and stability of real‐time TMM in lung cancer in a phantom study, even in the case of rib interlude where normal tumor registration fails.
Collapse
Affiliation(s)
- Ingo Gulyas
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
| | - Petra Trnkova
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
| | - Barbara Knäusl
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
- MedAustron Ion Therapy Center Wiener Neustadt Austria
| | - Joachim Widder
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
| | - Dietmar Georg
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
- MedAustron Ion Therapy Center Wiener Neustadt Austria
| | - Andreas Renner
- Division of Medical Radiation Physics Department of Radiation Oncology Medical University of Vienna
| |
Collapse
|
10
|
Czajkowski P, Piotrowski T. Evaluation of the accuracy of dose delivery in stereotactic radiotherapy using the Velocity commercial software. Phys Med 2022; 95:133-139. [DOI: 10.1016/j.ejmp.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022] Open
|
11
|
Trémolières P, Gonzalez-Moya A, Paumier A, Mege M, Blanchecotte J, Theotime C, Autret D, Dufreneix S. Lung stereotactic body radiation therapy: personalized PTV margins according to tumor location and number of four-dimensional CT scans. Radiat Oncol 2022; 17:5. [PMID: 35012579 PMCID: PMC8751327 DOI: 10.1186/s13014-021-01973-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives To characterise the motion of pulmonary tumours during stereotactic body radiation therapy (SBRT) and to evaluate different margins when creating the planning target volume (PTV) on a single 4D CT scan (4DCT). Methods We conducted a retrospective single-site analysis on 30 patients undergoing lung SBRT. Two 4DCTs (4DCT1 and 4DCT2) were performed on all patients. First, motion was recorded for each 4DCT in anterior–posterior (AP), superior-inferior (SI) and rightleft (RL) directions. Then, we used 3 different margins (3,4 and 5 mm) to create the PTV, from the internal target volume (ITV) of 4DCT1 only (PTV D1 + 3, PTV D1 + 4, PTV D1 + 5). We compared, using the Dice coefficient, the volumes of these 3 PTVs, to the PTV actually used for the treatment (PTVttt). Finally, new treatment plans were calculated using only these 3 PTVs. We studied the ratio of the D2%, D50% and D98% between each new plan and the plan actually used for the treatment (D2% PTVttt, D50% PTVttt, D50% ITVttt D98% PTVttt). Results 30 lesions were studied. The greatest motion was observed in the SI axis (8.8 ± 6.6 [0.4–25.8] mm). The Dice index was higher when comparing PTVttt to PTV D1 + 4 mm (0.89 ± 0.04 [0.82–0.98]). Large differences were observed when comparing plans relative to PTVttt and PTV D1 + 3 for D98% PTVttt (0.85 ± 0.24 [0.19–1.00]). and also for D98% ITVttt (0.93 ± 0.12 [0.4–1.0]).D98% PTVttt (0.85 ± 0.24 [0.19–1.00], p value = 0.003) was statistically different when comparing plans relative to PTVttt and PTV D1 + 3. No stastistically differences were observed when comparing plans relative to PTVttt and PTV D1 + 4. A difference greater than 10% relative to D98% PTVttt was found for only in one UL lesion, located under the carina. Conclusion A single 4DCT appears feasible for upper lobe lesions located above the carina, using a 4-mm margin to generate the PTV. Advance in knowledge Propostion of a personalized SBRT treatment (number of 4DCT, margins) according to tumor location (above or under the carina).
Collapse
Affiliation(s)
- Pierre Trémolières
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France.
| | - Ana Gonzalez-Moya
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Amaury Paumier
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Martine Mege
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Julien Blanchecotte
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Christelle Theotime
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Damien Autret
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| | - Stéphane Dufreneix
- Department of Medical Physics, Institut de Cancérologie de L'Ouest Angers, 15 Rue A Boquel, 49055, Angers Cedex 02, France
| |
Collapse
|
12
|
Paolani G, Strolin S, Santoro M, Della Gala G, Tolento G, Guido A, Siepe G, Morganti AG, Strigari L. A novel tool for assessing the correlation of internal/external markers during SGRT guided stereotactic ablative radiotherapy treatments. Phys Med 2021; 92:40-51. [PMID: 34856464 DOI: 10.1016/j.ejmp.2021.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION An in-house developed tool was implemented and validated to investigate the skin surface, hepatic dome, and target displacement for stereotactic ablative radiotherapy (SABR) of thoracic/abdominal lesions using a Surface Guided Radiation Therapy (SGRT) system combined with 4D- images. MATERIALS AND METHODS Fourteen consecutive patients with tumors near the hepatic dome undergoing SABR treatments were analyzed. For each patient, a planning 4D-CT and five 4D-CBCT images were acquired. The C-RAD technology was also used to register/monitor the position of the skin reference point (SRP) as an external marker representative of patient breathing. The 4D images were imported in the developed tool, and the absolute maximum height (Pmax,dome) of the hepatic dome on the ten respiratory phases was semi-automatically detected. Similarly, the contour of the skin surface was extracted in correspondence with the SRP position. The tool has been validated using an ad hoc modified moving phantom with pre-selected amplitudes and numbers of cycles. The Pearson correlation coefficients and Bland-Altman plots were calculated. RESULTS There was a strong correlation between the skin motion amplitude based on 4D-CBCT and the C-RAD in all the patients (0.90 ± 0.08). Similarly, the mean ± SD of Pearson correlation coefficients of skin and Pmax,dome movements registered by 4D-CT and 4D-CBCT were 0.90 ± 0.05 and 0.94 ± 0.05, respectively. The mean ± SD of Pearson correlation coefficients comparing the skin and Pmax,dome displacements within each imaging modality were 0.88 ± 0.05 and 0.90 ± 0.05 for 4D-CT and 4D-CBCT, respectively. The SRP displacement during the set-up imaging and the treatment delivery were similar in all the investigated patients. Similar results were obtained for the ad hoc modified phantom in the preliminary validation phase. CONCLUSION The strong correlation between the tumor/ hepatic dome and skin displacements confirms that the SGRT approach can be considered appropriate for intra- and inter-fraction motion management in SABR therapy.
Collapse
Affiliation(s)
- Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Della Gala
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giorgio Tolento
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandra Guido
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giambattista Siepe
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessio G Morganti
- Department of Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, Bologna University, 40138 Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
13
|
Yasue K, Fuse H, Asano Y, Kato M, Shinoda K, Ikoma H, Fujisaki T, Tamaki Y. Investigation of fiducial marker recognition possibility by water equivalent length in real-time tracking radiotherapy. Jpn J Radiol 2021; 40:318-325. [PMID: 34655387 DOI: 10.1007/s11604-021-01207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Real-time tumor tracking radiotherapy (RTRT) systems typically use fiducial markers implanted near the tumor to track the target using X-ray fluoroscopy. Template pattern matching, used in tracking, is often used to automatically localize the fiducial markers. In radiotherapy of the liver, the thickness of the body that can recognize the fiducial markers must be clinically assessed. The purpose of this study was to quantify the recognition of fiducial markers according to body thickness in stereotactic body radiotherapy of the liver using clinical images obtained using SyncTraX FX4. The recognition scores of fiducial markers were examined in relation to water equivalent length (WEL), tube current, and each flat panel detector. The relationship between the contrast ratio of the fiducial marker and the background and the WEL was also investigated. The average recognition score was found to be less than 20 when the WEL was greater than 25 cm. The probability of successful tracking of image recognition was mostly smaller than 0.8 when the WEL was over 30 cm. The relationship between WEL and tube current did not significantly differ between 100 and 140 mA, but there was a significant difference (p < 0.05) for all other combinations. To ensure tracking of fiducial markers during SBRT, if the WEL representing body thickness is longer than 25 cm, the X-ray fluoroscopy arrangement should be determined based on the WEL.
Collapse
Affiliation(s)
- Kenji Yasue
- Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.,Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hiraku Fuse
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.
| | - Yuto Asano
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Miho Kato
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Kazuya Shinoda
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hideaki Ikoma
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Tatsuya Fujisaki
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan
| | - Yoshio Tamaki
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| |
Collapse
|
14
|
Ukon K, Arai Y, Takao S, Matsuura T, Ishikawa M, Shirato H, Shimizu S, Umegaki K, Miyamoto N. Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:926-933. [PMID: 34196697 PMCID: PMC8438269 DOI: 10.1093/jrr/rrab054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this work is to show the usefulness of a prediction method of tumor location based on partial least squares regression (PLSR) using multiple fiducial markers. The trajectory data of respiratory motion of four internal fiducial markers inserted in lungs were used for the analysis. The position of one of the four markers was assumed to be the tumor position and was predicted by other three fiducial markers. Regression coefficients for prediction of the position of the tumor-assumed marker from the fiducial markers' positions is derived by PLSR. The tracking error and the gating error were evaluated assuming two possible variations. First, the variation of the position definition of the tumor and the markers on treatment planning computed tomograhy (CT) images. Second, the intra-fractional anatomical variation which leads the distance change between the tumor and markers during the course of treatment. For comparison, rigid predictions and ordinally multiple linear regression (MLR) predictions were also evaluated. The tracking and gating errors of PLSR prediction were smaller than those of other prediction methods. Ninety-fifth percentile of tracking/gating error in all trials were 3.7/4.1 mm, respectively in PLSR prediction for superior-inferior direction. The results suggested that PLSR prediction was robust to variations, and clinically applicable accuracy could be achievable for targeting tumors.
Collapse
Affiliation(s)
- Kanako Ukon
- Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yohei Arai
- Graduate School of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seishin Takao
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, North12, West 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Hiroki Shirato
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Miyamoto
- Corresponding author: Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan. Tel: +81-11-706-6673, E-mail address:
| |
Collapse
|
15
|
Hayashi R, Miyazaki K, Takao S, Yokokawa K, Tanaka S, Matsuura T, Taguchi H, Katoh N, Shimizu S, Umegaki K, Miyamoto N. Real-time CT image generation based on voxel-by-voxel modeling of internal deformation by utilizing the displacement of fiducial markers. Med Phys 2021; 48:5311-5326. [PMID: 34260755 DOI: 10.1002/mp.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To show the feasibility of real-time CT image generation technique utilizing internal fiducial markers that facilitate the evaluation of internal deformation. METHODS In the proposed method, a linear regression model that can derive internal deformation from the displacement of fiducial markers is built for each voxel in the training process before the treatment session. Marker displacement and internal deformation are derived from the four-dimensional computed tomography (4DCT) dataset. In the treatment session, the three-dimensional deformation vector field is derived according to the marker displacement, which is monitored by the real-time imaging system. The whole CT image can be synthesized by deforming the reference CT image with a deformation vector field in real-time. To show the feasibility of the technique, image synthesis accuracy and tumor localization accuracy were evaluated using the dataset generated by extended NURBS-Based Cardiac-Torso (XCAT) phantom and clinical 4DCT datasets from six patients, containing 10 CT datasets each. In the validation with XCAT phantom, motion range of the tumor in training data and validation data were about 10 and 15 mm, respectively, so as to simulate motion variation between 4DCT acquisition and treatment session. In the validation with patient 4DCT dataset, eight CT datasets from the 4DCT dataset were used in the training process. Two excluded inhale CT datasets can be regarded as the datasets with large deformations more than training dataset. CT images were generated for each respiratory phase using the corresponding marker displacement. Root mean squared error (RMSE), normalized RMSE (NRMSE), and structural similarity index measure (SSIM) between the original CT images and the synthesized CT images were evaluated as the quantitative indices of the accuracy of image synthesis. The accuracy of tumor localization was also evaluated. RESULTS In the validation with XCAT phantom, the mean NRMSE, SSIM, and three-dimensional tumor localization error were 7.5 ± 1.1%, 0.95 ± 0.02, and 0.4 ± 0.3 mm, respectively. In the validation with patient 4DCT dataset, the mean RMSE, NRMSE, SSIM, and three-dimensional tumor localization error in six patients were 73.7 ± 19.6 HU, 9.2 ± 2.6%, 0.88 ± 0.04, and 0.8 ± 0.6 mm, respectively. These results suggest that the accuracy of the proposed technique is adequate when the respiratory motion is within the range of the training dataset. In the evaluation with a marker displacement larger than that of the training dataset, the mean RMSE, NRMSE, and tumor localization error were about 100 HU, 13%, and <2.0 mm, respectively, except for one case having large motion variation. The performance of the proposed method was similar to those of previous studies. Processing time to generate the volumetric image was <100 ms. CONCLUSION We have shown the feasibility of the real-time CT image generation technique for volumetric imaging.
Collapse
Affiliation(s)
- Risa Hayashi
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koichi Miyazaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kohei Yokokawa
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sodai Tanaka
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Norio Katoh
- Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
16
|
Sevillano D, Núñez LM, Chevalier M, García-Vicente F. Application of discrete cosine transform to assess the effect of tumor motion variations on the definition of ITV in lung and liver SBRT. Phys Med 2021; 84:132-140. [PMID: 33894583 DOI: 10.1016/j.ejmp.2021.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To use Discrete Cosine Transform to include tumor motion variations on ITV definition of SBRT patients. METHODS Data from 66 patients was collected. 2D planar fluoroscopy images (FI) were available for 54 patients. Daily CBCT projections (CBCTp) from 29 patients were employed to measure interfraction amplitude variability. Systematic amplitude variations were obtained from 17 patients with data from both FI and CBCTp. Tumor motion curves obtained from FI were characterized with a Cosine model (CM), based on cosine functions to the power of 2, 4 or 6, and DCT. Performance of both models was evaluated by means of R2 coefficient and by comparing their results on Internal Target Volume (ITV) margins against those calculated from original tumor motion curves. Amplitude variations from CBCTp, as well as estimations of baseline shift variations were added to the DCT model to account for their effect on ITV margins. RESULTS DCT replicated tumor motion curves with a mean R2 values for all patients of 0.86, 0.91 and 0.96 for the lateral (LAT), anterior-posterior (AP) and cranio-caudal (CC) directions respectively. CM yielded worst results, with R2 values of 0.64, 0.61 and 0.74 in the three directions. Interfraction amplitude variation increased ITV margins by a 9%, while baseline shift variability implied a 40% and 80-100% increase for normalized values of baseline shift of 0.2 and 0.4 respectively. CONCLUSIONS Probability distribution functions of tumor positions can be successfully characterized with DCT. This permits to include tumor motion variablilities obtained from patient population into patient specific ITVs.
Collapse
Affiliation(s)
- D Sevillano
- Department of Medical Physics, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | - L M Núñez
- Biomedical Engineering, ETSIT, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Chevalier
- Medical Physics, Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - F García-Vicente
- Department of Medical Physics, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
17
|
Wikström KA, Isacsson UM, Pinto MC, Nilsson KM, Ahnesjö A. Evaluation of irregular breathing effects on internal target volume definition for lung cancer radiotherapy. Med Phys 2021; 48:2136-2144. [PMID: 33668075 DOI: 10.1002/mp.14824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Irregular breathing may compromise the treated volume for free-breathing lung cancer patients during radiotherapy. We try to find a measure based on a breathing amplitude surrogate that can be used to select the patients who need further investigation of tumor motion to ensure that the internal target volume (ITV) provides reliant coverage of the tumor. MATERIAL AND METHODS Fourteen patients were scanned with four-dimensional computed tomography (4DCT) during free-breathing. The breathing motion was detected by a pneumatic bellows device used as a breathing amplitude surrogate. In addition to the 4DCT, a breath-hold (BH) scan and three cine CT imaging sessions were acquired. The cine images were taken at randomized intervals at a rate of 12 per minute for 8 minutes to allow tumor motion determination during a typical hypo-fractionated treatment scenario. A clinical target volume (CTV) was segmented in the BH CT and propagated over all cine images and 4DCT bins. The center-of-volume of the translated CTV (CTVCOV ) in the ten 4DCT bins were interconnected to define the 4DCT determined tumor trajectory (4DCT-TT). The volume of CTV inside ITV for all cine CTs was calculated and reported at the 10th percentile (VCTV10% ). The deviations between CTVCOV in the cine CTs and the 4DCT-TT were calculated and reported at its 90th percentile (d90% ). The standard deviation of the bellows amplitude peaks (SDP) and the ratio between large and normal inspirations, κrel , were tested as surrogates for VCTV10% and d90% . RESULTS The values of d90% ranged from 0.6 to 5.2 mm with a mean of 2.2 mm. The values of VCTV10% ranged from 59-93% with a mean of 78 %. The SDP had a moderate correlation (r = 0.87) to d90% . Less correlation was seen between SDP and VCTV10% (r = 0.77), κrel and d90% (r = 0.75) and finally κrel and VCTV10% (r = 0.75). CONCLUSIONS The ITV coverage had a large variation for some patients. SDP seems to be a feasible surrogate measure to select patients that needs further tumor motion determination.
Collapse
Affiliation(s)
- Kenneth A Wikström
- Medical Radiation Physics, Uppsala University Hospital, 751 85, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Ulf M Isacsson
- Medical Radiation Physics, Uppsala University Hospital, 751 85, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Marta C Pinto
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.,Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Anders Ahnesjö
- Medical Radiation Physics, Uppsala University Hospital, 751 85, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
18
|
Liang Z, Zhou Q, Yang J, Zhang L, Liu D, Tu B, Zhang S. Artificial intelligence‐based framework in evaluating intrafraction motion for liver cancer robotic stereotactic body radiation therapy with fiducial tracking. Med Phys 2020; 47:5482-5489. [DOI: 10.1002/mp.14501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhiwen Liang
- Cancer Center Union HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430022 Hubei China
| | - Qichao Zhou
- Manteia Technologies Co., Ltd. Xiamen Fujian China
| | - Jing Yang
- Cancer Center Union HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430022 Hubei China
| | - Lian Zhang
- Cancer Center Union HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430022 Hubei China
| | - Dong Liu
- Varian Medical Systems, Inc. Beijing China
| | - Biao Tu
- Cancer Center Union HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430022 Hubei China
| | - Sheng Zhang
- Cancer Center Union HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430022 Hubei China
| |
Collapse
|
19
|
Sonier M, Vangenderen B, Visagie D, Appeldoorn C, Chiang T(A, Mathew L, Reinsberg S, Rose J, Ramaseshan R. Commissioning a four‐dimensional Computed Tomography Simulator for minimum target size due to motion in the Anterior–Posterior direction: a procedure and treatment planning recommendations. J Appl Clin Med Phys 2020; 21:116-123. [PMID: 32667132 PMCID: PMC7497911 DOI: 10.1002/acm2.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 06/21/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work is to develop a procedure for commissioning four‐dimensional computed tomography (4DCT) algorithms for minimum target reconstruction size, to quantify the effect of anterior–posterior (AP) motion artifacts on known object reconstruction for periodic and irregular breathing patterns, and to provide treatment planning recommendations for target sizes below a minimum threshold. A mechanical platform enabled AP motion of a rod and lung phantom during 4DCT acquisition. Static, artifact‐free scans of the phantoms were first acquired. AP sinusoidal and patient breathing motion was applied to obtain 4DCT images. 4DCT reconstruction artifacts were assessed by measuring the apparent width and angle of the rod. Comparison of known tumor diameters and volumes between the static image parameters with the 4DCT image sets was used to quantify the extent of AP reconstruction artifact and contour deformation. Examination of the rod width, under sinusoidal motion, found it was best represented during the inhale and exhale phases for all periods and ranges of motion. From the gradient phases, the apparent width of the rod decreased with increasing amplitude and decreasing period. The rod angle appeared larger on the reconstructed images due to the presence of motion artifact. The apparent diameters of the spherical tumors on the gradient phases were larger/equivalent than the true values in the AP/LR direction, respectively, while the exhale phase consistently displayed the spheres at the approximately correct diameter. The Eclipse calculated diameter matched closely with the true diameter on the exhale phase and was found to be larger on the inhale, MIP, and Avg scans. The procedure detailed here may be used during the acceptance and commissioning period of a computed tomography simulator or retroactively when implementing a SBRT program to determine the minimum target size that can be reliably reconstructed.
Collapse
Affiliation(s)
- Marcus Sonier
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
- Department of Physics University of British Columbia Vancouver BC Canada
| | - Brandon Vangenderen
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Dallas Visagie
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Cameron Appeldoorn
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | | | - Lindsay Mathew
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Stefan Reinsberg
- Department of Physics University of British Columbia Vancouver BC Canada
| | - Jim Rose
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
| | - Ramani Ramaseshan
- Department of Medical Physics BC Cancer –Abbotsford Centre Abbotsford BC Canada
- Department of Physics University of British Columbia Vancouver BC Canada
| |
Collapse
|
20
|
Rabe M, Thieke C, Düsberg M, Neppl S, Gerum S, Reiner M, Nicolay NH, Schlemmer H, Debus J, Dinkel J, Landry G, Parodi K, Belka C, Kurz C, Kamp F. Real‐time 4DMRI‐based internal target volume definition for moving lung tumors. Med Phys 2020; 47:1431-1442. [DOI: 10.1002/mp.14023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| | - Christian Thieke
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| | - Mathias Düsberg
- Department of Radiation Oncology Klinikum rechts der Isar, Technical University Munich 81675 Germany
| | - Sebastian Neppl
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| | - Sabine Gerum
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| | - Michael Reiner
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| | | | | | - Jürgen Debus
- Department of Radiation Oncology University Hospital of Heidelberg Heidelberg 69120 Germany
- Heidelberg Institute of Radiation Oncology (HIRO) Heidelberg 69120 Germany
| | - Julien Dinkel
- Department of Radiology University Hospital, LMU Munich Munich 81377 Germany
| | - Guillaume Landry
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
- Department of Medical Physics Ludwig‐Maximilians‐Universität München (LMU Munich) Garching 85748 Germany
| | - Katia Parodi
- Department of Medical Physics Ludwig‐Maximilians‐Universität München (LMU Munich) Garching 85748 Germany
| | - Claus Belka
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
- German Cancer Consortium (DKTK) Munich 81377 Germany
| | - Christopher Kurz
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
- Department of Medical Physics Ludwig‐Maximilians‐Universität München (LMU Munich) Garching 85748 Germany
| | - Florian Kamp
- Department of Radiation Oncology University Hospital, LMU Munich Munich 81377 Germany
| |
Collapse
|
21
|
Yoshimura T, Shimizu S, Hashimoto T, Nishioka K, Katoh N, Inoue T, Taguchi H, Yasuda K, Matsuura T, Takao S, Tamura M, Ito YM, Matsuo Y, Tamura H, Horita K, Umegaki K, Shirato H. Analysis of treatment process time for real-time-image gated-spot-scanning proton-beam therapy (RGPT) system. J Appl Clin Med Phys 2019; 21:38-49. [PMID: 31886616 PMCID: PMC7020995 DOI: 10.1002/acm2.12804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/27/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
We developed a synchrotron‐based real‐time‐image gated‐spot‐scanning proton‐beam therapy (RGPT) system and utilized it to clinically operate on moving tumors in the liver, pancreas, lung, and prostate. When the spot‐scanning technique is linked to gating, the beam delivery time with gating can increase, compared to that without gating. We aim to clarify whether the total treatment process can be performed within approximately 30 min (the general time per session in several proton therapy facilities), even for gated‐spot‐scanning proton‐beam delivery with implanted fiducial markers. Data from 152 patients, corresponding to 201 treatment plans and 3577 sessions executed from October 2016 to June 2018, were included in this study. To estimate the treatment process time, we utilized data from proton beam delivery logs during the treatment for each patient. We retrieved data, such as the disease site, total target volume, field size at the isocenter, and the number of layers and spots for each field, from the treatment plans. We quantitatively analyzed the treatment process, which includes the patient load (or setup), bone matching, marker matching, beam delivery, patient unload, and equipment setup, using the data obtained from the log data. Among all the cases, 90 patients used the RGPT system (liver: n = 34; pancreas: n = 5; lung: n = 4; and prostate: n = 47). The mean and standard deviation (SD) of the total treatment process time for the RGPT system was 30.3 ± 7.4 min, while it was 25.9 ± 7.5 min for those without gating treatment, excluding craniospinal irradiation (CSI; head and neck: n = 16, pediatric: n = 31, others: n = 15); for CSI (n = 11) with two or three isocenters, the process time was 59.9 ± 13.9 min. Our results demonstrate that spot‐scanning proton therapy with a gating function can be achieved in approximately 30‐min time slots.
Collapse
Affiliation(s)
| | - Shinichi Shimizu
- Department of Radiation OncologyFaculty of MedicineHokkaido UniversitySapporoJapan
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
| | - Takayuki Hashimoto
- Department of Radiation MedicineFaculty of MedicineHokkaido UniversitySapporoJapan
| | - Kentaro Nishioka
- Department of Radiation OncologyFaculty of MedicineHokkaido UniversitySapporoJapan
| | - Norio Katoh
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Tetsuya Inoue
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Hiroshi Taguchi
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Koichi Yasuda
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | | | - Seishin Takao
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Masaya Tamura
- Department of Radiation OncologyHokkaido University HospitalSapporoJapan
| | - Yoichi M. Ito
- Department of Statistical Data ScienceThe Institute of Statistical MathematicsTokyoJapan
| | - Yuto Matsuo
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Hiroshi Tamura
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Kenji Horita
- Proton Beam Therapy CenterHokkaido University HospitalSapporoJapan
| | - Kikuo Umegaki
- Faculty of EngineeringHokkaido UniversitySapporoJapan
| | - Hiroki Shirato
- Global Station for Quantum Medical Science and EngineeringGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
- Department of Radiation MedicineFaculty of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
22
|
Liang Z, Yang J, Liu H, Yin Z, Zhang S, Peng H, Wu G. Real-time tumor motion monitoring and PTV margin determination in lung SBRT treatment. Acta Oncol 2019; 58:1786-1789. [PMID: 31397207 DOI: 10.1080/0284186x.2019.1648862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiwen Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyuan Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Peng
- Department of Medical Physics, Wuhan University, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Quantitative evaluation of image recognition performance of fiducial markers in real-time tumor-tracking radiation therapy. Phys Med 2019; 65:33-39. [DOI: 10.1016/j.ejmp.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/15/2022] Open
|
24
|
Miyamae Y, Akimoto M, Sasaki M, Fujimoto T, Yano S, Nakamura M. Variation in target volume and centroid position due to breath holding during four-dimensional computed tomography scanning: A phantom study. J Appl Clin Med Phys 2019; 21:11-17. [PMID: 31385421 PMCID: PMC6964747 DOI: 10.1002/acm2.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effects of respiratory motion, including unwanted breath holding, on the target volume and centroid position on four‐dimensional computed tomography (4DCT) imaging. Cine 4DCT images were reconstructed based on a time‐based sorting algorithm, and helical 4DCT images were reconstructed based on both the time‐based sorting algorithm and an amplitude‐based sorting algorithm. A spherical object 20 mm in diameter was moved according to several simulated respiratory motions, with a motion period of 4.0 s and maximum amplitude of 5 mm. The object was extracted automatically, and the target volume and centroid position in the craniocaudal direction were measured using a treatment planning system. When the respiratory motion included unwanted breath‐holding times shorter than the breathing cycle, the root mean square errors (RSME) between the reference and imaged target volumes were 18.8%, 14.0%, and 5.5% in time‐based images in cine mode, time‐based images in helical mode, and amplitude‐based images in helical mode, respectively. In helical mode, the RSME between the reference and imaged centroid position was reduced from 1.42 to 0.50 mm by changing the reconstruction method from time‐ to amplitude‐based sorting. When the respiratory motion included unwanted breath‐holding times equal to the breathing cycle, the RSME between the reference and imaged target volumes were 19.1%, 24.3%, and 15.6% in time‐based images in cine mode, time‐based images in helical mode, and amplitude‐based images in helical mode, respectively. In helical mode, the RSME between the reference and imaged centroid position was reduced from 1.61 to 0.83 mm by changing the reconstruction method from time‐ to amplitude‐based sorting. With respiratory motion including breath holding of shorter duration than the breathing cycle, the accuracies of the target volume and centroid position were improved by amplitude‐based sorting, particularly in helical 4DCT.
Collapse
Affiliation(s)
- Yuta Miyamae
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan.,Department of Radiological Technology, Radiological Diagnosis, National Cancer Center Hospital, Tokyo, Japan
| | - Mami Akimoto
- Department of Radiation Oncology, Kurashiki Central Hospital, Okayama, Japan
| | - Makoto Sasaki
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Shinsuke Yano
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Akino Y, Shiomi H, Sumida I, Isohashi F, Seo Y, Suzuki O, Tamari K, Otani K, Higashinaka N, Hayashida M, Mabuchi N, Ogawa K. Impacts of respiratory phase shifts on motion-tracking accuracy of the CyberKnife Synchrony™ Respiratory Tracking System. Med Phys 2019; 46:3757-3766. [PMID: 30943311 DOI: 10.1002/mp.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The SynchronyTM Respiratory Tracking System (SRTS) component of the CyberKnife® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale CA) enables real-time tracking of moving targets by modeling the correlation between the targets and external surrogate light-emitting diode (LED) markers placed on the patient's chest. Previous studies reported some cases with respiratory phase shifts between lung tumor and chest wall motions. In this study, the impacts of respiratory phase shifts on the motion-tracking accuracy of the SRTS were investigated. METHODS A plastic scintillator was used to detect the position of the x-ray beams. The scintillation light was recorded using a camera in a dark room. A moving phantom moved a U-shaped frame on the scintillator with a 4th power of sinusoidal functions. Three metallic markers for motion tracking and four fluorescent tapes were attached to the frame. The fluorescent tapes were used to identify phantom position and respiratory phase for each video frame. The beam positions collected, when considered relative to the phantom motion, represent the degree of tracking error. Beam position was calculated by adding error value to phantom position. Motions with respiratory phase shifts between the target and an extra stage mimicking chest wall motion were also tested for LED markers. Log files of the SRTS were analyzed to evaluate correlation errors. RESULTS When target and LED marker motions were synchronized with a respiratory cycle of 4 s, the maximum tracking errors for 90% and 95% of beam-on time were 1.0 mm and 1.2 mm, respectively. The frequency of tracking errors increased when LED marker motion phase preceded target motion. Tracking errors that corresponded to 90% beam-on time were within 2.4 mm for 5-15% of phase shifts. In contrast, the tracking errors were very large when the LED marker delayed to the target motions; the maximum errors of 90% beam-on time were 3.0, 3.8, and 7.5 mm for 5%, 10%, and 15% of phase shifts, respectively. The patterns of the tracking errors derived from the scintillation light were very similar to those of the correlation data of the SRTS derived from the log files, indicating that the tracking errors caused mainly due to the errors in modeling the correlation data. With long respiratory cycle of 6 s, the tracking errors were significantly decreased; the maximum tracking errors for 95% beam-on time were 1.6 mm and 2.2 mm for early and delayed LED motion. CONCLUSION We have investigated the motion-tracking accuracy of the CyberKnife SRTS for cases with the respiratory phase shift between the target and the LED marker. The maximum tracking errors for 90% probability were within 2.4 mm when the target delays to the LED markers. When LED marker delays, however, very large tracking errors were observed. With a long respiratory cycle, the tracking errors were greatly improved to less than 2.2 mm. Coaching slow breathing will be useful for accurate motion tracking radiotherapy.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, Suita, Osaka, 565-0871, Japan.,Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | - Hiroya Shiomi
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Osamu Suzuki
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | | | - Miori Hayashida
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | | | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Katoh N, Onishi H, Uchinami Y, Inoue T, Kuriyama K, Nishioka K, Shimizu S, Komiyama T, Miyamoto N, Shirato H. Real-Time Tumor-Tracking Radiotherapy and General Stereotactic Body Radiotherapy for Adrenal Metastasis in Patients With Oligometastasis. Technol Cancer Res Treat 2019; 17:1533033818809983. [PMID: 30407123 PMCID: PMC6259059 DOI: 10.1177/1533033818809983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Precise local radiotherapy for adrenal metastasis can prolong the useful life of patients with oligometastasis. The aim of this retrospective, 2-center study was to establish the safety and effectiveness of real-time tumor-tracking radiotherapy and general stereotactic body radiotherapy in treating patients with adrenal metastatic tumors. Materials and Methods: Thirteen lesions in 12 patients were treated with real-time tumor-tracking radiotherapy (48 Gy in 8 fractions over 2 weeks) and 8 lesions in 8 patients were treated with general stereotactic body radiotherapy (40-50 Gy in 5-8 fractions over 2 weeks or 60-70 Gy in 10 fractions over 2 weeks). Overall survival rates, local control rates, and adverse effects were analyzed. Results: The actuarial overall survival rates for all patients at 1 and 2 years were 78.5% and 45.8%, respectively, with a median follow-up of 17.5 months, and the actuarial local control rates for all tumors at 1 and 2 years were 91.7% and 53.0%, respectively, with a median follow-up of 9 months. A complete local tumor response was obtained in 3 tumors treated by real-time tumor-tracking radiotherapy (lung adenocarcinomas with diameters of 35, 40, and 60 mm). There was a statistically significant difference in the local control between the groups treated by real-time tumor-tracking radiotherapy (100% at 1 year) and general stereotactic body radiotherapy (50% at 1 year; P < .001). No late adverse reactions at Grade 2 or higher were reported for either treatment group. Conclusions: This study showed that although both treatments are safe and effective, the real-time tumor-tracking radiotherapy is more effective than general stereotactic body radiotherapy in local control for adrenal metastasis.
Collapse
Affiliation(s)
- Norio Katoh
- 1 Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan.,2 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Hiroshi Onishi
- 3 Department of Radiology, University of Yamanashi, Chuo, Japan
| | - Yusuke Uchinami
- 1 Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Tetsuya Inoue
- 1 Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan.,2 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Kengo Kuriyama
- 3 Department of Radiology, University of Yamanashi, Chuo, Japan
| | - Kentaro Nishioka
- 4 Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shinichi Shimizu
- 2 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,4 Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Naoki Miyamoto
- 5 Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroki Shirato
- 2 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,6 Department of Radiation Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
27
|
Wu VWC, Ng APL, Cheung EKW. Intrafractional motion management in external beam radiotherapy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:1071-1086. [PMID: 31476194 DOI: 10.3233/xst-180472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent advancements in radiotherapy technologies have made delivery of the highly conformal dose to the target volume possible. With the increasing popularity of delivering high dose per fraction in modern radiotherapy schemes such as in stereotactic body radiotherapy and stereotactic body ablative therapy, high degree of treatment precision is essential. In order to achieve this, we have to overcome the potential difficulties caused by patient instability due to immobilization problems; patient anxiety and random motion due to prolonged treatment time; tumor deformation and baseline shift during a treatment course. This is even challenging for patients receiving radiotherapy in the chest and abdominal regions because it is affected by the patient's respiration which inevitably leads to tumor motion. Therefore, monitoring of intrafractional motion has become increasingly important in modern radiotherapy. Major intrafractional motion management strategies including integration of respiratory motion in treatment planning; breath-hold technique; forced shallow breathing with abdominal compression; respiratory gating and dynamic real-time tumor tracking have been developed. Successful intrafractional motion management is able to reduce the planning target margin and ensures planned dose delivery to the target and organs at risk. Meanwhile, the emergency of MRI-linear accelerator has facilitated radiation-free real-time monitoring of soft tissue during treatment and could be the future modality in motion management. This review article summarizes the various approaches that deal with intrafractional target, organs or patient motion with discussion of their advantages and limitations. In addition, the potential future advancements including MRI-based tumor tracking are also discussed.
Collapse
Affiliation(s)
- Vincent W C Wu
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Amanda P L Ng
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Emily K W Cheung
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
28
|
Delineation of a Cardiac Planning Organ-At-Risk Volume Using Real-Time Magnetic Resonance Imaging for Cardiac Protection in Thoracic and Breast Radiation Therapy. Pract Radiat Oncol 2018; 9:e298-e306. [PMID: 30576844 DOI: 10.1016/j.prro.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/15/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Cardiac radiation is associated with cardiotoxicity in patients with thoracic and breast malignancies. We conducted a prospective study using cine magnetic resonance imaging (MRI) scans to evaluate heart motion. We hypothesized that cine MRI could be used to define population-based cardiac planning organ-at-risk volumes (PRV). METHODS AND MATERIALS A total of 16 real-time acquisitions were obtained per subject on a 1.5 Tesla MRI (Philips Ingenia). Planar cine MRI was performed in 4 sequential sagittal and coronal planes at free-breathing (FB) and deep-inspiratory breath hold (DIBH). In-plane cardiac motion was assessed using a scale-invariant feature transformation-based algorithm. Subject-specific pixel motion ranges were defined in anteroposterior (AP), left-right (LR), and superoinferior (SI) planes. Averages of the 98% and 67% of the maximum ranges of pixel displacement were defined by subject, then averaged across the cohort to calculate PRV expansions at FB and DIBH. RESULTS Data from 20 subjects with a total of 3120 image frames collected per subject in coronal and sagittal planes at DIBH and FB, and 62,400 total frames were analyzed. Cohort averages of 98% of the maximum cardiac motion ranges comprised margin expansions of 12.5 ± 1.1 mm SI, 5.8 ± 1.2 mm AP, and 6.6 ± 1.0 mm LR at FB and 6.7 ± 1.5 mm SI, 4.7 ± 1.3 mm AP, and 5.3 ± 1.3 mm LR at DIBH. Margins for 67% of the maximum range comprised 7.7 ± 0.7 mm SI, 3.2 ± 0.6 mm AP, and 3.7 ± 0.6 mm LR at FB and 4.1 ± 0.9 mm SI, 2.7 ± 0.8 mm AP, and 3.2 ± 0.8 mm LR at DIBH. Subsequently, these margins were simplified to form PRVs for treatment planning. CONCLUSIONS We implemented scale-invariant feature transformation-based motion tracking for analysis of the cardiac cine MRI scans to quantify motion and create cohort-based cardiac PRVs to improve cardioprotection in breast and thoracic radiation.
Collapse
|
29
|
Graeff C, Bert C. Noninvasive cardiac arrhythmia ablation with particle beams. Med Phys 2018; 45:e1024-e1035. [DOI: 10.1002/mp.12595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Christian Graeff
- GSI Helmholzzentrum für Schwerionenforschung GmbH 64291 Darmstadt Germany
| | - Christoph Bert
- Department of Radiation Oncology Universitätsklinikum Erlangen Friedrich‐Alexander‐Universität 91054 Erlangen‐Nürnberg Germany
| |
Collapse
|
30
|
Hazelaar C, van der Weide L, Mostafavi H, Slotman BJ, Verbakel WFAR, Dahele M. Feasibility of markerless 3D position monitoring of the central airways using kilovoltage projection images: Managing the risks of central lung stereotactic radiotherapy. Radiother Oncol 2018; 129:234-241. [PMID: 30172457 DOI: 10.1016/j.radonc.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Central lung stereotactic body radiotherapy (SBRT) can cause proximal bronchial tree (PBT) toxicity. Information on PBT position relative to the high-dose could aid risk management. We investigated template matching + triangulation for high-frequency markerless 3D PBT position monitoring. MATERIALS AND METHODS Kilovoltage projections of a moving phantom (full-fan cone-beam CT [CBCT, 15 frames/second] without MV irradiation: 889 images/dataset + CBCT and 7 frames/second fluoroscopy with MV irradiation) and ten patients undergoing free-breathing stereotactic/hypofractionated lung irradiation (full-fan CBCT without MV irradiation, 470-500 images/dataset) were retrospectively analyzed. 2D PBT reference templates (1 filtered digitally reconstructed radiograph/°) were created from planning CT data. Using normalized cross-correlation, templates were matched to projection images for 2D position. Multiple registrations were triangulated for 3D position. RESULTS For the phantom, 2D right/left PBT position could be determined in 86.6/75.1% of the CBCT dataset without MV irradiation, and 3D position (excluding first 20° due to the minimum triangulation angle) in 84.7/72.7%. With MV irradiation, this was up to 2% less. For right/left PBT, root-mean-square errors of measured versus "known" position were 0.5/0.8, 0.4-0.5/0.7, and 0.4/0.5-0.6 mm for left-right, superior-inferior, and anterior-posterior directions, respectively. 2D PBT position was determined in, on average, 89.8% of each patient dataset (range: 79.4-99.2%), and 3D position (excluding first 20°) in 85.1% (range: 67.9-99.6%). Motion was mainly superior-inferior (range: 4.5-13.6 mm, average: 8.5 mm). CONCLUSIONS High-frequency 3D PBT position verification during free-breathing is technically feasible using markerless template matching + triangulation of kilovoltage projection images acquired during gantry rotation. Applications include organ-at-risk position monitoring during central lung SBRT.
Collapse
Affiliation(s)
- Colien Hazelaar
- Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - Lineke van der Weide
- Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - Max Dahele
- Department of Radiation Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Gaetani Liseo F, Lautenschlaeger T, Ewing M, Langer M. The dosimetric differences in calculating lung SBRT plans on different image data sets: Comparison of the free breathing scan to both the average intensity projection scan and to the sum of calculations on each respiratory phase of the 4DCT scan. Med Dosim 2018; 44:291-299. [PMID: 30097226 DOI: 10.1016/j.meddos.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/22/2018] [Indexed: 11/15/2022]
Abstract
The purpose of this study is to evaluate the dosimetric differences to the lung internal target volume (ITV) in stereotactic body radiation therapy (SBRT) when calculated on the free breathing (FB) scan in comparison to calculations on the average intensity projection (AIP) scan as well as the sum of dose calculated on each of the treated respiratory phases. The clinical treatment plan data for 16 SBRT lung patients were retrospectively chosen for this study, 5 of which were 30% to 70% respiratory phase gated. All patients had ITV contours and fixed monitor units from the treatment approved plan copied over to each scan on which calculations were to be made. The results of this study yielded 6 out of 16 patients with greater than or equal to 2% difference in ITV maximum dose (D0) and 2 of 16 patients with greater than or equal to 2% difference in ITV minimum dose (D100). The range of ITV dose differences for these 8 patients was 2% to 4.7% with no patients exceeding a 5% difference in D0 or D100. None of the patients had greater than or equal to 2% difference in ITV mean dose (Dmean). Sixty-three percent of patients with greater than 2% ITV dose difference in any of the categories reviewed were those patients with greater than 1 cm gross tumor motion. This study concluded that in order to reduce uncertainty in dose to the ITV, tumor motion should be assessed at simulation and limited to below 1 cm in any direction if possible.
Collapse
Affiliation(s)
- Francesco Gaetani Liseo
- Medical Dosimetry Program at Indiana University Purdue University Indianapolis, Indiana University Cancer Center 535 Barnhill Drive, Indianapolis, IN 46202, USA.
| | - Tim Lautenschlaeger
- Medical Dosimetry Program at Indiana University Purdue University Indianapolis, Indiana University Cancer Center 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Marvene Ewing
- Medical Dosimetry Program at Indiana University Purdue University Indianapolis, Indiana University Cancer Center 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Mark Langer
- Medical Dosimetry Program at Indiana University Purdue University Indianapolis, Indiana University Cancer Center 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Valenti M, Campanelli A, Parisotto M, Maggi S. Cine 4DCT imaging artifacts: Quantification and correlations with scanning parameters and target kinetics. Phys Med 2018; 52:133-142. [DOI: 10.1016/j.ejmp.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/25/2022] Open
|
33
|
Quiñones DR, Soler-Egea D, González-Pérez V, Reibke J, Simarro-Mondejar E, Pérez-Feito R, García-Manrique JA, Crispín V, Moratal D. Open Source 3D Printed Lung Tumor Movement Simulator for Radiotherapy Quality Assurance. MATERIALS 2018; 11:ma11081317. [PMID: 30061503 PMCID: PMC6117797 DOI: 10.3390/ma11081317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
In OECD (Organization for Economic Co-operation and Development) countries, cancer is one of the main causes of death, lung cancer being one of the most aggressive. There are several techniques for the treatment of lung cancer, among which radiotherapy is one of the most effective and least invasive for the patient. However, it has associated difficulties due to the moving target tumor. It is possible to reduce the side effects of radiotherapy by effectively tracking a tumor and reducing target irradiation margins. This paper presents a custom electromechanical system that follows the movement of a lung tumor. For this purpose, a hysteresis loop of human lung movement during breathing was studied to obtain its characteristic movement equation. The system is controlled by an Arduino, steppers motors and a customized 3D printed mechanism to follow the characteristic human breathing, obtaining an accurate trajectory. The developed device helps the verification of individualized radiation treatment plans and permits the improvement of radiotherapy quality assurance procedures.
Collapse
Affiliation(s)
- Darío R Quiñones
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - David Soler-Egea
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Víctor González-Pérez
- Department of Radiophysics, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain.
| | - Johanna Reibke
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Elena Simarro-Mondejar
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Ricardo Pérez-Feito
- Thermodynamics Department, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Juan A García-Manrique
- Institute of Design for Manufacturing and Automated Production, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Vicente Crispín
- Department of Radiophysics, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain.
| | - David Moratal
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
34
|
Kashani R, Olsen JR. Magnetic Resonance Imaging for Target Delineation and Daily Treatment Modification. Semin Radiat Oncol 2018; 28:178-184. [DOI: 10.1016/j.semradonc.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Li Q, Tong Y, Yin Y, Cheng P, Gong G. Definition of the margin of major coronary artery bifurcations during radiotherapy with electrocardiograph-gated 4D-CT. Phys Med 2018; 49:90-94. [PMID: 29866348 DOI: 10.1016/j.ejmp.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022] Open
Abstract
PURPOSE The aim was to measure the cardiac motion-induced displacements of major coronary artery bifurcations utilizing electrocardiography (ECG)-gated four-dimensional computed tomography (4D-CT) and to determine the margin of coronary artery bifurcations. METHODS Thirty-seven female patients who underwent retrospective ECG-gated 4D-CT in inspiratory breath hold (IBH) were enrolled. The left main coronary artery bifurcation (LM), the obtuse marginal branch bifurcation (OM), the first diagonal branch bifurcation (D1), the second diagonal branch bifurcation (D2), the caudal portion of the left anterior descending branch (APX), the first right ventricular artery bifurcation (V) and the acute marginal branch bifurcation (AM) were contoured. The center of the contour of the coronary arterial bifurcations at end systole was defined as the standard, and the margin were then calculated. RESULTS The margin in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) coordinates were as follows: LM 3, 3, and 3 mm; D1 6, 3, and 3 mm; D2 3, 3, and 3 mm; APX 4, 4, and 4 mm; OM 4, 6, and 5 mm; V 6, 8, and 7 mm; and AM 6, 8, and 7 mm, respectively. CONCLUSION Coronary artery bifurcations should be considered a separate organ at risk (OAR), and different margin should be provided due to the differences resulting from motion displacement. The maximum margin in the LR, CC, and AP coordinates of left coronary artery bifurcations were 6, 6, and 5 mm, and those of the right coronary artery bifurcations were 6, 8, and 7 mm, respectively.
Collapse
Affiliation(s)
- Qian Li
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China; School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Ying Tong
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China; School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yong Yin
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China
| | - Pinjing Cheng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Guanzhong Gong
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China.
| |
Collapse
|
36
|
Hudson A, Chan C, Woolf D, McWilliam A, Hiley C, O'Connor J, Bayman N, Blackhall F, Faivre-Finn C. Is heterogeneity in stage 3 non-small cell lung cancer obscuring the potential benefits of dose-escalated concurrent chemo-radiotherapy in clinical trials? Lung Cancer 2018; 118:139-147. [PMID: 29571993 DOI: 10.1016/j.lungcan.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
The current standard of care for the management of inoperable stage 3 non-small cell lung cancer (NSCLC) is concurrent chemoradiotherapy (cCRT) using radiotherapy dose-fractionation and chemotherapy regimens that were established 3 decades ago. In an attempt to improve the chances of long-term control from cCRT, dose-escalation of the radiotherapy dose was assessed in the RTOG 0617 randomised control study comparing the standard 60 Gy in 30 fractions with a high-dose arm receiving 74 Gy in 37 fractions. Following the publication of this trial the thoracic oncology community were surprised to learn that there was worse survival in the dose-escalated arm and that for now the standard of care must remain with the lower dose. In this article we review the RTOG 0617 paper with subsequent analyses and studies to explore why the use of dose-escalated cCRT in stage 3 NSCLC has not shown the benefits that were expected. The overarching theme of this opinion piece is how heterogeneity between stage 3 NSCLC cases in terms of patient, tumour, and clinical factors may obscure the potential benefits of dose-escalation by causing imbalances in the arms of studies such as RTOG 0617. We also examine recent advances in the staging, management, and technological delivery of radiotherapy in NSCLC and how these may be employed to optimise cCRT trials in the future and ensure that any potential benefits of dose-escalation can be detected.
Collapse
Affiliation(s)
- Andrew Hudson
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Clara Chan
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - David Woolf
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Alan McWilliam
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Crispin Hiley
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK; Division of Cancer Studies, King's College London, London, UK
| | - James O'Connor
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Neil Bayman
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Fiona Blackhall
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Corinne Faivre-Finn
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
37
|
Ricotti R, Seregni M, Ciardo D, Vigorito S, Rondi E, Piperno G, Ferrari A, Zerella MA, Arculeo S, Francia CM, Sibio D, Cattani F, De Marinis F, Spaggiari L, Orecchia R, Riboldi M, Baroni G, Jereczek-Fossa BA. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment. Med Phys 2018; 45:1360-1368. [DOI: 10.1002/mp.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/26/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rosalinda Ricotti
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Matteo Seregni
- Dipartimento di Elettronica Informazione e Bioingegneria; Politecnico di Milano; Milan Italy
| | - Delia Ciardo
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Sabrina Vigorito
- Unit of Medical Physics; European Institute of Oncology; Milan Italy
| | - Elena Rondi
- Unit of Medical Physics; European Institute of Oncology; Milan Italy
| | - Gaia Piperno
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Annamaria Ferrari
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Maria Alessia Zerella
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Simona Arculeo
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Claudia Maria Francia
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Daniela Sibio
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
| | - Federica Cattani
- Unit of Medical Physics; European Institute of Oncology; Milan Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology; European Institute of Oncology; Milan Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
- Division of Thoracic Oncology; European Institute of Oncology; Milan Italy
| | - Roberto Orecchia
- Scientific Directorate; European Institute of Oncology; Milan Italy
- Department of Medical Imaging and Radiation Sciences; European Institute of Oncology; Milan Italy
| | - Marco Riboldi
- Dipartimento di Elettronica Informazione e Bioingegneria; Politecnico di Milano; Milan Italy
| | - Guido Baroni
- Dipartimento di Elettronica Informazione e Bioingegneria; Politecnico di Milano; Milan Italy
- Bioengineering Unit; Centro Nazionale di Adroterapia Oncologica (CNAO); Pavia Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology; European Institute of Oncology; Milan Italy
- Department of Oncology and Hemato-oncology; University of Milan; Milan Italy
| |
Collapse
|
38
|
Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy. Strahlenther Onkol 2018; 194:570-579. [PMID: 29450592 DOI: 10.1007/s00066-018-1264-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. METHODS For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. RESULTS Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. CONCLUSION This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
Collapse
|
39
|
Tseng YD, Wootton L, Nyflot M, Apisarnthanarax S, Rengan R, Bloch C, Sandison G, St. James S. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion? ACTA ACUST UNITED AC 2018; 63:02NT03. [DOI: 10.1088/1361-6560/aaa44e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Mancosu P, Nisbet A, Jornet N. Editorial: The role of medical physics in lung SBRT. Phys Med 2018; 45:205-206. [PMID: 29325801 DOI: 10.1016/j.ejmp.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/24/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) has become a standard treatment for non-operable patients with early stage non-small cell lung cancer (NSCLC). In this context, medical physics community has largely helped in the starting and the growth of this technique. In fact, SBRT requires the convergence of many different features for delivering large doses in few fractions to small moving target in an heterogeneous medium. The special issue of last month, was focused on the different physics challenges in lung SBRT. Eleven reviews were presented, covering: imaging for treatment planning and for treatment assessment; dosimetry and planning optimization; treatment delivery possibilities; image guidance during delivery; radiobiology. The current cutting edge role of medical physics was reported. We aimed to give a complete overview of different aspects of lung SBRT that would be of interest to both physicists implementing this technique in their institutions and more experienced physicists that would be inspired to start research projects in areas that still need further developments. We also feel that the role that medical physicists have played in the development and safe implementation of SBRT, particularly in lung region, can be taken as an excellent example to be translated to other areas, not only in Radiation Oncology but also in other health sectors.
Collapse
Affiliation(s)
- Pietro Mancosu
- Medical Physics service, Radiotherapy department, Humanitas Cancer Center, Rozzano-Milan, Italy.
| | - Andrew Nisbet
- Department of Medical Physics, Royal Surrey County Hospital, United Kingdom; Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, United Kingdom
| | - Núria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital Sant Pau, Barcelona, Spain
| |
Collapse
|
41
|
Dechambre D, Janvary LZ, Jansen N, Berkovic P, Mievis C, Baart V, Cucchiaro S, Coucke AP, Gulyban A. Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT. Phys Med 2017; 45:88-92. [PMID: 29472096 DOI: 10.1016/j.ejmp.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Accepted: 12/03/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The use of Monte Carlo (MC) dose calculation algorithm for lung patients treated with stereotactic body radiotherapy (SBRT) can be challenging. Prescription in low density media and time-consuming optimization conducted CyberKnife centers to propose an equivalent path length (EPL)-to-MC re-prescription method based on GTV median dose. Unknown at the time of planning, GTV D50% practical application remains difficult. The current study aims at creating a re-prescription predictive model in order to limit conflicting dose value during EPL optimization. MATERIAL AND METHODS 129 patients planned with EPL algorithm were recalculated with MC. Relative GTV_D50% discrepancies were assessed and influencing parameters identified using wrapper feature selection. Based on best descriptive parameters, predictive nomogram was built from multivariate linear regression. EPL-to-MC OARs near max-dose discrepancies were reported. RESULTS The differences in GTV_D50% (median 10%, SD: 9%) between MC and EPL were significantly (p < .001) impacted by the lesion's surface-to-volume ratio and the average relative electronic density of the GTV and the GTV's 15 mm shell. Built upon those parameters, a nomogram (R2 = 0.79, SE = 4%) predicting the GTV_D50% discrepancies was created. Furthermore EPL-to-MC OAR dose tolerance limit showed a strong linear correlation with coefficient range [0.84-0.99]. CONCLUSION Good prediction on the required re-prescription can be achieved prior planning using our nomogram. Based on strong linear correlation between EPL and MC for OARs near max-dose, further restriction on dose constraints during the EPL optimization can be warranted. This a priori knowledge eases the re-prescription process in limiting conflicting dose value.
Collapse
Affiliation(s)
- D Dechambre
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium.
| | - L Z Janvary
- Debrecen University Hospital, Department of Radiation Oncology, Debrecen, Hungary
| | - N Jansen
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| | - P Berkovic
- University of Leuven, Department of Oncology, Leuven, Belgium
| | - C Mievis
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| | - V Baart
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| | - S Cucchiaro
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| | - A P Coucke
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| | - A Gulyban
- Liege University Hospital, Department of Radiation Oncology, Liège, Belgium
| |
Collapse
|
42
|
Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case. Phys Med 2017; 44:157-162. [DOI: 10.1016/j.ejmp.2016.11.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022] Open
|
43
|
Arumugam S, Sidhom M, Truant D, Xing A, Udovitch M, Holloway L. Variable angle stereo imaging for rapid patient position correction in an in-house real-time position monitoring system. Phys Med 2017; 33:170-178. [PMID: 28073637 DOI: 10.1016/j.ejmp.2016.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To develop and validate a variable angle stereo image based position correction methodology in an X-ray based in-house online position monitoring system. MATERIALS AND METHODS A stereo imaging module that enables 3D position determination and couch correction of the patient based on images acquired at any arbitrary angle and arbitrary angular separation was developed and incorporated to the in-house SeedTracker real-time position monitoring system. The accuracy of the developed system was studied by imaging an anthropomorphic phantom implanted with radiopaque markers set to known offset positions from its reference position in an Elekta linear accelerator (LA) and associated XVI imaging system. The accuracy of the system was further validated using CBCT data set from 10 prostate SBRT patients. The time gains achieved with the stereo image based position correction was compared with the manual matching of seed positions in Digitally Reconstructed Radiographs (DRRs) and kV images in the Mosaiq record and verify system. RESULTS Based on phantom and patient CBCT dataset study stereo imaging module implemented in the SeedTracker shown to have an accuracy of 0.1(σ=0.5)mm in detecting the 3D position offset. The time comparison study showed that stereo image based methodology implemented in SeedTracker was a minimum of 80(4)s faster than the manual method implemented in Mosaiq R&V system with a maximum time saving of 146(6)s. CONCLUSION The variable angle stereo image based position correction method was shown to be accurate and faster than the standard manual DRR-kV image based correction approach, leading to more efficient treatment.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales, Australia; South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - Mark Sidhom
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, New South Wales, Australia
| | - Daniel Truant
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, New South Wales, Australia
| | - Aitang Xing
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales, Australia; South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Udovitch
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, New South Wales, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, New South Wales, Australia; South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Ricardi U, Badellino S, Filippi AR. What do radiation oncologists require for future advancements in lung SBRT? Phys Med 2016; 44:150-156. [PMID: 27914779 DOI: 10.1016/j.ejmp.2016.11.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) is a well established therapeutic option for patients affected with peripheral early stage non-small cell lung cancer (NSCLC), given the positive clinical evidence accumulated so far on its efficacy and safety. SBRT is regarded as the best choice for inoperable patients, and could also be offered as an alternative to surgery to selected operable patients. More recently, its use for lung metastases progressively increased, and SBRT is now regarded as a low toxic and highly effective local therapy for lung oligometastases from different primary tumors, especially colorectal cancer. Improved planning and delivery techniques have facilitated over the years its use on large and/or centrally located primary tumors, and multiple nodules. Given the successful applications and the current wide dissemination of this technique, clinicians are now faced with an increasingly complex and multi-variable decision process. Some clinically relevant factors are still uncertain, and strategies are needed to reduce the risk of both local and distant failures. Secondly, aspects related to target delineation, dose prescription, image guidance and treatment planning still need to be fully addressed; this may hamper, at least for now, the standardization of SBRT procedures through different Institutions making any kind of direct outcomes comparison difficult. We here aim to provide a perspective on the current role of lung SBRT and its critical aspects, highlighting the potential future developments.
Collapse
|
45
|
Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys 2016; 96:751-758. [DOI: 10.1016/j.ijrobp.2016.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
|