1
|
Lee US, Kim SW, Shin JB, Jeong C, Goh Y, Park MJ, Kwak J, Song SY, Cho B. Intraoperative radiotherapy IORT applicators for treatment of small skin lesions a phantom and planning study. Sci Rep 2025; 15:5499. [PMID: 39953075 PMCID: PMC11829022 DOI: 10.1038/s41598-025-89859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Radiation therapy is actively utilized for superficial lesions. External beam radiotherapy for cutaneous lesions utilizes electrons with low transmittance. Conventional electron beam therapy uses Cerrobend blocks for field shaping; however, the Intraoperative Radiotherapy (IORT) applicator offers superior dosimetric characteristics. The dosimetric parameters were measured using 4 and 6 MeV electron beams delivered by a Trilogy linear accelerator, and percent depth dose and lateral dose profiles were compared under the presence of the IORT applicator and Cerrobend block. The dose calculations under various IORT applicator conditions and planning studies were performed using Monte Carlo simulation. Treatment plans for three sites were evaluated in terms of coverage of the planning target volume, dose to the surrounding normal tissue, and beam-on time for two treatment modalities. The results of the measured and calculated dosimetric parameters correspond. Scattered electrons along the IORT applicators resulted in shorter dmax and R50 and sharper penumbras compared to the blocks. Oblique IORT applicators also maintained sharp penumbras. Treatment-plan analysis indicated significant reductions in normal tissue dose using the IORT applicator. Implementing IORT in clinical practice requires deliberation of extended beam-on times and associated patient safety protocols; however, the potential benefits regarding dose distribution warrant further optimization in clinical use.
Collapse
Affiliation(s)
- Ui-Seob Lee
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Woo Kim
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jun-Bong Shin
- Department of Radiation Oncology, Kangwon National University Hospital, Chuncheon, 24289, Gangwon-do, Republic of Korea
| | - Chiyoung Jeong
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Youngmoon Goh
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Jae Park
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jungwon Kwak
- Department of Radiation Oncology, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Feng CJ, Lin CH, Wu SW, Luo SY, Yang YR, Lee CH, Tseng SC, Lee SH, Hsu SM, Wu CH. Comparison of Monte Carlo tally techniques for dosimetry in a transmission-type x-ray tube. Biomed Phys Eng Express 2024; 10:065032. [PMID: 39288783 DOI: 10.1088/2057-1976/ad7bbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
This study discussed comparing result accuracy and time cost under different tally methods using MCNP6 for a novel transmission x-ray tube which was designed for the Auger electron yield with specific material (e.g. iodine). The assessment included photon spectrum, percent depth dose, mass-energy absorption coefficient corresponding to air and water, and figure of merit comparison. The mean energy of in-air phantom was from 41.8 keV (0 mm) to 40.9 keV (100 mm), and the mean energy of in-water phantom was from 41.41 keV (0 mm) to 45.2 keV (100 mm). The specific dose conversion factors based mass-energy absorption coefficient corresponding to different materials was established and the difference was less than 2% for the dose conversion of FMESH comparing to measurement data. FMESH had better figure of merit (FOM) than the F6 tally for the dose parameter assessment, which mean the dose calculation that focused on the superficial region could be assessed with more calculation efficiency by FMESH tally for this novel transmission x-ray tube. The results of this study could help develop treatment planning system (TPS) to quickly obtain the calculated data for phase space data establishment and heterogeneous correction under different physical condition settings.
Collapse
Affiliation(s)
- Chen-Ju Feng
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Hsiung Lin
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Physics, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Shu-Wei Wu
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yong Luo
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Ru Yang
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Hua Lee
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Shen-Hao Lee
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chinese Society of Medical Physics, Taipei, Taiwan
| | - Shih-Ming Hsu
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Chinese Society of Medical Physics, Taipei, Taiwan
| | - Chin-Hui Wu
- Department of Medical Imaging and Radiological Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Iliaskou C, Rossi G, Sachpazidis I, Boronikolas V, Gainey M, Baltas D. Evaluation of RADIANCE Monte Carlo algorithm for treatment planning in electron based Intraoperative Radiotherapy (IOERT). Z Med Phys 2024:S0939-3889(23)00149-6. [PMID: 38182457 DOI: 10.1016/j.zemedi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
PURPOSE To perform experimental as well as independent Monte Carlo (MC) evaluation of the MC algorithm implemented in RADIANCE version 4.0.8, a dedicated treatment planning system (TPS) for 3D electron dose calculations in intraoperative radiation therapy (IOERT). METHODS AND MATERIALS The MOBETRON 2000 (IntraOp Medical Corporation, Sunnyvale, CA) IOERT accelerator was employed. PDD and profiles for five cylindrical plastic applicators with 50-90 mm diameter and 0°, 30° beveling were measured in a water phantom, at nominal energies of 6, 9 and 12 MeV. Additional PDD measurements were performed for all the energies without applicator. MC modeling of the MOBETRON was performed with the user code BEAMnrc and egs_chamber of the MC simulation toolkit EGSnrc. The generated phase space files of the two 0°-bevel applicators (50 mm, 80 mm) and three energies in both RADIANCE and BEAMnrc, were used to determine PDD and profiles in various set-ups of virtual water phantoms with air and bone inhomogeneities. 3D dose distributions were also calculated in image data sets of an anthropomorphic tissue-equivalent pelvis phantom. Image acquisitions were realized with a CT scanner (Philips Big Bore CT, Netherlands). Gamma analysis was applied to quantify the deviations of the RADIANCE calculations to the measurements and EGSnrc calculations. Gamma criteria normalized to the global maximum were investigated between 2%, 2 mm and 3%, 3 mm. RESULTS RADIANCE MC calculations satisfied the gamma criteria of 3%, 3 mm with a tolerance limit of 85% passing rate compared to in- water phantom measurements, except for the dose profiles of the 30° beveled applicators. Mismatches lay in surface doses, in umbra regions and in the beveled end of the 30° applicators. A very good agreement to the EGSnrc calculations in heterogeneous media was observed. Deviations were more pronounced for the larger applicator diameter and higher electron energy. In 3D dose comparisons in the anthropomorphic phantom, gamma passing rates were higher than 96 % for both simulated applicators. CONCLUSIONS RADIANCE MC algorithm agrees within 3%, 3 mm criteria with in-water phantom measurements and EGSnrc MC dose distributions in heterogeneous media for 0°-bevel applicators. The user should be aware of missing scattering components and the 30° beveled applicators should be used with attention.
Collapse
Affiliation(s)
- Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Giulio Rossi
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Vasilios Boronikolas
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Mark Gainey
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center, Freiburg 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
4
|
Baghani HR, Robatjazi M. Evaluating the induced photon contamination by different breast IOERT shields using Monte Carlo simulation. J Appl Clin Med Phys 2023; 24:e14098. [PMID: 37461859 PMCID: PMC10647956 DOI: 10.1002/acm2.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Avoiding the underlying healthy tissue over-exposure during breast intraoperative electron radiotherapy (IOERT) is owing to the use of some dedicated radioprotection disks during patient irradiation. The originated contaminant photons from some widely used double-layered shielding disks including PMMA+Cu, PTFE+steel, and Al+Pb configurations during the breast IOERT have been evaluated through a Monte Carlo (MC) simulation approach. METHODS Produced electron beam with energies of 6, 8, 10, and 12 MeV by a validated MC model of Liac12 dedicated IOERT accelerator was used for disk irradiations. Each of above-mentioned radioprotection disks was simulated inside a water phantom, so that the upper disk surface was positioned at R90 depth of each considered electron energy. Simulations were performed by MCNPX (version 2.6.0) MC code. Then, the energy spectra of the contaminant photons at different disk surfaces (upper, middle, and lower one) and relevant contaminant dose beneath the studied disks were determined and compared. RESULTS None of studied shielding disks show significant photon contamination up to 10 MeV electron energy, so that the induced photon dose by the contaminant X-rays was lower than those observed in the disk absence under the same conditions. In return, the induced photon dose at a close distance to the lower disk surface exceeded from calculated values in the disk absence at 12 MeV electron energy. The best performance in contaminant dose reduction at the energy range of 6-10 MeV belonged to the Al+Pb disk, while the PMMA+Cu configuration showed the best performance in this regard at 12 MeV energy. CONCLUSION Finally, it can be concluded that all studied shielding disks not only don't produce considerable photon contamination but also absorb the originated X-rays from electron interactions with water at the electron energy range of 6-10 MeV. The only concern is related to 12 MeV energy where the induced photon dose exceeds the dose values in the disk absence. Nevertheless, the administered dose by contaminant photons to underlying healthy tissues remains beneath the tolerance dose level by these organs at the entire range of studied electron energies.
Collapse
Affiliation(s)
| | - Mostafa Robatjazi
- Medical Physics and Radiological Sciences DepartmentSabzevar University of Medical SciencesSabzevarIran
- Non‐communicable Disease Research CenterSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
5
|
Petoukhova A, Snijder R, Vissers T, Ceha H, Struikmans H. In vivodosimetry in cancer patients undergoing intraoperative radiation therapy. Phys Med Biol 2023; 68:18TR01. [PMID: 37607566 DOI: 10.1088/1361-6560/acf2e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
In vivodosimetry (IVD) is an important tool in external beam radiotherapy (EBRT) to detect major errors by assessing differences between expected and delivered dose and to record the received dose by individual patients. Also, in intraoperative radiation therapy (IORT), IVD is highly relevant to register the delivered dose. This is especially relevant in low-risk breast cancer patients since a high dose of IORT is delivered in a single fraction. In contrast to EBRT, online treatment planning based on intraoperative imaging is only under development for IORT. Up to date, two commercial treatment planning systems proposed intraoperative ultrasound or in-room cone-beam CT for real-time IORT planning. This makes IVD even more important because of the possibility for real-time treatment adaptation. Here, we summarize recent developments and applications of IVD methods for IORT in clinical practice, highlighting important contributions and identifying specific challenges such as a treatment planning system for IORT. HDR brachytherapy as a delivery technique was not considered. We add IVD for ultrahigh dose rate (FLASH) radiotherapy that promises to improve the treatment efficacy, when compared to conventional radiotherapy by limiting the rate of toxicity while maintaining similar tumour control probabilities. To date, FLASH IORT is not yet in clinical use.
Collapse
Affiliation(s)
- Anna Petoukhova
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Roland Snijder
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Thomas Vissers
- Haaglanden Medical Centre , Medical Library, Leidschendam, The Netherlands
| | - Heleen Ceha
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| | - Henk Struikmans
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| |
Collapse
|
6
|
Lazarus GL, van Eeden D, du Plessis FCP. Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon 2022; 8:e10682. [PMID: 36185136 PMCID: PMC9519483 DOI: 10.1016/j.heliyon.2022.e10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
In Intra-Operative Radiation Therapy (IORT) the tumour site is surgically exposed and normal tissue located around the tumour may be avoided. Electron applicators would require large surgical incisions; therefore, the preferred mechanism for beam collimation is the IORT cone system. FLASH radiotherapy (FLASH-RT) involves the treatment of tumours at ultra-high dose rates and the IORT cone system can also be used. This study validates the Monte Carlo-based calculations for these small electron beams to accurately determine the dose characteristics of each possible cone-energy combination as well as custom-built alloy cutouts attached to the end of the IORT cone. This will contribute to accurate dose distribution and output factor calculations that are essential to all radiation therapy treatments. A Monte Carlo (MC) model was modelled for electron beams produced by a Siemens Primus LINAC and the IORT cones. The accelerator was built with the component modules available in the BEAMnrc code. The phase-space file generated by the BEAM simulation was used as the source input for the subsequent DOSXYZnrc simulations. Percentage Depth Dose (PDD) data and profiles were extracted from the dose distributions obtained with the DOSXYZnrc simulations. These beam characteristics were compared with measured data for 6, 12, and 18 MeV electron beams for the IORT open cones of diameters 19, 45, and 64 mm and irregularly shaped cutouts. The MC simulations could replicate electron beams within a criterion of 3%/3 mm. Applicator factors were within 0.7%, and cone factors showed good agreement, except for the 9 mm cone size. Based on the successful comparisons between measurement and MC-calculated dose distributions, output factors for the open cones and for small irregularly shaped IORT beams, it may be concluded that the Monte Carlo based dose calculation could replicate electron beams used for IORT and FLASH-IORT.
Collapse
Affiliation(s)
- Graeme L. Lazarus
- University of Kwazulu-Natal, School of Clinical Medicine, College of Health Sciences, Durban, 4013, South Africa
| | - Déte van Eeden
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Frederik CP. du Plessis
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
7
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
8
|
Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers (Basel) 2022; 14:cancers14143532. [PMID: 35884591 PMCID: PMC9319593 DOI: 10.3390/cancers14143532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
As opposed to external beam radiation therapy (EBRT), treatment planning systems (TPS) dedicated to intraoperative radiation therapy (IORT) were not subject to radical modifications in the last two decades. However, new treatment regimens such as ultrahigh dose rates and combination with multiple treatment modalities, as well as the prospected availability of dedicated in-room imaging, call for important new features in the next generation of treatment planning systems in IORT. Dosimetric accuracy should be guaranteed by means of advanced dose calculation algorithms, capable of modelling complex scattering phenomena and accounting for the non-tissue equivalent materials used to shape and compensate electron beams. Kilovoltage X-ray based IORT also presents special needs, including the correct description of extremely steep dose gradients and the accurate simulation of applicators. TPSs dedicated to IORT should also allow real-time imaging to be used for treatment adaptation at the time of irradiation. Other features implemented in TPSs should include deformable registration and capability of radiobiological planning, especially if unconventional irradiation schemes are used. Finally, patient safety requires that the multiple features be integrated in a comprehensive system in order to facilitate control of the whole process.
Collapse
|
9
|
Independent validation of a dedicated commissioning software and investigation of the direction dependence of the field symmetry for the LIAC intraoperative electron radiotherapy accelerator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ma P, Li M, Chen X, Tian Y, Niu C, Feng Q, Dai J. Ultrasound-guided intraoperative electron beam radiation therapy: A phantom study. Phys Med 2020; 78:1-7. [DOI: 10.1016/j.ejmp.2020.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
|
11
|
García-Vázquez V, Calvo FA, Ledesma-Carbayo MJ, Sole CV, Calvo-Haro J, Desco M, Pascau J. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations. PLoS One 2020; 15:e0227155. [PMID: 31923183 PMCID: PMC6953834 DOI: 10.1371/journal.pone.0227155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
In intraoperative electron radiation therapy (IOERT) the energy of the electron beam is selected under the conventional assumption of water-equivalent tissues at the applicator end. However, the treatment field can deviate from the theoretic flat irradiation surface, thus altering dose profiles. This patient-based study explored the feasibility of acquiring intraoperative computed tomography (CT) studies for calculating three-dimensional dose distributions with two factors not included in the conventional assumption, namely the air gap from the applicator end to the irradiation surface and tissue heterogeneity. In addition, dose distributions under the conventional assumption and from preoperative CT studies (both also updated with intraoperative data) were calculated to explore whether there are other alternatives to intraoperative CT studies that can provide similar dose distributions. The IOERT protocol was modified to incorporate the acquisition of intraoperative CT studies before radiation delivery in six patients. Three studies were not valid to calculate dose distributions due to the presence of metal artefacts. For the remaining three cases, the average gamma pass rates between the doses calculated from intraoperative CT studies and those obtained assuming water-equivalent tissues or from preoperative CT studies were 73.4% and 74.0% respectively. The agreement increased when the air gap was included in the conventional assumption (98.1%) or in the preoperative CT images (98.4%). Therefore, this factor was the one mostly influencing the dose distributions of this study. Our experience has shown that intraoperative CT studies are not recommended when the procedure includes the use of shielding discs or surgical retractors unless metal artefacts are removed. IOERT dose distributions calculated under the conventional assumption or from preoperative CT studies may be inaccurate unless the air gap (which depends on the surface irregularities of the irradiated volume and on the applicator pose) is included in the calculations.
Collapse
Affiliation(s)
- Verónica García-Vázquez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- * E-mail: (VGV); (JP)
| | - Felipe A. Calvo
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Departamento de Oncología, Hospital General Universitario Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Comunidad de Madrid, Spain
- Clínica Universidad de Navarra, Madrid, Comunidad de Madrid, Spain
| | - María J. Ledesma-Carbayo
- Biomedical Image Technologies Laboratory (BIT), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Comunidad de Madrid, Spain
- CIBER-BBN, Madrid, Comunidad de Madrid, Spain
| | - Claudio V. Sole
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Department of Radiation Oncology, Instituto de Radiomedicina, Santiago, Región Metropolitana de Santiago, Chile
| | - José Calvo-Haro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Comunidad de Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Comunidad de Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Comunidad de Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Comunidad de Madrid, Spain
| | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Comunidad de Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Comunidad de Madrid, Spain
- * E-mail: (VGV); (JP)
| |
Collapse
|
12
|
Avanzo M, Dassie A, Chandra Acharya P, Chiovati P, Pirrone G, Avigo C, Barresi L, Dang Quoc S, Fiagbedzi E, Navarria F, Palazzari E, Bertola G, De Paoli A, Stancanello J, Sartor G. Electron radiotherapy (IOERT) for applications outside of the breast: Dosimetry and influence of tissue inhomogeneities. Phys Med 2020; 69:82-89. [PMID: 31841774 DOI: 10.1016/j.ejmp.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of study is to investigate the dosimetry of electron intraoperative radiotherapy (IOERT) of the Intraop Mobetron 2000 mobile LINAC in treatments outside of the breast. After commissioning and external validation of dosimetry, we report in vivo results of measurements for treatments outside the breast in a large patient cohort, and investigate if the presence of inhomogeneities can affect in vivo measurements. METHODS AND MATERIALS Applicator factors and profile curves were measured with a stereotactic diode. The applicators factors of the 6 cm flat and beveled applicators were also confirmed with radiochromic films, parallel-plate ion chamber and by an external audit performed with ThermoLuminescent Dosimeters (TLDs). The influence of bone on dose was investigated by using radiochromic films attached to an insert equivalent to cortical bone, immersed in the water phantom. In vivo dosimetry was performed on 126 patients treated with IOERT using metal oxide-silicon semiconductor field effect transistors (MOSFETs) placed on the tumor bed. RESULTS Relatively small differences were found among different detectors for measurements of applicator factors. In the external audit, the agreement with the TLD was mostly within ±0.2%. The largest increase of dose due to the presence of cortical bone insert was +6.0% with energy 12 MeV and 3 cm applicator. On average, in vivo dose was significantly (+3.1%) larger than prescribed dose. CONCLUSION IOERT in applications outside the breast results in low discrepancies between in vivo and prescribed doses, which can be also explained with the presence of tissue inhomogeneity.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Andrea Dassie
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Paola Chiovati
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Cinzia Avigo
- Medical Physics, ULSS 1 Dolomiti- S. Martino Hospital, Medical Physics Department, Belluno, Italy
| | - Loredana Barresi
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Soai Dang Quoc
- Medicinal Supplies, Medical Physics Division, Hanoi Oncology Hospital, Hanoi, Vietnam
| | | | - Federico Navarria
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Elisa Palazzari
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giulio Bertola
- Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
13
|
Baghani HR, Robatjazi M, Mahdavi SR, Nafissi N, Akbari ME. Breast intraoperative electron radiotherapy: Image-based setup verification and in-vivo dosimetry. Phys Med 2019; 60:37-43. [PMID: 31000084 DOI: 10.1016/j.ejmp.2019.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Single fraction nature of intraoperative radiotherapy highly demands a quality assurance procedure to qualify both beam setup and treatment delivery. The aim of this study is to evaluate the treatment setup during breast intraoperative electron radiotherapy (IOERT) and in-vivo dose delivery verification. MATERIALS AND METHODS Twenty-five breast cancer patients were enrolled and setup verification for each case was performed using C-arm imaging. The received dose by surface and distal end of target was measured by EBT2 film. The significance level of difference between obtained dosimetry results and predicted ones was evaluated by the T statistical test. RESULTS Acquired C-arm images in two different oblique views revealed any misalignment between the applicator and shielding disk. The mean difference between the measured surface dose and expected one was 1.8% ± 1.2 (p = 0.983) while a great disagreement, 11.1% ± 1.5 (p < 0.001), was observed between the measured distal end dose and expected one. This discrepancy is mainly correlated to the backscattering effect from the shielding disk. Target depth nonuniformities can also contribute to this remarkable difference. CONCLUSION Employing the intraoperative imaging for IOERT setup verification can considerably improve the treatment quality. Therefore, it is suggested to implement this imaging procedure as a part of treatment quality assurance. Favorable agreement between the predicted and measured surface doses demonstrates the applicability of EBT2 film for dose delivery verification. The results of in-vivo dosimetry showed that the electron backscattering from employed shielding disk can affect the received dose by the distal end of tumor bed.
Collapse
Affiliation(s)
- Hamid Reza Baghani
- Physics Department, Hakim Sabzevari University, Shohada-e Hastei Blvd, P.O. 9617976487, Sabzevar, Iran.
| | - Mostafa Robatjazi
- Department of Medical Physics and Radiological Sciences, Sabzevar University of Medical Sciences, Shohada-e Hastei Blvd, Sabzevar University of Medical Sciences Campus, P.O. 9617913112, Sabzevar, Iran; Vasei Radiotherapy & Oncology Center, Vasei Hospital, P.O. 9617913113, Sabzevar, Iran.
| | - Seied Rabi Mahdavi
- Department of Medical Physics, Iran University of Medical Sciences. Hemmat Exp. Way, Faculty of Medicine, P.O. 14496141525, Tehran, Iran
| | - Nahid Nafissi
- Department of Breast Surgery, Iran University of Medical Sciences. Hemmat Exp. Way, Faculty of Medicine, P.O. 14496141525, Tehran, Iran
| | - Mohammad Esmail Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Shohadaye Tajrrish Hospital, Tajrish Sq., P.O. 19996 14414, Tehran, Iran
| |
Collapse
|