1
|
Islam N, Hasib KM, Mridha MF, Alfarhood S, Safran M, Bhuyan MK. Fusing global context with multiscale context for enhanced breast cancer classification. Sci Rep 2024; 14:27358. [PMID: 39521803 PMCID: PMC11550815 DOI: 10.1038/s41598-024-78363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the second most common type of cancer among women. Prompt detection of breast cancer can impede its advancement to more advanced phases, thereby elevating the probability of favorable treatment consequences. Histopathological images are commonly used for breast cancer classification due to their detailed cellular information. Existing diagnostic approaches rely on Convolutional Neural Networks (CNNs) which are limited to local context resulting in a lower classification accuracy. Therefore, we present a fusion model composed of a Vision Transformer (ViT) and custom Atrous Spatial Pyramid Pooling (ASPP) network with an attention mechanism for effectively classifying breast cancer from histopathological images. ViT enables the model to attain global features, while the ASPP network accommodates multiscale features. Fusing the features derived from the models resulted in a robust breast cancer classifier. With the help of five-stage image preprocessing technique, the proposed model achieved 100% accuracy in classifying breast cancer on the BreakHis dataset at 100X and 400X magnification factors. On 40X and 200X magnifications, the model achieved 99.25% and 98.26% classification accuracy respectively. With a commendable classification efficacy on histopathological images, the model can be considered a dependable option for proficient breast cancer classification.
Collapse
Affiliation(s)
- Niful Islam
- Department of Computer Science and Engineering, United International University, Dhaka, 1212, Bangladesh
| | - Khan Md Hasib
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Mirpur, Dhaka, 1216, Bangladesh
| | - M F Mridha
- Department of Computer Science, American International University - Bangladesh, Dhaka, 1229, Bangladesh.
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O.Box 51178, Riyadh, 11543, Saudi Arabia
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O.Box 51178, Riyadh, 11543, Saudi Arabia.
| | - M K Bhuyan
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Mylona E, Zaridis DI, Kalantzopoulos CΝ, Tachos NS, Regge D, Papanikolaou N, Tsiknakis M, Marias K, Fotiadis DI. Optimizing radiomics for prostate cancer diagnosis: feature selection strategies, machine learning classifiers, and MRI sequences. Insights Imaging 2024; 15:265. [PMID: 39495422 PMCID: PMC11535140 DOI: 10.1186/s13244-024-01783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Radiomics-based analyses encompass multiple steps, leading to ambiguity regarding the optimal approaches for enhancing model performance. This study compares the effect of several feature selection methods, machine learning (ML) classifiers, and sources of radiomic features, on models' performance for the diagnosis of clinically significant prostate cancer (csPCa) from bi-parametric MRI. METHODS Two multi-centric datasets, with 465 and 204 patients each, were used to extract 1246 radiomic features per patient and MRI sequence. Ten feature selection methods, such as Boruta, mRMRe, ReliefF, recursive feature elimination (RFE), random forest (RF) variable importance, L1-lasso, etc., four ML classifiers, namely SVM, RF, LASSO, and boosted generalized linear model (GLM), and three sets of radiomics features, derived from T2w images, ADC maps, and their combination, were used to develop predictive models of csPCa. Their performance was evaluated in a nested cross-validation and externally, using seven performance metrics. RESULTS In total, 480 models were developed. In nested cross-validation, the best model combined Boruta with Boosted GLM (AUC = 0.71, F1 = 0.76). In external validation, the best model combined L1-lasso with boosted GLM (AUC = 0.71, F1 = 0.47). Overall, Boruta, RFE, L1-lasso, and RF variable importance were the top-performing feature selection methods, while the choice of ML classifier didn't significantly affect the results. The ADC-derived features showed the highest discriminatory power with T2w-derived features being less informative, while their combination did not lead to improved performance. CONCLUSION The choice of feature selection method and the source of radiomic features have a profound effect on the models' performance for csPCa diagnosis. CRITICAL RELEVANCE STATEMENT This work may guide future radiomic research, paving the way for the development of more effective and reliable radiomic models; not only for advancing prostate cancer diagnostic strategies, but also for informing broader applications of radiomics in different medical contexts. KEY POINTS Radiomics is a growing field that can still be optimized. Feature selection method impacts radiomics models' performance more than ML algorithms. Best feature selection methods: RFE, LASSO, RF, and Boruta. ADC-derived radiomic features yield more robust models compared to T2w-derived radiomic features.
Collapse
Affiliation(s)
- Eugenia Mylona
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Dimitrios I Zaridis
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
- Biomedical Engineering Laboratory, School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Charalampos Ν Kalantzopoulos
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Nikolaos S Tachos
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Daniele Regge
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Manolis Tsiknakis
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, GR 70013, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR 71004, Heraklion, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, GR 70013, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR 71004, Heraklion, Greece
| | - Dimitrios I Fotiadis
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece.
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
3
|
Zhao Y, Li X, Zhou C, Peng H, Zheng Z, Chen J, Ding W. A review of cancer data fusion methods based on deep learning. INFORMATION FUSION 2024; 108:102361. [DOI: 10.1016/j.inffus.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Veiga-Canuto D, Fernández-Patón M, Cerdà Alberich L, Jiménez Pastor A, Gomis Maya A, Carot Sierra JM, Sangüesa Nebot C, Martínez de las Heras B, Pötschger U, Taschner-Mandl S, Neri E, Cañete A, Ladenstein R, Hero B, Alberich-Bayarri Á, Martí-Bonmatí L. Reproducibility Analysis of Radiomic Features on T2-weighted MR Images after Processing and Segmentation Alterations in Neuroblastoma Tumors. Radiol Artif Intell 2024; 6:e230208. [PMID: 38864742 PMCID: PMC11294951 DOI: 10.1148/ryai.230208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Purpose To evaluate the reproducibility of radiomics features extracted from T2-weighted MR images in patients with neuroblastoma. Materials and Methods A retrospective study included 419 patients (mean age, 29 months ± 34 [SD]; 220 male, 199 female) with neuroblastic tumors diagnosed between 2002 and 2023, within the scope of the PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers (ie, PRIMAGE) project, involving 746 T2/T2*-weighted MRI sequences at diagnosis and/or after initial chemotherapy. Images underwent processing steps (denoising, inhomogeneity bias field correction, normalization, and resampling). Tumors were automatically segmented, and 107 shape, first-order, and second-order radiomics features were extracted, considered as the reference standard. Subsequently, the previous image processing settings were modified, and volumetric masks were applied. New radiomics features were extracted and compared with the reference standard. Reproducibility was assessed using the concordance correlation coefficient (CCC); intrasubject repeatability was measured using the coefficient of variation (CoV). Results When normalization was omitted, only 5% of the radiomics features demonstrated high reproducibility. Statistical analysis revealed significant changes in the normalization and resampling processes (P < .001). Inhomogeneities removal had the least impact on radiomics (83% of parameters remained stable). Shape features remained stable after mask modifications, with a CCC greater than 0.90. Mask modifications were the most favorable changes for achieving high CCC values, with a radiomics features stability of 70%. Only 7% of second-order radiomics features showed an excellent CoV of less than 0.10. Conclusion Modifications in the T2-weighted MRI preparation process in patients with neuroblastoma resulted in changes in radiomics features, with normalization identified as the most influential factor for reproducibility. Inhomogeneities removal had the least impact on radiomics features. Keywords: Pediatrics, MR Imaging, Oncology, Radiomics, Reproducibility, Repeatability, Neuroblastic Tumors Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Safdar and Galaria in this issue.
Collapse
Affiliation(s)
- Diana Veiga-Canuto
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Matías Fernández-Patón
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Leonor Cerdà Alberich
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Ana Jiménez Pastor
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Armando Gomis Maya
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Jose Miguel Carot Sierra
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Cinta Sangüesa Nebot
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Blanca Martínez de las Heras
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Ulrike Pötschger
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Sabine Taschner-Mandl
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Emanuele Neri
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Adela Cañete
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Ruth Ladenstein
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Barbara Hero
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Ángel Alberich-Bayarri
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| | - Luis Martí-Bonmatí
- From the Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026 Valencia, Spain (D.V.C., M.F.P., L.C.A., A.G.M., L.M.B.); Área Clínica de Imagen Médica (D.V.C., C.S.N., L.M.B.) and Department of Pediatric Oncology (B.M.d.l.H., A.C.), Hospital Universitari i Politècnic La Fe, Valencia, Spain; Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain (A.J.P., A.A.B.); Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain (J.M.C.S.); St. Anna Children’s Cancer Research Institute, Vienna, Austria (U.P., S.T.M., R.L.); Division of Academic Radiology, Department of Translational Research, University of Pisa, Pisa, Italy (E.N.); and Department of Pediatric Oncology and Hematology, University Children’s Hospital of Cologne, Medical 18 Faculty, University of Cologne, Cologne, Germany (B.H.)
| |
Collapse
|
5
|
Yin X, Wang K, Wang L, Yang Z, Zhang Y, Wu P, Zhao C, Zhang J. Algorithms for classification of sequences and segmentation of prostate gland: an external validation study. Abdom Radiol (NY) 2024; 49:1275-1287. [PMID: 38436698 DOI: 10.1007/s00261-024-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The aim of the study was to externally validate two AI models for the classification of prostate mpMRI sequences and segmentation of the prostate gland on T2WI. MATERIALS AND METHODS MpMRI data from 719 patients were retrospectively collected from two hospitals, utilizing nine MR scanners from four different vendors, over the period from February 2018 to May 2022. Med3D deep learning pretrained architecture was used to perform image classification,UNet-3D was used to segment the prostate gland. The images were classified into one of nine image types by the mode. The segmentation model was validated using T2WI images. The accuracy of the segmentation was evaluated by measuring the DSC, VS,AHD.Finally,efficacy of the models was compared for different MR field strengths and sequences. RESULTS 20,551 image groups were obtained from 719 MR studies. The classification model accuracy is 99%, with a kappa of 0.932. The precision, recall, and F1 values for the nine image types had statistically significant differences, respectively (all P < 0.001). The accuracy for scanners 1.436 T, 1.5 T, and 3.0 T was 87%, 86%, and 98%, respectively (P < 0.001). For segmentation model, the median DSC was 0.942 to 0.955, the median VS was 0.974 to 0.982, and the median AHD was 5.55 to 6.49 mm,respectively.These values also had statistically significant differences for the three different magnetic field strengths (all P < 0.001). CONCLUSION The AI models for mpMRI image classification and prostate segmentation demonstrated good performance during external validation, which could enhance efficiency in prostate volume measurement and cancer detection with mpMRI. CLINICAL RELEVANCE STATEMENT These models can greatly improve the work efficiency in cancer detection, measurement of prostate volume and guided biopsies.
Collapse
Affiliation(s)
- Xuemei Yin
- Department of Medical Imaging, First Hospital of Qinhuangdao, 066000, Qinhuangdao City, Hebei Province, China
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, 100052, Beijing, China
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Yaofeng Zhang
- Beijing Smart Tree Medical Technology Co. Ltd, 100011, Beijing, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd, 100011, Beijing, China
| | - Chenglin Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Jun Zhang
- Department of Medical Imaging, First Hospital of Qinhuangdao, 066000, Qinhuangdao City, Hebei Province, China.
| |
Collapse
|
6
|
Thenier-Villa JL, Martínez-Ricarte FR, Figueroa-Vezirian M, Arikan-Abelló F. Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic Resonance Imaging, Principal Component Analysis, and Supervised and Unsupervised Machine Learning. World Neurosurg 2024; 183:e953-e962. [PMID: 38253179 DOI: 10.1016/j.wneu.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND One of the most frequent phenomena in the follow-up of glioblastoma is pseudoprogression, present in up to half of cases. The clinical usefulness of discriminating this phenomenon through magnetic resonance imaging and nuclear medicine has not yet been standardized; in this study, we used machine learning on multiparametric magnetic resonance imaging to explore discriminators of this phenomenon. METHODS For the study, 30 patients diagnosed with IDH wild-type glioblastoma operated on at both study centers in 2011-2020 were selected; 15 patients corresponded to early tumor progression and 15 patients to pseudoprogression. Using unsupervised learning, the number of clusters and tumor segmentation was recorded using gap-stat and k-means method, adjusting to voxel adjacency. In a second phase, a class prediction was carried out with a multinomial logistic regression supervised learning method; the outcome variables were the percentage of assignment, class overrepresentation, and degree of voxel adjacency. RESULTS Unsupervised learning of the tumor in its diagnosis shows up to 14 well-differentiated tumor areas. In the supervised learning phase, there is a higher percentage of assigned classes (P < 0.01), less overrepresentation of classes (P < 0.01), and greater adjacency (55% vs. 33%) in cases of true tumor progression compared with pseudoprogression. CONCLUSIONS True tumor progression preserves the multidimensional characteristics of the basal tumor at the voxel and region of interest level, resulting in a characteristic differential pattern when supervised learning is used.
Collapse
Affiliation(s)
- José Luis Thenier-Villa
- Department of Neurosurgery, University Hospital Arnau de Vilanova, Lleida, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
| | - Francisco Ramón Martínez-Ricarte
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Fuat Arikan-Abelló
- Department of Neurosurgery, University Hospital Arnau de Vilanova, Lleida, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
7
|
Rana MM, Islam MM, Talukder MA, Uddin MA, Aryal S, Alotaibi N, Alyami SA, Hasan KF, Moni MA. A robust and clinically applicable deep learning model for early detection of Alzheimer's. IET IMAGE PROCESSING 2023; 17:3959-3975. [DOI: 10.1049/ipr2.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/06/2023] [Indexed: 12/30/2024]
Abstract
AbstractAlzheimer's disease, often known as dementia, is a severe neurodegenerative disorder that causes irreversible memory loss by destroying brain cells. People die because there is no specific treatment for this disease. Alzheimer's is most common among seniors 65 years and older. However, the progress of this disease can be reduced if it can be diagnosed earlier. Recently, artificial intelligence has instilled hope in the diagnosis of Alzheimer's disease by performing sophisticated analyses on extensive patient datasets, enabling the identification of subtle patterns that may elude human experts. Researchers have investigated various deep learning and machine learning models to diagnose this disease at an early stage using image datasets. In this paper, a new Deep learning (DL) methodology is proposed, where MRI images are fed into the model after applying various pre‐processing techniques. The proposed Alzheimer's disease detection approach adopts transfer learning for multi‐class classification using brain MRIs. The MRI Images are classified into four categories: mild dementia (MD), moderate dementia (MOD), very mild dementia (VMD), and non‐dementia (ND). The model is implemented and extensive performance analysis is performed. The finding shows that the model obtains 97.31% accuracy. The model outperforms the state‐of‐the‐art models in terms of accuracy, precision, recall, and F‐score.
Collapse
Affiliation(s)
- Md Masud Rana
- Department of Computer Science and Engineering Jagannath University Dhaka Bangladesh
| | - Md Manowarul Islam
- Department of Computer Science and Engineering Jagannath University Dhaka Bangladesh
| | - Md. Alamin Talukder
- Department of Computer Science and Engineering Jagannath University Dhaka Bangladesh
| | - Md Ashraf Uddin
- School of Information Technology Deakin University Geelong Waurn Ponds Campus Australia
| | - Sunil Aryal
- School of Information Technology Deakin University Geelong Waurn Ponds Campus Australia
| | - Naif Alotaibi
- Department of Mathematics and Statistics Faculty of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Salem A. Alyami
- Department of Mathematics and Statistics Faculty of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Khondokar Fida Hasan
- School of Professional Studies University of New South Wales Canberra ACT Australia
| | - Mohammad Ali Moni
- AI and Cyber Futures Institute Charles Stuart University Bathurst NSW Australia
| |
Collapse
|
8
|
Nilsson E, Sandgren K, Grefve J, Jonsson J, Axelsson J, Lindberg AK, Söderkvist K, Karlsson CT, Widmark A, Blomqvist L, Strandberg S, Riklund K, Bergh A, Nyholm T. The grade of individual prostate cancer lesions predicted by magnetic resonance imaging and positron emission tomography. COMMUNICATIONS MEDICINE 2023; 3:164. [PMID: 37945817 PMCID: PMC10636013 DOI: 10.1038/s43856-023-00394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Multiparametric magnetic resonance imaging (mpMRI) and positron emission tomography (PET) are widely used for the management of prostate cancer (PCa). However, how these modalities complement each other in PCa risk stratification is still largely unknown. We aim to provide insights into the potential of mpMRI and PET for PCa risk stratification. METHODS We analyzed data from 55 consecutive patients with elevated prostate-specific antigen and biopsy-proven PCa enrolled in a prospective study between December 2016 and December 2019. [68Ga]PSMA-11 PET (PSMA-PET), [11C]Acetate PET (Acetate-PET) and mpMRI were co-registered with whole-mount histopathology. Lower- and higher-grade lesions were defined by International Society of Urological Pathology (ISUP) grade groups (IGG). We used PET and mpMRI data to differentiate between grades in two cases: IGG 3 vs. IGG 2 (case 1) and IGG ≥ 3 vs. IGG ≤ 2 (case 2). The performance was evaluated by receiver operating characteristic (ROC) analysis. RESULTS We find that the maximum standardized uptake value (SUVmax) for PSMA-PET achieves the highest area under the ROC curve (AUC), with AUCs of 0.72 (case 1) and 0.79 (case 2). Combining the volume transfer constant, apparent diffusion coefficient and T2-weighted images (each normalized to non-malignant prostatic tissue) results in AUCs of 0.70 (case 1) and 0.70 (case 2). Adding PSMA-SUVmax increases the AUCs by 0.09 (p < 0.01) and 0.12 (p < 0.01), respectively. CONCLUSIONS By co-registering whole-mount histopathology and in-vivo imaging we show that mpMRI and PET can distinguish between lower- and higher-grade prostate cancer, using partially discriminative cut-off values.
Collapse
Affiliation(s)
- Erik Nilsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden.
| | - Kristina Sandgren
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Josefine Grefve
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Joakim Jonsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | | | - Karin Söderkvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Sara Strandberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Kremer LE, Chapman AB, Armato SG. Magnetic resonance imaging preprocessing and radiomic features for classification of autosomal dominant polycystic kidney disease genotype. J Med Imaging (Bellingham) 2023; 10:064503. [PMID: 38156331 PMCID: PMC10752557 DOI: 10.1117/1.jmi.10.6.064503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Purpose Our study aims to investigate the impact of preprocessing on magnetic resonance imaging (MRI) radiomic features extracted from the noncystic kidney parenchyma of patients with autosomal dominant polycystic kidney disease (ADPKD) in the task of classifying PKD1 versus PKD2 genotypes, which differ with regard to cyst burden and disease outcome. Approach The effect of preprocessing on radiomic features was investigated using a single T2-weighted fat saturated (T2W-FS) MRI scan from PKD1 and PKD2 subjects (29 kidneys in total) from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease study. Radiomic feature reproducibility using the intraclass correlation coefficient (ICC) was computed across MRI normalizations (z -score, reference-tissue, and original image), gray-level discretization, and upsampling and downsampling pixel schemes. A second dataset for genotype classification from 136 subjects T2W-FS MRI images previously enrolled in the HALT Progression of Polycystic Kidney Disease study was matched for age, gender, and Mayo imaging classification class. Genotype classification was performed using a logistic regression classifier and radiomic features extracted from (1) the noncystic kidney parenchyma and (2) the entire kidney. The area under the receiver operating characteristic curve (AUC) was used to evaluate the classification performance across preprocessing methods. Results Radiomic features extracted from the noncystic kidney parenchyma were sensitive to preprocessing parameters, with varying reproducibility depending on the parameter. The percentage of features with good-to-excellent ICC scores ranged from 14% to 58%. AUC values ranged between 0.47 to 0.68 and 0.56 to 0.73 for the noncystic kidney parenchyma and entire kidney, respectively. Conclusions Reproducibility of radiomic features extracted from the noncystic kidney parenchyma was dependent on the preprocessing parameters used, and the effect on genotype classification was sensitive to preprocessing parameters. The results suggest that texture features may be indicative of genotype expression in ADPKD.
Collapse
Affiliation(s)
- Linnea E. Kremer
- The University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Arlene B. Chapman
- The University of Chicago, Department of Medicine, Chicago, Illinois, United States
| | - Samuel G. Armato
- The University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
10
|
Sugimoto K, Oita M, Kuroda M. Bayesian statistical modeling to predict observer-specific optimal windowing parameters in magnetic resonance imaging. Heliyon 2023; 9:e19038. [PMID: 37636402 PMCID: PMC10448025 DOI: 10.1016/j.heliyon.2023.e19038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Magnetic resonance (MR) images require a process known as windowing for optimizing the display conditions. However, the conventional windowing process often fails to achieve the preferred display conditions for observers due to various factors. This study proposes a novel framework for predicting the preferred windowing parameters for each observer using Bayesian statistical modeling. MR images obtained from 1000 patients were divided into training and test sets at a 7:3 ratio. The image intensity and windowing parameters were standardized using previously reported methods. Bayesian statistical modeling was utilized to predict the windowing parameters preferred by three MR imaging (MRI) operators. The performance of the proposed framework was evaluated by assessing the mean relative error (MRE), mean absolute error (MAE), and Pearson's correlation coefficient (ρ) of the test set. In addition, the naive method, which presumes that the average value of the windowing parameters for each acquisition sequence and body region in the training set is optimal, was also used for comparison. Three MRI operators and three radiologists conducted visual assessments. The mean MRE, MAE, and ρ values for the window level and width (WL/WW) in the proposed framework were 12.6 and 13.9, 42.9 and 85.4, and 0.98 and 0.98, respectively. These results outperformed those obtained using the naive method. The visual assessments revealed no significant differences between the original and predicted display conditions, indicating that the proposed framework accurately predicts individualized windowing parameters with the additional advantages of robustness and ease of use. Thus, the proposed framework can effectively predict the windowing parameters preferred by each observer.
Collapse
Affiliation(s)
- Kohei Sugimoto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
- Division of Imaging Technology, Okayama Diagnostic Imaging Center, 3-25, Daiku, 2-chome, Kita-ku, Okayama, Okayama, 700-0913, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Masahiro Kuroda
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
11
|
Jiang D, Liao J, Zhao C, Zhao X, Lin R, Yang J, Li ZC, Zhou Y, Zhu Y, Liang D, Hu Z, Wang H. Recognizing Pediatric Tuberous Sclerosis Complex Based on Multi-Contrast MRI and Deep Weighted Fusion Network. Bioengineering (Basel) 2023; 10:870. [PMID: 37508897 PMCID: PMC10375986 DOI: 10.3390/bioengineering10070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification performance. Additionally, the proposed DWF-net delivers a superior classification performance compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in diagnosing TSC children.
Collapse
Affiliation(s)
- Dian Jiang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.-C.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Cailei Zhao
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Rongbo Lin
- Department of Emergency, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Jun Yang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.-C.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhi-Cheng Li
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.-C.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yihang Zhou
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.-C.L.); (Y.Z.); (D.L.)
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong 999077, China
| | - Yanjie Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Dong Liang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.-C.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Haifeng Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
12
|
Ubaldi L, Saponaro S, Giuliano A, Talamonti C, Retico A. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Phys Med 2023; 107:102538. [PMID: 36796177 DOI: 10.1016/j.ejmp.2023.102538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE Analysis pipelines based on the computation of radiomic features on medical images are widely used exploration tools across a large variety of image modalities. This study aims to define a robust processing pipeline based on Radiomics and Machine Learning (ML) to analyze multiparametric Magnetic Resonance Imaging (MRI) data to discriminate between high-grade (HGG) and low-grade (LGG) gliomas. METHODS The dataset consists of 158 multiparametric MRI of patients with brain tumor publicly available on The Cancer Imaging Archive, preprocessed by the BraTS organization committee. Three different types of image intensity normalization algorithms were applied and 107 features were extracted for each tumor region, setting the intensity values according to different discretization levels. The predictive power of radiomic features in the LGG versus HGG categorization was evaluated by using random forest classifiers. The impact of the normalization techniques and of the different settings in the image discretization was studied in terms of the classification performances. A set of MRI-reliable features was defined selecting the features extracted according to the most appropriate normalization and discretization settings. RESULTS The results show that using MRI-reliable features improves the performance in glioma grade classification (AUC=0.93±0.05) with respect to the use of raw (AUC=0.88±0.08) and robust features (AUC=0.83±0.08), defined as those not depending on image normalization and intensity discretization. CONCLUSIONS These results confirm that image normalization and intensity discretization strongly impact the performance of ML classifiers based on radiomic features. Thus, special attention should be provided in the image preprocessing step before typical radiomic and ML analysis are carried out.
Collapse
Affiliation(s)
- Leonardo Ubaldi
- National Institute for Nuclear Physics (INFN), Firenze Division, Firenze, Italy, Firenze, Italy; Department Biomedical Experimental and Clinical Science "Mario Serio", Univeristy of Firenze, Firenze, Italy
| | - Sara Saponaro
- University of Pisa, Pisa, Italy; National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | | | - Cinzia Talamonti
- National Institute for Nuclear Physics (INFN), Firenze Division, Firenze, Italy, Firenze, Italy; Department Biomedical Experimental and Clinical Science "Mario Serio", Univeristy of Firenze, Firenze, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
13
|
Radiomics-Based Machine Learning Model for Predicting Overall and Progression-Free Survival in Rare Cancer: A Case Study for Primary CNS Lymphoma Patients. Bioengineering (Basel) 2023; 10:bioengineering10030285. [PMID: 36978676 PMCID: PMC10045100 DOI: 10.3390/bioengineering10030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS), a number of patients do not respond to HD–MTX-based chemotherapy (15–25%) or experience relapse (25–50%) after an initial response. The reasons underlying this poor response to therapy are unknown. Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we investigated whether radiomics features can improve outcome prediction in patients with PCNSL. A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following radiomics feature extraction and selection, different Machine Learning (ML) models were tested for OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features, images from 23 patients scanned at three different time points were used to compute the Interclass Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and normalized images. Features extracted from Z-score normalized images were significantly more stable than those extracted from non-normalized images with an improvement of about 38% on average (p-value < 10−12). The area under the ROC curve (AUC) showed that radiomics-based prediction overcame prediction based on current clinical prognostic factors with an improvement of 23% for OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for further study on its potential role to drive treatment choice.
Collapse
|
14
|
Isaksson LJ, Pepa M, Summers P, Zaffaroni M, Vincini MG, Corrao G, Mazzola GC, Rotondi M, Lo Presti G, Raimondi S, Gandini S, Volpe S, Haron Z, Alessi S, Pricolo P, Mistretta FA, Luzzago S, Cattani F, Musi G, Cobelli OD, Cremonesi M, Orecchia R, Marvaso G, Petralia G, Jereczek-Fossa BA. Comparison of automated segmentation techniques for magnetic resonance images of the prostate. BMC Med Imaging 2023; 23:32. [PMID: 36774463 PMCID: PMC9921124 DOI: 10.1186/s12880-023-00974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/20/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs. METHODS This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy. From the T2-weighted MR images, ground truth segmentation masks were established by consensus from two expert radiologists. The prostate was then automatically contoured with six different methods: (1) a multi-atlas algorithm, (2) a proprietary algorithm in the Syngo.Via medical imaging software, and four deep learning models: (3) a V-net trained from scratch, (4) a pre-trained 2D U-net, (5) a GAN extension of the 2D U-net, and (6) a segmentation-adapted EfficientDet architecture. The resulting segmentations were compared and scored against the ground truth masks with one 70/30 and one 50/50 train/test data split. We also analyzed the association between segmentation performance and clinical variables. RESULTS The best performing method was the adapted EfficientDet (model 6), achieving a mean Dice coefficient of 0.914, a mean absolute volume difference of 5.9%, a mean surface distance (MSD) of 1.93 pixels, and a mean 95th percentile Hausdorff distance of 3.77 pixels. The deep learning models were less prone to serious errors (0.854 minimum Dice and 4.02 maximum MSD), and no significant relationship was found between segmentation performance and clinical variables. CONCLUSIONS Deep learning-based segmentation techniques can consistently achieve Dice coefficients of 0.9 or above with as few as 50 training patients, regardless of architectural archetype. The atlas-based and Syngo.via methods found in commercial clinical software performed significantly worse (0.855[Formula: see text]0.887 Dice).
Collapse
Affiliation(s)
- Lars Johannes Isaksson
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Matteo Pepa
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul Summers
- grid.15667.330000 0004 1757 0843Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Maria Giulia Vincini
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Carlo Mazzola
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Rotondi
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuliana Lo Presti
- grid.15667.330000 0004 1757 0843Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- grid.15667.330000 0004 1757 0843Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- grid.15667.330000 0004 1757 0843Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Zaharudin Haron
- grid.459841.50000 0004 6017 2701Radiology Department, National Cancer Institute, Putrajaya, Malaysia
| | - Sarah Alessi
- grid.15667.330000 0004 1757 0843Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- grid.15667.330000 0004 1757 0843Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Alessandro Mistretta
- grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ,grid.15667.330000 0004 1757 0843Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Luzzago
- grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ,grid.15667.330000 0004 1757 0843Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- grid.15667.330000 0004 1757 0843Medical Physics Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gennaro Musi
- grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ,grid.15667.330000 0004 1757 0843Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ,grid.15667.330000 0004 1757 0843Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Cremonesi
- grid.15667.330000 0004 1757 0843Radiation Research Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- grid.15667.330000 0004 1757 0843Scientific Direction, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Petralia
- grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy ,grid.15667.330000 0004 1757 0843Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- grid.15667.330000 0004 1757 0843Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Li S, Zhou B. A review of radiomics and genomics applications in cancers: the way towards precision medicine. Radiat Oncol 2022; 17:217. [PMID: 36585716 PMCID: PMC9801589 DOI: 10.1186/s13014-022-02192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
Collapse
Affiliation(s)
- Simin Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| | - Baosen Zhou
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
16
|
Alley S, Jackson E, Olivié D, Van der Heide UA, Ménard C, Kadoury S. Effect of magnetic resonance imaging pre-processing on the performance of model-based prostate tumor probability mapping. Phys Med Biol 2022; 67. [PMID: 36223780 DOI: 10.1088/1361-6560/ac99b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Objective. Multi-parametric magnetic resonance imaging (mpMRI) has become an important tool for the detection of prostate cancer in the past two decades. Despite the high sensitivity of MRI for tissue characterization, it often suffers from a lack of specificity. Several well-established pre-processing tools are publicly available for improving image quality and removing both intra- and inter-patient variability in order to increase the diagnostic accuracy of MRI. To date, most of these pre-processing tools have largely been assessed individually. In this study we present a systematic evaluation of a multi-step mpMRI pre-processing pipeline to automate tumor localization within the prostate using a previously trained model.Approach. The study was conducted on 31 treatment-naïve prostate cancer patients with a PI-RADS-v2 compliant mpMRI examination. Multiple methods were compared for each pre-processing step: (1) bias field correction, (2) normalization, and (3) deformable multi-modal registration. Optimal parameter values were estimated for each step on the basis of relevant individual metrics. Tumor localization was then carried out via a model-based approach that takes both mpMRI and prior clinical knowledge features as input. A sequential optimization approach was adopted for determining the optimal parameters and techniques in each step of the pipeline.Main results. The application of bias field correction alone increased the accuracy of tumor localization (area under the curve (AUC) = 0.77;p-value = 0.004) over unprocessed data (AUC = 0.74). Adding normalization to the pre-processing pipeline further improved diagnostic accuracy of the model to an AUC of 0.85 (p-value = 0.000 12). Multi-modal registration of apparent diffusion coefficient images to T2-weighted images improved the alignment of tumor locations in all but one patient, resulting in a slight decrease in accuracy (AUC = 0.84;p-value = 0.30).Significance. Overall, our findings suggest that the combined effect of multiple pre-processing steps with optimal values has the ability to improve the quantitative classification of prostate cancer using mpMRI. Clinical trials: NCT03378856 and NCT03367702.
Collapse
Affiliation(s)
| | - Edward Jackson
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Damien Olivié
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | - Cynthia Ménard
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, Montréal, Québec, Canada.,Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Minimising multi-centre radiomics variability through image normalisation: a pilot study. Sci Rep 2022; 12:12532. [PMID: 35869125 PMCID: PMC9307565 DOI: 10.1038/s41598-022-16375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
Collapse
|
18
|
Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219:985-995. [PMID: 35766531 PMCID: PMC10616929 DOI: 10.2214/ajr.22.27695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiomics is the process of extraction of high-throughput quantitative imaging features from medical images. These features represent noninvasive quantitative biomarkers that go beyond the traditional imaging features visible to the human eye. This article first reviews the steps of the radiomics pipeline, including image acquisition, ROI selection and image segmentation, image preprocessing, feature extraction, feature selection, and model development and application. Current evidence for the application of radiomics in abdominopelvic solid-organ cancers is then reviewed. Applications including diagnosis, subtype determination, treatment response assessment, and outcome prediction are explored within the context of hepatobiliary and pancreatic cancer, renal cell carcinoma, prostate cancer, gynecologic cancer, and adrenal masses. This literature review focuses on the strongest available evidence, including systematic reviews, meta-analyses, and large multicenter studies. Limitations of the available literature are highlighted, including marked heterogeneity in radiomics methodology, frequent use of small sample sizes with high risk of overfitting, and lack of prospective design, external validation, and standardized radiomics workflow. Thus, although studies have laid a foundation that supports continued investigation into radiomics models, stronger evidence is needed before clinical adoption.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Joint Department of Medical Imaging, Division of Abdominal Imaging, University Health Network, University of Toronto, ON, Canada
| | - Mohamed G Elbanan
- Department of Radiology, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT
| | | | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, Canada
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
| | - Bradley M Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Moawad
- Department of Diagnostic and Interventional Radiology, Mercy Catholic Medical Center, Darby, PA
| | - Serageldin Kamel
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khaled M Elsayes
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030
| |
Collapse
|
19
|
Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, Foukakis T, Tsiknakis M, Fotiadis DI, Marias K. Harmonization Strategies in Multicenter MRI-Based Radiomics. J Imaging 2022; 8:303. [PMID: 36354876 PMCID: PMC9695920 DOI: 10.3390/jimaging8110303] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.
Collapse
Affiliation(s)
- Elisavet Stamoulou
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Constantinos Spanakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Georgia Karanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Grigoris Grigoriadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology—FORTH, University Campus of Ioannina, 451 15 Ioannina, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| |
Collapse
|
20
|
Soliman MA, Kelahan LC, Magnetta M, Savas H, Agrawal R, Avery RJ, Aouad P, Liu B, Xue Y, Chae YK, Salem R, Benson AB, Yaghmai V, Velichko YS. A Framework for Harmonization of Radiomics Data for Multicenter Studies and Clinical Trials. JCO Clin Cancer Inform 2022; 6:e2200023. [PMID: 36332157 PMCID: PMC9668564 DOI: 10.1200/cci.22.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Variability in computed tomography images intrinsic to individual scanners limits the application of radiomics in clinical and research settings. The development of reproducible and generalizable radiomics-based models to assess lesions requires harmonization of data. The purpose of this study was to develop, test, and analyze the efficacy of a radiomics data harmonization model. MATERIALS AND METHODS Radiomic features from biopsy-proven untreated hepatic metastasis (N = 380) acquired from 167 unique patients with pancreatic, colon, and breast cancers were analyzed. Radiomic features from volume-match 551 samples of normal liver tissue and 188 hepatic cysts were included as references. A novel linear mixed effect model was used to identify effects associated with lesion size, tissue type, and scanner model. Six separate machine learning models were then used to test the effectiveness of radiomic feature harmonization using multivariate analysis. RESULTS Proposed model identifies and removes scanner-associated effects while preserving cancer-specific functional dependence of radiomic features on the tumor size. Data harmonization improves the performance of classification models by reducing the scanner-associated variability. For example, the multiclass logistic regression model, LogitBoost, demonstrated the improvement in sensitivity in the range from 15% to 40% for each type of liver metastasis, whereas the overall model accuracy and the kappa coefficient increased by 5% and 8% accordingly. CONCLUSION The model removed scanner-associated effects while preserving cancer-specific functional dependence of radiomic features.
Collapse
Affiliation(s)
- Moataz A.S. Soliman
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Linda C. Kelahan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Magnetta
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hatice Savas
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rishi Agrawal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ryan J. Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Pascale Aouad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Benjamin Liu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yue Xue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Young K. Chae
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Riad Salem
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Al B. Benson
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California, Irvine UCI Health, University of California Irvine, Orange, CA
| | - Yuri S. Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
21
|
Paquier Z, Chao SL, Acquisto A, Fenton C, Guiot T, Dhont J, Levillain H, Gulyban A, Bali MA, Reynaert N. Radiomics software comparison using digital phantom and patient data: IBSI-compliance does not guarantee concordance of feature values. Biomed Phys Eng Express 2022; 8. [PMID: 36049399 DOI: 10.1088/2057-1976/ac8e6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
Introduction Radiomics is a promising imaging-based tool which could enhance clinical observation and identify representative features. To avoid different interpretations, the Image Biomarker Standardisation Initiative (IBSI) imposed conditions for harmonisation. This study evaluates IBSI-compliant radiomics applications against a known benchmark and clinical datasets for agreements. Materials and methods The applications compared were RadiomiX Research Toolbox, LIFEx v7.0.0, and syngo.via Frontier Radiomics v1.2.5 (based on PyRadiomics v2.1). Basic assessment included comparing feature names and their formulas. The IBSI digital phantom was used for evaluation against reference values. For agreement evaluation (including same software but different versions), two clinical datasets were used: 27 contrast-enhanced computed tomography (CECT) of colorectal liver metastases and 39 magnetic resonance imaging (MRI) of breast cancer, including intravoxel incoherent motion and dynamic contrast-enhanced (DCE) MRI. The lower 95% confidence interval of intraclass correlation coefficient was used to define excellent agreement (>0.9). Results The three radiomics applications share 41 (3 shape, 8 intensity, 30 texture) out of 172, 84 and 110 features for RadiomiX, LIFEx and syngo.via, respectively, as well as wavelet filtering. The naming convention is, however, different between them. Syngo.via had excellent agreement with the IBSI benchmark, while LIFEx and RadiomiX showed slightly worse agreement. Excellent reproducibility was achieved for shape features only, while intensity and texture features varied considerably with the imaging type. For intensity, excellent agreement ranged from 46% for the DCE maps to 100% for CECT, while this lowered to 44% and 73% for texture features, respectively. Wavelet features produced the greatest variation between applications, with an excellent agreement for only 3% to 11% features. Conclusion Even with IBSI-compliance, the reproducibility of features between radiomics applications is not guaranteed. To evaluate variation, quality assurance of radiomics applications should be performed and repeated when updating to a new version or adding a new modality.
Collapse
Affiliation(s)
- Zelda Paquier
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Shih-Li Chao
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Anaïs Acquisto
- Radiology, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Chifra Fenton
- Radiology, Erasmus Hospital, Rte de Lennik 808, Bruxelles, 1070, BELGIUM
| | - Thomas Guiot
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Jennifer Dhont
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Hugo Levillain
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | - Akos Gulyban
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| | | | - Nick Reynaert
- Medical Physics, Institut Jules Bordet, Rue Meylemeersch 90, Bruxelles, 1070, BELGIUM
| |
Collapse
|
22
|
Isaksson LJ, Summers P, Bhalerao A, Gandini S, Raimondi S, Pepa M, Zaffaroni M, Corrao G, Mazzola GC, Rotondi M, Lo Presti G, Haron Z, Alessi S, Pricolo P, Mistretta FA, Luzzago S, Cattani F, Musi G, De Cobelli O, Cremonesi M, Orecchia R, Marvaso G, Petralia G, Jereczek-Fossa BA. Quality assurance for automatically generated contours with additional deep learning. Insights Imaging 2022; 13:137. [PMID: 35976491 PMCID: PMC9385913 DOI: 10.1186/s13244-022-01276-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Deploying an automatic segmentation model in practice should require rigorous quality assurance (QA) and continuous monitoring of the model's use and performance, particularly in high-stakes scenarios such as healthcare. Currently, however, tools to assist with QA for such models are not available to AI researchers. In this work, we build a deep learning model that estimates the quality of automatically generated contours. METHODS The model was trained to predict the segmentation quality by outputting an estimate of the Dice similarity coefficient given an image contour pair as input. Our dataset contained 60 axial T2-weighted MRI images of prostates with ground truth segmentations along with 80 automatically generated segmentation masks. The model we used was a 3D version of the EfficientDet architecture with a custom regression head. For validation, we used a fivefold cross-validation. To counteract the limitation of the small dataset, we used an extensive data augmentation scheme capable of producing virtually infinite training samples from a single ground truth label mask. In addition, we compared the results against a baseline model that only uses clinical variables for its predictions. RESULTS Our model achieved a mean absolute error of 0.020 ± 0.026 (2.2% mean percentage error) in estimating the Dice score, with a rank correlation of 0.42. Furthermore, the model managed to correctly identify incorrect segmentations (defined in terms of acceptable/unacceptable) 99.6% of the time. CONCLUSION We believe that the trained model can be used alongside automatic segmentation tools to ensure quality and thus allow intervention to prevent undesired segmentation behavior.
Collapse
Affiliation(s)
| | - Paul Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Abhir Bhalerao
- Department of Computer Science, University of Warwick, Coventry, Warwick, CV4 7AL, UK
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Carlo Mazzola
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Rotondi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuliana Lo Presti
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Zaharudin Haron
- Radiology Department, National Cancer Institute, Putrajaya, Malaysia
| | - Sara Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Stefano Luzzago
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Cui Y, Yin FF. Impact of image quality on radiomics applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Radiomics features extracted from medical images have been widely reported to be useful in the patient specific outcome modeling for variety of assessment and prediction purposes. Successful application of radiomics features as imaging biomarkers, however, is dependent on the robustness of the approach to the variation in each step of the modeling workflow. Variation in the input image quality is one of the main sources that impacts the reproducibility of radiomics analysis when a model is applied to broader range of medical imaging data. The quality of medical image is generally affected by both the scanner related factors such as image acquisition/reconstruction settings and the patient related factors such as patient motion. This article aimed to review the published literatures in this field that reported the impact of various imaging factors on the radiomics features through the change in image quality. The literatures were categorized by different imaging modalities and also tabulated based on the imaging parameters and the class of radiomics features included in the study. Strategies for image quality standardization were discussed based on the relevant literatures and recommendations for reducing the impact of image quality variation on the radiomics in multi-institutional clinical trial were summarized at the end of this article.
Collapse
|
24
|
Wu WF, Shen CW, Lai KM, Chen YJ, Lin EC, Chen CC. The Application of DTCWT on MRI-Derived Radiomics for Differentiation of Glioblastoma and Solitary Brain Metastases. J Pers Med 2022; 12:jpm12081276. [PMID: 36013225 PMCID: PMC9409920 DOI: 10.3390/jpm12081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: While magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of patients with brain tumors, it may still be challenging to differentiate glioblastoma multiforme (GBM) from solitary brain metastasis (SBM) due to their similar imaging features. This study aimed to evaluate the features extracted of dual-tree complex wavelet transform (DTCWT) from routine MRI protocol for preoperative differentiation of glioblastoma (GBM) and solitary brain metastasis (SBM). Methods: A total of 51 patients were recruited, including 27 GBM and 24 SBM patients. Their contrast-enhanced T1-weighted images (CET1WIs), T2 fluid-attenuated inversion recovery (T2FLAIR) images, diffusion-weighted images (DWIs), and apparent diffusion coefficient (ADC) images were employed in this study. The statistical features of the pre-transformed images and the decomposed images of the wavelet transform and DTCWT were utilized to distinguish between GBM and SBM. Results: The support vector machine (SVM) showed that DTCWT images have a better accuracy (82.35%), sensitivity (77.78%), specificity (87.50%), and the area under the curve of the receiver operating characteristic curve (AUC) (89.20%) than the pre-transformed and conventional wavelet transform images. By incorporating DTCWT and pre-transformed images, the accuracy (86.27%), sensitivity (81.48%), specificity (91.67%), and AUC (93.06%) were further improved. Conclusions: Our studies suggest that the features extracted from the DTCWT images can potentially improve the differentiation between GBM and SBM.
Collapse
Affiliation(s)
- Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
| | - Chia-Wei Shen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Kuan-Ming Lai
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Yi-Jen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
25
|
General Roadmap and Core Steps for the Development of AI Tools in Digital Pathology. Diagnostics (Basel) 2022; 12:diagnostics12051272. [PMID: 35626427 PMCID: PMC9141041 DOI: 10.3390/diagnostics12051272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Integrating Artificial Intelligence (AI) tools in the tissue diagnostic workflow will benefit the pathologist and, ultimately, the patient. The generation of such AI tools has two parallel yet interconnected processes, namely the definition of the pathologist’s task to be delivered in silico, and the software development requirements. In this review paper, we demystify this process, from a viewpoint that joins experienced pathologists and data scientists, by proposing a general pathway and describing the core steps to build an AI digital pathology tool. In doing so, we highlight the importance of the collaboration between AI scientists and pathologists, from the initial formulation of the hypothesis to the final, ready-to-use product.
Collapse
|
26
|
Salvi M, De Santi B, Pop B, Bosco M, Giannini V, Regge D, Molinari F, Meiburger KM. Integration of Deep Learning and Active Shape Models for More Accurate Prostate Segmentation in 3D MR Images. J Imaging 2022; 8:133. [PMID: 35621897 PMCID: PMC9146644 DOI: 10.3390/jimaging8050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Magnetic resonance imaging (MRI) has a growing role in the clinical workup of prostate cancer. However, manual three-dimensional (3D) segmentation of the prostate is a laborious and time-consuming task. In this scenario, the use of automated algorithms for prostate segmentation allows us to bypass the huge workload of physicians. In this work, we propose a fully automated hybrid approach for prostate gland segmentation in MR images using an initial segmentation of prostate volumes using a custom-made 3D deep network (VNet-T2), followed by refinement using an Active Shape Model (ASM). While the deep network focuses on three-dimensional spatial coherence of the shape, the ASM relies on local image information and this joint effort allows for improved segmentation of the organ contours. Our method is developed and tested on a dataset composed of T2-weighted (T2w) MRI prostatic volumes of 60 male patients. In the test set, the proposed method shows excellent segmentation performance, achieving a mean dice score and Hausdorff distance of 0.851 and 7.55 mm, respectively. In the future, this algorithm could serve as an enabling technology for the development of computer-aided systems for prostate cancer characterization in MR imaging.
Collapse
Affiliation(s)
- Massimo Salvi
- Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.S.); (B.P.); (F.M.)
| | - Bruno De Santi
- Multi-Modality Medical Imaging (M3I), Technical Medical Centre, University of Twente, PB217, 7500 AE Enschede, The Netherlands;
| | - Bianca Pop
- Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.S.); (B.P.); (F.M.)
| | - Martino Bosco
- Department of Pathology, Ospedale Michele e Pietro Ferrero, 12060 Verduno, Italy;
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.G.); (D.R.)
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Daniele Regge
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.G.); (D.R.)
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Filippo Molinari
- Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.S.); (B.P.); (F.M.)
| | - Kristen M. Meiburger
- Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.S.); (B.P.); (F.M.)
| |
Collapse
|
27
|
Abstract
Objectives The aim of this single-centre, observational, retrospective study is to find a correlation using Radiomics between the analysis of CT texture features of primary lesion of neuroendocrine (NET) lung cancer subtypes (typical and atypical carcinoids, large and small cell neuroendocrine carcinoma), Ki-67 index and the presence of lymph nodal mediastinal metastases. Methods Twenty-seven patients (11 males and 16 females, aged between 48 and 81 years old—average age of 70,4 years) with histological diagnosis of pulmonary NET with known Ki-67 status and metastases who have performed pre-treatment CT in our department were included. All examinations were performed with the same CT scan (Sensation 16-slice, Siemens). The study protocol was a baseline scan followed by 70 s delay acquisition after administration of intravenous contrast medium. After segmentation of primary lesions, quantitative texture parameters of first and higher orders were extracted. Statistics nonparametric tests and linear correlation tests were conducted to evaluate the relationship between different textural characteristics and tumour subtypes.
Results Statistically significant (p < 0.05) differences were seen in post-contrast enhanced CT in multiple first and higher-order extracted parameters regarding the correlation with classes of Ki-67 index values. Statistical analysis for direct acquisitions was not significant. Concerning the correlation with the presence of metastases, one histogram feature (Skewness) and one feature included in the Gray-Level Co-occurrence Matrix (ClusterShade) were significant on contrast-enhanced CT only. Conclusions CT texture analysis may be used as a valid tool for predicting the subtype of lung NET and its aggressiveness.
Collapse
|
28
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
29
|
Keenan KE, Delfino JG, Jordanova KV, Poorman ME, Chirra P, Chaudhari AS, Baessler B, Winfield J, Viswanath SE, deSouza NM. Challenges in ensuring the generalizability of image quantitation methods for MRI. Med Phys 2022; 49:2820-2835. [PMID: 34455593 PMCID: PMC8882689 DOI: 10.1002/mp.15195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/31/2023] Open
Abstract
Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jana G. Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, 10993 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Kalina V. Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Megan E. Poorman
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Prathyush Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Akshay S. Chaudhari
- Department of Radiology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Bettina Baessler
- University Hospital of Zurich and University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jessica Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Nandita M. deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
30
|
Schurink NW, van Kranen SR, Roberti S, van Griethuysen JJM, Bogveradze N, Castagnoli F, El Khababi N, Bakers FCH, de Bie SH, Bosma GPT, Cappendijk VC, Geenen RWF, Neijenhuis PA, Peterson GM, Veeken CJ, Vliegen RFA, Beets-Tan RGH, Lambregts DMJ. Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility. Eur Radiol 2022; 32:1506-1516. [PMID: 34655313 PMCID: PMC8831294 DOI: 10.1007/s00330-021-08251-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate sources of variation in a multicenter rectal cancer MRI dataset focusing on hardware and image acquisition, segmentation methodology, and radiomics feature extraction software. METHODS T2W and DWI/ADC MRIs from 649 rectal cancer patients were retrospectively acquired in 9 centers. Fifty-two imaging features (14 first-order/6 shape/32 higher-order) were extracted from each scan using whole-volume (expert/non-expert) and single-slice segmentations using two different software packages (PyRadiomics/CapTk). Influence of hardware, acquisition, and patient-intrinsic factors (age/gender/cTN-stage) on ADC was assessed using linear regression. Feature reproducibility was assessed between segmentation methods and software packages using the intraclass correlation coefficient. RESULTS Image features differed significantly (p < 0.001) between centers with more substantial variations in ADC compared to T2W-MRI. In total, 64.3% of the variation in mean ADC was explained by differences in hardware and acquisition, compared to 0.4% by patient-intrinsic factors. Feature reproducibility between expert and non-expert segmentations was good to excellent (median ICC 0.89-0.90). Reproducibility for single-slice versus whole-volume segmentations was substantially poorer (median ICC 0.40-0.58). Between software packages, reproducibility was good to excellent (median ICC 0.99) for most features (first-order/shape/GLCM/GLRLM) but poor for higher-order (GLSZM/NGTDM) features (median ICC 0.00-0.41). CONCLUSIONS Significant variations are present in multicenter MRI data, particularly related to differences in hardware and acquisition, which will likely negatively influence subsequent analysis if not corrected for. Segmentation variations had a minor impact when using whole volume segmentations. Between software packages, higher-order features were less reproducible and caution is warranted when implementing these in prediction models. KEY POINTS • Features derived from T2W-MRI and in particular ADC differ significantly between centers when performing multicenter data analysis. • Variations in ADC are mainly (> 60%) caused by hardware and image acquisition differences and less so (< 1%) by patient- or tumor-intrinsic variations. • Features derived using different image segmentations (expert/non-expert) were reproducible, provided that whole-volume segmentations were used. When using different feature extraction software packages with similar settings, higher-order features were less reproducible.
Collapse
Affiliation(s)
- Niels W Schurink
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands
- GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Simon R van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sander Roberti
- Department of Epidemiology and Biostatistics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joost J M van Griethuysen
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands
- GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Nino Bogveradze
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands
- GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands
- Department of Radiology, Acad. F. Todua Medical Center, Research Institute of Clinical Medicine, Tbilisi, Georgia
| | - Francesca Castagnoli
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands
| | - Najim El Khababi
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands
- GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Frans C H Bakers
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Shira H de Bie
- Department of Radiology, Deventer Ziekenhuis, Deventer, The Netherlands
| | - Gerlof P T Bosma
- Department of Interventional Radiology, Elisabeth Tweesteden Hospital, Tilburg, The Netherlands
| | - Vincent C Cappendijk
- Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Remy W F Geenen
- Department of Radiology, Northwest Clinics, Alkmaar, The Netherlands
| | | | | | - Cornelis J Veeken
- Department of Radiology, IJsselland Hospital, Capelle Aan Den IJssel, The Netherlands
| | - Roy F A Vliegen
- Department of Radiology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands.
- GROW School for Oncology & Developmental Biology, University of Maastricht, Maastricht, The Netherlands.
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, POB 90203, 1006 BE, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12020499. [PMID: 35204589 PMCID: PMC8871349 DOI: 10.3390/diagnostics12020499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Radiomics is rapidly advancing in precision diagnostics and cancer treatment. However, there are several challenges that need to be addressed before translation to clinical use. This study presents an ad-hoc weighted statistical framework to explore radiomic biomarkers for a better characterization of the radiogenomic phenotypes in breast cancer. Thirty-six female patients with breast cancer were enrolled in this study. Radiomic features were extracted from MRI and PET imaging techniques for malignant and healthy lesions in each patient. To reduce within-subject bias, the ratio of radiomic features extracted from both lesions was calculated for each patient. Radiomic features were further normalized, comparing the z-score, quantile, and whitening normalization methods to reduce between-subjects bias. After feature reduction by Spearman’s correlation, a methodological approach based on a principal component analysis (PCA) was applied. The results were compared and validated on twenty-seven patients to investigate the tumor grade, Ki-67 index, and molecular cancer subtypes using classification methods (LogitBoost, random forest, and linear discriminant analysis). The classification techniques achieved high area-under-the-curve values with one PC that was calculated by normalizing the radiomic features via the quantile method. This pilot study helped us to establish a robust framework of analysis to generate a combined radiomic signature, which may lead to more precise breast cancer prognosis.
Collapse
|
32
|
Tong Y, Udupa JK, Hao Y, Xie L, McDonough JM, Wu C, Lott C, Clark A, Anari JB, Torigian DA, Cahill PJ. QdMRI: A system for comprehensive analysis of thoracic dynamics via dynamic MRI. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12034:120341G. [PMID: 36039169 PMCID: PMC9420222 DOI: 10.1117/12.2612117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed technique, provides a potential solution for evaluating treatment effects in thoracic insufficiency syndrome (TIS). In this paper, we integrate all related algorithms and modules during our work from the past 10 years on TIS into one system, named QdMRI, to address the following questions: (1) How to effectively acquire dynamic images? For many TIS patients, subjects are unable to cooperate with breathing instructions during image acquisition. Image acquisition can only be implemented under free-breathing conditions, and it is not feasible to use a surrogate device for tracing breathing signals. (2) How to assess the thoracic structures from the acquired image, such as lungs, left and right, separately? (3) How to depict the dynamics of thoracic structures due to respiration motion? (4) How to use the structural and functional information for the quantitative evaluation of surgical TIS treatment and for the design of the surgery plan? The QdMRI system includes 4 major modules: dynamic MRI (dMRI) acquisition, 4D image construction, image segmentation (from 4D image), and visualization of segmentation results, dynamic measurements, and comparisons of measurements from TIS patients with those from normal children. Scanning/image acquisition time for one subject is ~20 minutes, 4D image construction time is ~5 minutes, image segmentation of lungs via deep learning is 70 seconds for all time points (with the average DICE 0.96 in healthy children), and measurement computation time is 2 seconds.
Collapse
Affiliation(s)
- Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jayaram K Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - You Hao
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Lipeng Xie
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Joseph M McDonough
- The Wyss/Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Caiyun Wu
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Carina Lott
- The Wyss/Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Abigail Clark
- The Wyss/Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Jason B Anari
- The Wyss/Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Drew A Torigian
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Patrick J Cahill
- The Wyss/Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| |
Collapse
|
33
|
Alcalay M, Jereczek-Fossa BA, Pepa M, Volpe S, Zaffaroni M, Fiore F, Marvaso G, Pravettoni G, Curigliano G, Santaguida S, Pelicci PG. Biomedical omics: first insights of a new MSc degree of the University of Milan. TUMORI JOURNAL 2021; 108:6-11. [PMID: 34585604 DOI: 10.1177/03008916211047268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The advent of technologies allowing the global analysis of biological phenomena, referred to as "omics" (genomics, epigenomics, proteomics, metabolomics, microbiomics, radiomics, and radiogenomics), has revolutionized the study of human diseases and traced the path for quantitative personalized medicine. The newly inaugurated Master of Science Program in Biomedical Omics of the University of Milan, Italy, aims at addressing the unmet need to create professionals with a broad understanding of omics disciplines. The course is structured over 2 years and admits students with a bachelor's degree in biotechnology, biology, chemistry, or pharmaceutical sciences. All teaching activities are fully held in English. A total of nine students enrolled in the first academic year and attended the courses of radiomics, genomics and epigenomics, proteomics, and high-throughput screenings, and their feedback was evaluated by means of an online questionnaire. Faculty with different backgrounds were recruited according to the subject. Due to restrictions imposed by the coronavirus disease 2019 (COVID-19) pandemic, laboratory activities were temporarily suspended, while lectures, journal clubs, and examinations were mainly held online. After the end of the first semester, despite the difficulties brought on by the COVID-19 pandemic, the course overall met the expectations of the students, specifically regarding teaching effectiveness, interpersonal interactions with the lecturers, and courses organization. Future efforts will be undertaken to better calibrate the overall workload of the course and to implement the most relevant suggestions from the students together with omics science evolution in order to guarantee state-of-the-art omics teaching and to prepare future omics specialists.
Collapse
Affiliation(s)
- Myriam Alcalay
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Applied Division for Cognitive and Psychological Sciences, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefano Santaguida
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
34
|
Fernández Patón M, Cerdá Alberich L, Sangüesa Nebot C, Martínez de Las Heras B, Veiga Canuto D, Cañete Nieto A, Martí-Bonmatí L. MR Denoising Increases Radiomic Biomarker Precision and Reproducibility in Oncologic Imaging. J Digit Imaging 2021; 34:1134-1145. [PMID: 34505958 DOI: 10.1007/s10278-021-00512-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/24/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Several noise sources, such as the Johnson-Nyquist noise, affect MR images disturbing the visualization of structures and affecting the subsequent extraction of radiomic data. We evaluate the performance of 5 denoising filters (anisotropic diffusion filter (ADF), curvature flow filter (CFF), Gaussian filter (GF), non-local means filter (NLMF), and unbiased non-local means (UNLMF)), with 33 different settings, in T2-weighted MR images of phantoms (N = 112) and neuroblastoma patients (N = 25). Filters were discarded until the most optimal solutions were obtained according to 3 image quality metrics: peak signal-to-noise ratio (PSNR), edge-strength similarity-based image quality metric (ESSIM), and noise (standard deviation of the signal intensity of a region in the background area). The selected filters were ADFs and UNLMs. From them, 107 radiomics features preservation at 4 progressively added noise levels were studied. The ADF with a conductance of 1 and 2 iterations standardized the radiomic features, improving reproducibility and quality metrics.
Collapse
Affiliation(s)
- Matías Fernández Patón
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026, Valencia, Spain.
| | - Leonor Cerdá Alberich
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026, Valencia, Spain
| | - Cinta Sangüesa Nebot
- Área Clínica de Imagen Médica, Hospital Universitario Y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Blanca Martínez de Las Heras
- Unidad de Oncohematología Pediátrica, Hospital Universitario Y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Diana Veiga Canuto
- Área Clínica de Imagen Médica, Hospital Universitario Y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Adela Cañete Nieto
- Unidad de Oncohematología Pediátrica, Hospital Universitario Y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026, Valencia, Spain.,Área Clínica de Imagen Médica, Hospital Universitario Y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
35
|
Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei LF, Boellaard R, Oprea-Lager DE, Obuchowski NA, Caroli A, Kunz WG, Oei EH, O'Connor JPB, Mayerhoefer ME, Franca M, Alberich-Bayarri A, Deroose CM, Loewe C, Manniesing R, Caramella C, Lopci E, Lassau N, Persson A, Achten R, Rosendahl K, Clement O, Kotter E, Golay X, Smits M, Dewey M, Sullivan DC, van der Lugt A, deSouza NM, European Society Of Radiology. Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 2021; 31:6001-6012. [PMID: 33492473 PMCID: PMC8270834 DOI: 10.1007/s00330-020-07598-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
Collapse
Affiliation(s)
- Laure Fournier
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
| | - Lena Costaridou
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- School of Medicine, University of Patras, University Campus, Rio, 26 500, Patras, Greece
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Nicolas Michoux
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Frederic E Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Ronald Boellaard
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
| | - Daniela E Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
| | - Nancy A Obuchowski
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Caroli
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Wolfgang G Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Edwin H Oei
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - James P B O'Connor
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marius E Mayerhoefer
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Manuela Franca
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Angel Alberich-Bayarri
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers in Medicine (QUIBIM), Valencia, Spain
| | - Christophe M Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christian Loewe
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cardiovascular and Interventional Radiology, Dept. for Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rashindra Manniesing
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Institut d'Oncologie Thoracique, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, MI, Italy
| | - Nathalie Lassau
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Imaging Department, Gustave Roussy Cancer Campus Grand, Paris, UMR 1281, INSERM, CNRS, CEA, Universite Paris-Saclay, Saint-Aubin, France
| | - Anders Persson
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, and Department of Health, Medicine and Caring Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Rik Achten
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Medical Imaging, Ghent University Hospital, Gent, Belgium
| | - Karen Rosendahl
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Olivier Clement
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Elmar Kotter
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Xavier Golay
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Queen Square Institute of Neurology, University College London, London, UK
| | - Marion Smits
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc Dewey
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel C Sullivan
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Dept. of Radiology, Duke University, 311 Research Dr, Durham, NC, 27710, USA
| | - Aad van der Lugt
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nandita M deSouza
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria.
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium.
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK.
| | | |
Collapse
|
36
|
Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation. Phys Med 2021; 84:186-191. [PMID: 33901863 DOI: 10.1016/j.ejmp.2021.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION A recent study performed on 16 locally advanced rectal cancer (LARC) patients treated using magnetic resonance guided radiotherapy (MRgRT) has identified two delta radiomics features as predictors of clinical complete response (cCR) after neoadjuvant radio-chemotherapy (nCRT). This study aims to validate these features (ΔLleast and Δglnu) on an external larger dataset, expanding the analysis also for pathological complete response (pCR) prediction. METHODS A total of 43 LARC patients were enrolled: Gross Tumour Volume (GTV) was delineated on T2/T1* MR images acquired during MRgRT and the two delta features were calculated. Receiver Operating Characteristic (ROC) curve analysis was performed on the 16 cases of the original study and the best cut-off value was identified. The performance of ΔLleast and Δglnu was evaluated at the best cut-off value. RESULTS On the original dataset of 16 patients, ΔLleast reported an AUC of 0.81 for cCR and 0.93 for pCR, while Δglnu 0.72 and 0.54 respectively. The best cut-off values of ΔLleast was 0.73 for both outcomes, while Δglnu reported 0.54 for cCR and 0.93 for pCR. At the external validation, ΔLleast showed an accuracy of 81% for cCR and 79% for pCR, while Δglnu reported 63% for cCR and 40% for pCR. CONCLUSION The accuracy of ΔLleast in predicting cCR and pCR is significantly higher than those obtained considering Δglnu, but inferior if compared with other image-based biomarker, such as the early-regression index. Studies with larger cohorts of patients are recommended to further investigate the role of delta radiomic features in MRgRT.
Collapse
|
37
|
Hu Z, Zhuang Q, Xiao Y, Wu G, Shi Z, Chen L, Wang Y, Yu J. MIL normalization -- prerequisites for accurate MRI radiomics analysis. Comput Biol Med 2021; 133:104403. [PMID: 33932645 DOI: 10.1016/j.compbiomed.2021.104403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023]
Abstract
The quality of magnetic resonance (MR) images obtained with different instruments and imaging parameters varies greatly. A large number of heterogeneous images are collected, and they suffer from acquisition variation. Such imaging quality differences will have a great impact on the radiomics analysis. The main differences in MR images include modality mismatch (M), intensity distribution variance (I), and layer-spacing differences (L), which are referred to as MIL differences in this paper for convenience. An MIL normalization system is proposed to reconstruct uneven MR images into high-quality data with complete modality, a uniform intensity distribution and consistent layer spacing. Three radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis of glioma, were used to verify the effect of MIL normalization on radiomics analysis. Three retrospective glioma datasets were analyzed in this study: BraTs (285 cases), TCGA (112 cases) and HuaShan (403 cases). They were used to test the effect of MIL on three different radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis. MIL normalization included three components: multimodal synthesis based on an encoder-decoder network, intensity normalization based on CycleGAN, and layer-spacing unification based on Statistical Parametric Mapping (SPM). The Dice similarity coefficient, areas under the curve (AUC) and six other indicators were calculated and compared after different normalization steps. The MIL normalization system can improved the Dice coefficient of segmentation by 9% (P < .001), the AUC of pathological grading by 32% (P < .001), and IDH1 status prediction by 25% (P < .001) when compared to non-normalization. The proposed MIL normalization system provides high-quality standardized data, which is a prerequisite for accurate radiomics analysis.
Collapse
Affiliation(s)
- Zhaoyu Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Xiao
- Department of Biomedical Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Artificial Intelligence and the Medical Physicist: Welcome to the Machine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041691] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial intelligence (AI) is a branch of computer science dedicated to giving machines or computers the ability to perform human-like cognitive functions, such as learning, problem-solving, and decision making. Since it is showing superior performance than well-trained human beings in many areas, such as image classification, object detection, speech recognition, and decision-making, AI is expected to change profoundly every area of science, including healthcare and the clinical application of physics to healthcare, referred to as medical physics. As a result, the Italian Association of Medical Physics (AIFM) has created the “AI for Medical Physics” (AI4MP) group with the aims of coordinating the efforts, facilitating the communication, and sharing of the knowledge on AI of the medical physicists (MPs) in Italy. The purpose of this review is to summarize the main applications of AI in medical physics, describe the skills of the MPs in research and clinical applications of AI, and define the major challenges of AI in healthcare.
Collapse
|
39
|
Abstract
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
Collapse
Affiliation(s)
- R Da-Ano
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - D Visvikis
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| | - M Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| |
Collapse
|
40
|
Saint Martin MJ, Orlhac F, Akl P, Khalid F, Nioche C, Buvat I, Malhaire C, Frouin F. A radiomics pipeline dedicated to Breast MRI: validation on a multi-scanner phantom study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:355-366. [PMID: 33180226 DOI: 10.1007/s10334-020-00892-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and scanners and suffers from bias field inhomogeneity. Radiomic studies are impacted by these effects that affect radiomic feature values. This paper describes a dedicated pipeline to increase reproducibility in breast MRI radiomic studies. MATERIALS AND METHODS T1, T2, and T1-DCE MR images of two breast phantoms were acquired using two scanners and three dual breast coils. Images were retrospectively corrected for bias field inhomogeneity and further normalised using Z score or histogram matching. Extracted radiomic features were harmonised between coils by the ComBat method. The whole pipeline was assessed qualitatively and quantitatively using statistical comparisons on two series of radiomic feature values computed in the gel mimicking the normal breast tissue or in dense lesions. RESULTS Intra and inter-acquisition variabilities were strongly reduced by the standardisation pipeline. Harmonisation by ComBat lowered the percentage of radiomic features significantly different between the three coils from 87% after bias field correction and MR normalisation to 3% in the gel, while preserving or improving performance of lesion classification in the phantoms. DISCUSSION A dedicated standardisation pipeline was developed to reduce variabilities in breast MRI, which paves the way for robust multi-scanner radiomic studies but needs to be assessed on patient data.
Collapse
Affiliation(s)
- Marie-Judith Saint Martin
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France.
| | - Fanny Orlhac
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
| | - Pia Akl
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
- HCL, Radiologie du Groupement Hospitalier Est, Hôpital Femme Mère Enfant, Unité Fonctionnelle: Imagerie de la Femme, 3 Quai des Célestins, 69002, Lyon, France
- Institut Curie, Service de Radiodiagnostic, 26 rue d'Ulm, 75005, Paris, France
| | - Fahad Khalid
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
| | - Christophe Nioche
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
| | - Irène Buvat
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
| | - Caroline Malhaire
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
- Institut Curie, Service de Radiodiagnostic, 26 rue d'Ulm, 75005, Paris, France
| | - Frédérique Frouin
- Inserm, Institut Curie,Université Paris-Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Centre de Recherche de l'Institut Curie, Bât 101B rue Henri Becquerel, 91401, Orsay, France
| |
Collapse
|
41
|
Crombé A, Kind M, Fadli D, Le Loarer F, Italiano A, Buy X, Saut O. Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients. Sci Rep 2020; 10:15496. [PMID: 32968131 PMCID: PMC7511974 DOI: 10.1038/s41598-020-72535-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics combine quantification of tumors' radiological phenotype with machine-learning to improve predictive models, such as metastastic-relapse-free survival (MFS) for sarcoma patients. We post-processed the initial T2-weighted-imaging of 70 sarcoma patients by using 5 IHTs and extracting 45 radiomics features (RFs), namely: classical standardization (IHTstd), standardization per adipose tissue SIs (IHTfat), histogram-matching with a patient histogram (IHTHM.1), with the average histogram of the population (IHTHM.All) and plus ComBat method (IHTHM.All.C), which provided 5 radiomics datasets in addition to the original radiomics dataset without IHT (No-IHT). We found that using IHTs significantly influenced all RFs values (p-values: < 0.0001-0.02). Unsupervised clustering performed on each radiomics dataset showed that only clusters from the No-IHT, IHTstd, IHTHM.All, and IHTHM.All.C datasets significantly correlated with MFS in multivariate Cox models (p = 0.02, 0.007, 0.004 and 0.02, respectively). We built radiomics-based supervised models to predict metastatic relapse at 2-years with a training set of 50 patients. The models performances varied markedly depending on the IHT in the validation set (range of AUROC from 0.688 with IHTstd to 0.823 with IHTHM.1). Hence, the use of intensity harmonization and the related technique should be carefully detailed in radiomics post-processing pipelines as it can profoundly affect the reproducibility of analyses.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Radiology, Institut Bergonie, 33000, Bordeaux, France. .,Modelisation in Oncology (MOnc) Team, INRIA Bordeaux-Sud-Ouest, CNRS UMR 5251, Université de Bordeaux, 33405, Talence, France. .,University of Bordeaux, 33000, Bordeaux, France. .,Department of Diagnostic and Interventional Radiology, Institut Bergonié, Comprehensive Cancer Center of Nouvelle-Aquitaine, 229 cours de l'Argonne, 33000, Bordeaux, France.
| | - Michèle Kind
- Department of Radiology, Institut Bergonie, 33000, Bordeaux, France
| | - David Fadli
- Department of Radiology, Institut Bergonie, 33000, Bordeaux, France
| | - François Le Loarer
- University of Bordeaux, 33000, Bordeaux, France.,Department of Pathology, Institut Bergonie, 33000, Bordeaux, France
| | - Antoine Italiano
- University of Bordeaux, 33000, Bordeaux, France.,Department of Medical Oncology, Institut Bergonie, 33000, Bordeaux, France
| | - Xavier Buy
- Department of Radiology, Institut Bergonie, 33000, Bordeaux, France
| | - Olivier Saut
- Modelisation in Oncology (MOnc) Team, INRIA Bordeaux-Sud-Ouest, CNRS UMR 5251, Université de Bordeaux, 33405, Talence, France.,University of Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
42
|
Gugliandolo SG, Pepa M, Isaksson LJ, Marvaso G, Raimondi S, Botta F, Gandini S, Ciardo D, Volpe S, Riva G, Rojas DP, Zerini D, Pricolo P, Alessi S, Petralia G, Summers PE, Mistretta FA, Luzzago S, Cattani F, De Cobelli O, Cassano E, Cremonesi M, Bellomi M, Orecchia R, Jereczek-Fossa BA. MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218). Eur Radiol 2020; 31:716-728. [PMID: 32852590 DOI: 10.1007/s00330-020-07105-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/18/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). METHODS This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. RESULTS Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. CONCLUSIONS MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice. KEY POINTS • A radiomic model was used to classify PCa aggressiveness. • Radiomic analysis was performed on T2-W magnetic resonance images of the whole prostate gland. • The most predictive features belong to the texture (57%) and intensity (43%) domains.
Collapse
Affiliation(s)
| | - Matteo Pepa
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Lars Johannes Isaksson
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- European School of Molecular Medicine, IFOM-IEO Campus, Via Adamello, 16, 20139, Milan, Italy
| | - Giulia Marvaso
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Delia Ciardo
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Stefania Volpe
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giulia Riva
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Damari Patricia Rojas
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Dario Zerini
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Paul Eugene Summers
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Frnacesco Alessandro Mistretta
- Division of Urology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Stefano Luzzago
- Division of Urology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Federica Cattani
- Medical Physics Unit, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Urology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
43
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 717] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
44
|
Tsarouchi MI, Vlachopoulos GF, Karahaliou AN, Costaridou LI. Diagnostic value of apparent diffusion coefficient lesion texture biomarkers in breast MRI. HEALTH AND TECHNOLOGY 2020. [DOI: 10.1007/s12553-020-00452-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|