1
|
Yoshida T, Sasaki K, Kawasaki Y, Hayakawa T, Kawadai T, Shibasaki T. Evaluation of the dose reduction effect of crystalline lens exposure in cone-beam computed tomography with bismuth eye shield for image-guided radiation therapy: An anthropomorphic phantom study. J Appl Clin Med Phys 2025; 26:e70024. [PMID: 39967030 PMCID: PMC12059262 DOI: 10.1002/acm2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
This study aimed to evaluate the dose-exposure reduction effect of a crystalline lens with a bismuth eye shield using cone-beam computed tomography (CBCT) for head image-guided radiation therapy. The ocular surface dose of the head phantom (THRA-1) is defined as a crystalline lens exposure dose and is measured using a radiophotoluminescence dosimeter (RPLD, GD-352 M) with and without an eye shield (CT eye shield) while moving the head phantom from the reference position that is set at the center of the head in either the X or Z direction from -5 to +5 cm. The exposure doses were measured thrice at each movement position. The crystalline lens exposure doses at the reference position were 0.896 ± 0.024 mGy and 0.892 ± 0.016 mGy for the right and left sides, respectively. The exposure doses at the position where the head phantom was moved 5 cm in the -Z direction from the reference position were 2.812 ± 0.053 mGy and 2.576 ± 0.038 mGy for the right and left sides, respectively, with the highest doses at all movement positions. The crystalline lens exposure doses were reduced to 1.909 ± 0.046 mGy and 1.768 ± 0.043 mGy for the right and left sides with an eye shield in this position, causing an exposure dose reduction rate of -32% and -31%, respectively. The crystalline lens exposure dose reduction rate was approximately 10%-15% in the movement directions, except for the -Z direction. Head CBCT with an eye shield effectively reduced the crystalline lens exposure dose when the CBCT isocenter was set close to the eye. Head CBCT using an eye shield is a useful method that reduces the crystalline lens exposure dose.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of RadiologyKoritsu Tatebayashi Kosei General HospitalGunmaJapan
- Graduate School of Radiological TechnologyGunma Prefectural College of Health SciencesGunmaJapan
| | - Koji Sasaki
- Graduate School of Radiological TechnologyGunma Prefectural College of Health SciencesGunmaJapan
| | | | - Tomoki Hayakawa
- Department of RadiologyKoritsu Tatebayashi Kosei General HospitalGunmaJapan
| | - Toshiyuki Kawadai
- Department of RadiologyKoritsu Tatebayashi Kosei General HospitalGunmaJapan
| | - Takako Shibasaki
- Department of RadiologyKoritsu Tatebayashi Kosei General HospitalGunmaJapan
| |
Collapse
|
2
|
Kawauchi S, Chida K, Moritake T, Hamada Y, Tsuruta W. Radiation dose analysis in interventional neuroradiology of unruptured aneurysm cases. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:031515. [PMID: 39226910 DOI: 10.1088/1361-6498/ad76b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to evaluate the radiation doses (peak skin dose (PSD) and bilateral lens dose) for each interventional neuroradiology procedure. A direct measurement system consisting of small radiophotoluminescence glass dosimeter chips and a dosimetry cap made of thin stretchable polyester was used for radiation dosimetry. The mean PSDs for each procedure were 1565 ± 590 mGy (simple technique coil embolization (STCE) cases), 1851 ± 825 mGy (balloon-assisted coil embolization (BACE) cases), 2583 ± 967 mGy (stent-assisted coil embolization (SACE) cases), 1690 ± 597 mGy (simple flow-diverter stenting (FDS) cases), and 2214 ± 726 mGy (FDS + coiling cases). The mean PSD was higher in SACE cases than in STCE, BACE, and simple FDS cases. Moreover, the PSD exceeded 2000 mGy and 3000 mGy in 46 (67.6%) and 19 (27.9%) SACE cases, respectively. The left lens doses for each procedure were 126 ± 111 mGy (STCE cases), 163 ± 152 mGy (BACE cases), 184 ± 148 mGy (SACE cases), 144 ± 60 mGy (simple FDS cases), and 242 ± 178 mGy (FDS + coiling cases). The left lens dose in SACE cases was higher than that in STCE cases and exceeded 500 mGy in 3 (4.4%) patients. In FDS + coiling cases, the mean PSD and left lens dose were 2214 ± 726 mGy and 242 ± 178 mGy, respectively. The left lens dose was higher than that in the STCE and BACE cases, with two (15.4%) patients receiving doses >500 mGy in FDS + coiling cases. The detailed data obtained in this study are expected to contribute to the promotion of radiation dose optimization.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku Sendai, Miyagi 980-8575, Japan
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku Sendai, Miyagi 980-8575, Japan
| | - Takashi Moritake
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| |
Collapse
|
3
|
Masuda T, Kiguchi M, Fujioka C, Oku T, Ishibashi T, Katsunuma Y, Yoshitake T, Abe S, Awai K. Comparison of the equivalent doses of the eye lenses, thyroid, and mammary gland among three pediatric and one adult anthropomorphic phantom during the chest CT examinations using a 40 mm volume helical scan. RADIATION PROTECTION DOSIMETRY 2024; 200:1391-1397. [PMID: 38997113 DOI: 10.1093/rpd/ncae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Equivalent doses for the eye lenses, thyroid, and mammary glands were measured and compared between one adult and three pediatric anthropomorphic phantoms during chest computed tomography (CT) using 40 mm volume helical scan on the Aquilion ONE GENESIS Edition CT equipment. Placing an optically stimulated luminescence dosemeter (OSLD) on the eye lenses, thyroid, and mammary gland, we measured and compared the equivalent dose of OSLD among different phantoms during chest CT using a helical scan. Compared with adults, the equivalent doses to the eye lens, thyroid, and mammary glands were ~81%, 77%, and 63% lower in newborns, 1-year-olds, and 5-year-olds using comparable image noise during chest CT.
Collapse
Affiliation(s)
- Takanori Masuda
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Masao Kiguchi
- Department of Radiology, Hiroshima University, 2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Chikako Fujioka
- Department of Radiology, Hiroshima University, 2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takayuki Oku
- Department of Radiological Technologist, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima 730-8655, Japan
| | - Toru Ishibashi
- Department of Radiological Technologist, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima 730-8655, Japan
| | - Yasushi Katsunuma
- Department of Radiological Technology, Tokai University Oiso Hospital, 143, Iseharashi, Naka-gun, Kanagawa 259-1193, Japan
| | | | - Shuji Abe
- Department of Radiological Technology, Osaka College of High Technology, Osaka, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University, 2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| |
Collapse
|
4
|
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography 2023; 9:1683-1693. [PMID: 37736987 PMCID: PMC10514806 DOI: 10.3390/tomography9050134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
There has been an increase in the use of interventional neuroradiology procedures because of their non-invasiveness compared to surgeries and the improved image quality of fluoroscopy, digital subtraction angiography, and rotational angiography. Although cone-beam computed tomography (CBCT) images are inferior to multi-detector CT images in terms of low-contrast detectability and lower radiation doses, CBCT scans are frequently performed because of their accessibility. This study aimed to evaluate the image quality and radiation dose of two different high-resolution CBCTs (HR CBCT): conventional (C-HR CBCT) and wide-field HR CBCT (W-HR CBCT). The modulation transfer function (MTF), noise power spectrum (NPS), and contrast-to-noise ratio (CNR) were used to evaluate the image quality. On comparing the MTF of C-HR CBCT with a 256 × 256 matrix and that of W-HR CBCT with a 384 × 384 matrix, the MTF of W-HR CBCT with the 384 × 384 matrix was larger. A comparison of the NPS and CNR of C-HR CBCT with a 256 × 256 matrix and W-HR CBCT with a 384 × 384 matrix showed that both values were comparable. The reference air kerma values were equal for C-HR CBCT and W-HR CBCT; however, the value of the kerma area product was 1.44 times higher for W-HR CBCT compared to C-HR CBCT. The W-HR CBCT allowed for improved spatial resolution while maintaining the image noise and low-contrast detectability by changing the number of image matrices from 256 × 256 to 384 × 384. Our study revealed the image characteristics and radiation dose of W-HR CBCT. Given its advantages of low-contrast detectability and wide-area imaging with high spatial resolution, W-HR CBCT may be useful in interventional neuroradiology for acute ischemic stroke.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| |
Collapse
|
5
|
Yashima S, Chida K. Awareness of Medical Radiologic Technologists of Ionizing Radiation and Radiation Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:497. [PMID: 36612833 PMCID: PMC9819470 DOI: 10.3390/ijerph20010497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/02/2023]
Abstract
Japanese people experienced the Hiroshima and Nagasaki atomic bombings, the Japan Nuclear Fuel Conversion Co. criticality accident, it was found that many human resources are needed to respond to residents' concerns about disaster exposure in the event of a radiation disaster. Medical radiologic technologists learn about radiation from the time of their training, and are engaged in routine radiographic work, examination explanations, medical exposure counseling, and radiation protection of staff. By learning about nuclear disasters and counseling, we believe they can address residents' concerns. In order to identify items needed for training, we examined the perceptions of medical radiologic technologists in the case of different specialties, modalities and radiation doses. In 2016, 5 years after the Fukushima Daiichi nuclear power plant accident, we conducted a survey of 57 medical radiologic technologists at two medical facilities with different specialties and work contents to investigate their attitudes toward radiation. 42 participants answered questions regarding sex, age group, presence of children, health effects of radiation exposure, radiation control, generation of X rays by diagnostic X ray equipment, and radiation related units. In a comparison of 38 items other than demographic data, 14 showed no significant differences and 24 showed significant differences. This study found that perceptions of radiation were different among radiology technologists at facilities with different specialties. The survey suggested the possibility of identifying needed training items and providing effective training.
Collapse
Affiliation(s)
- Sachiko Yashima
- Division of Radiation, Miyagi Cancer Society, Sendai 980-0011, Miyagi, Japan
- Division of Radiological Disasters and Medical Science, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai 980-8577, Miyagi, Japan
| | - Koichi Chida
- Division of Radiological Disasters and Medical Science, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai 980-8577, Miyagi, Japan
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
6
|
Kawauchi S, Chida K, Moritake T, Hamada Y, Yoda S, Sakuma H, Tsuruta W, Matsumaru Y. Evaluation of Peak Skin Doses and Lens Doses during Interventional Neuroradiology Using a Direct Measurement System. JOURNAL OF NEUROENDOVASCULAR THERAPY 2022; 16:491-497. [PMID: 37502201 PMCID: PMC10370819 DOI: 10.5797/jnet.oa.2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 07/29/2023]
Abstract
Objective In interventional neuroradiology (INR), the evaluation of the peak skin dose (PSD) and lens dose is important because the patient radiation dose increases in cases in which the procedure is more difficult and complex. This study evaluated the radiation doses during INR procedures using a direct measurement system. Methods Radiation dose measurements during INR were performed in 332 patients with unruptured aneurysm (URAN), dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM). The PSD and bilateral lens doses were analyzed for each disease. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to the reference air kerma (Ka,r). Results In all cases, the PSD and right and left lens doses were 2.36 ± 1.28 Gy, 114.2 ± 54.6 mGy, and 189.8 ± 160.3 mGy, respectively. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN case. The Pearson correlation test revealed statistically significant positive correlations between Ka,r and PSD, Ka,r and right lens dose, and Ka,r and left lens dose. Conclusion The characteristics of radiation dose in INR were clarified. Owing to the concern of increased radiation doses exceeding the threshold values in DAVF and AVM cases, protection from radiation is required. Simple regression analysis revealed the possibility of precisely predicting PSD using Ka,r.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Moritake
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, National Institute for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | - Shogo Yoda
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | | | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, Tokyo, Japan
| | - Yuji Matsumaru
- Division for Stroke Prevention and Treatment, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol 2022; 15:101-115. [PMID: 35608759 DOI: 10.1007/s12194-022-00660-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Protection against occupational radiation exposure in clinical settings is important. This paper clarifies the present status of medical occupational exposure protection and possible additional safety measures. Radiation injuries, such as cataracts, have been reported in physicians and staff who perform interventional radiology (IVR), thus, it is important that they use shielding devices (e.g., lead glasses and ceiling-suspended shields). Currently, there is no single perfect radiation shield; combinations of radiation shields are required. Radiological medical workers must be appropriately educated in terms of reducing radiation exposure among both patients and staff. They also need to be aware of the various methods available for estimating/reducing patient dose and occupational exposure. When the optimizing the dose to the patient, such as eliminating a patient dose that is higher than necessary, is applied, exposure of radiological medical workers also decreases without any loss of diagnostic benefit. Thus, decreasing the patient dose also reduces occupational exposure. We propose a novel four-point policy for protecting medical staff from radiation: patient dose Optimization, Distance, Shielding, and Time (pdO-DST). Patient dose optimization means that the patient never receives a higher dose than is necessary, which also reduces the dose received by the staff. The patient dose must be optimized: shielding is critical, but it is only one component of protection from radiation used in medical procedures. Here, we review the radiation protection/reduction basics for radiological medical workers, especially for IVR staff.
Collapse
Affiliation(s)
- Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan. .,Division of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-8572, Japan.
| |
Collapse
|
8
|
Yashima S, Chida K. Effective Risk Communications through Personalized Consultations with Pregnant Women and Parents by Radiologic Technologists after the 2011 Fukushima Daiichi Nuclear Disaster. TOHOKU J EXP MED 2022; 256:259-269. [PMID: 35264512 DOI: 10.1620/tjem.2022.j001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Koichi Chida
- International Research Institute of Disaster Science
| |
Collapse
|
9
|
Radiation Eye Dose for Physicians in CT Fluoroscopy-Guided Biopsy. Tomography 2022; 8:438-446. [PMID: 35202201 PMCID: PMC8878526 DOI: 10.3390/tomography8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
It is important to evaluate the radiation eye dose (3 mm dose equivalent, Hp (3)) received by physicians during computed tomography fluoroscopy (CTF)-guided biopsy, as physicians are close to the source of scattered radiation. In this study, we measured the radiation eye dose in Hp (3) received by one physician during CTF in a timeframe of 18 months using a direct eye dosimeter, the DOSIRISTM. The physician placed eye dosimeters above and under their lead (Pb) eyeglasses. We recorded the occupational radiation dose received using a neck dosimeter, gathered CT dose-related parameters (e.g., CT-fluoroscopic acquisition number, CT-fluoroscopic time, and CT-fluoroscopic mAs), and performed a total of 95 procedures during CTF-guided biopsies. We also estimated the eye dose (Hp (3)) received using neck personal dosimeters and CT dose-related parameters. The physician eye doses (right and left side) received in terms of Hp (3) without the use of Pb eyeglasses for 18 months were 2.25 and 2.06 mSv, respectively. The protective effect of the Pb eyeglasses (0.5 mm Pb) on the right and left sides during CTF procedures was 27.8 and 37.5%, respectively. This study proved the existence of significant correlations between the eye and neck dose measurement (right and left sides, R2 = 0.82 and R2 = 0.55, respectively) in physicians. In addition, we found significant correlations between CT-related parameters, such as CT-fluoroscopy mAs, and radiation eye doses (right and left sides, R2 = 0.50 and R2 = 0.52, respectively). The eye dose of Hp (3) received in CTF was underestimated when evaluated using neck dosimeters. Therefore, we suggest that the physician involved in CTF use a direct eye dosimeter such as the DOSIRIS for the accurate evaluation of their eye lens dose.
Collapse
|
10
|
Ota J, Yokota H, Kobayashi T, Ogata Y, Kubo T, Chida K, Masuda Y, Uno T. Head CT dose reduction with organ-based tube current modulation. Med Phys 2022; 49:1964-1971. [PMID: 35060639 DOI: 10.1002/mp.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A helical head CT examination uses a pitch factor (PF) of < 1.0, resulting in a part of the slice being directly irradiated twice. This raises the possibility of double irradiation, which may increase the amount of radiation to the lens. Organ-based tube current modulation (OBTCM) is an effective method for reducing lens exposure because it reduces the dose to the anterior aspect of the patient. However, it is challenging to visualize the complex dose distribution when factoring in double irradiation. PURPOSE To visualize twice-irradiated areas in helical head CT in three dimensions and to clarify the exposure reduction effect of OBTCM. MATERIAL AND METHODS A leuco crystal violet (LCV) dosimeter was placed into an empty polyethylene terephthalate bottle 16.5 cm in diameter. Helical scans were performed without and with OBTCM using the following parameters: tube voltage 120 kV, tube current 600 mA, pitch factor 0.637, rotation time 0.5 s, 80 (detector rows) × 0.5 mm (detector collimation), and ten scans. Exposed areas were visualized using an optical computed tomography (OCT) system designed by our group. The dose reduction rate of OBTCM was defined as the ratio of the average values of the histogram with the dose value on the x-axis and the frequency on the y-axis without and with OBTCM at 90° to the anterior midline. RESULTS The LCV dosimeter visualized the spiral-shaped twice-irradiated areas. Double irradiation resulted in a dose of 2.19/1.90 Gy and 1.38/1.19 Gy (15.0% and 15.9% increase) without and with OBTCM, respectively. The dose reduction using OBTCM was 29.6% at 90° anterolateral. CONCLUSION The LCV dosimeter visualized the complex three-dimensional irradiated areas and enabled dose measurement in twice-irradiated areas. Increased exposure from double irradiation was attenuated by OBTCM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joji Ota
- Department of Radiology, Chiba University Hospital, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan.,School of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba, Sendai, Miyagi, Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Takenori Kobayashi
- Division of Clinical Radiology, Graduate School of Medical Care and Technology, Teikyo University, 2-11-1 Kaga Itabashi-ku, Tokyo, Japan
| | - Yuki Ogata
- Division of Clinical Radiology, Graduate School of Medical Care and Technology, Teikyo University, 2-11-1 Kaga Itabashi-ku, Tokyo, Japan
| | - Takumi Kubo
- Division of Clinical Radiology, Graduate School of Medical Care and Technology, Teikyo University, 2-11-1 Kaga Itabashi-ku, Tokyo, Japan
| | - Koichi Chida
- School of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba, Sendai, Miyagi, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| |
Collapse
|
11
|
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Lens dose reduction with a bismuth shield in neuro cone-beam computed tomography: an investigation on optimum shield device placement conditions. Radiol Phys Technol 2021; 15:25-36. [PMID: 34796447 DOI: 10.1007/s12194-021-00644-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to determine the placement distance, number, and position of the bismuth shield for developing a lens protective device for cone-beam computed tomography (CBCT). To determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. The image quality assessment was determined by analyzing the change in the pixel value, caused by the bismuth shield, and the artifact index was calculated from the pixel value and image noise within various regions of interest in the head phantom. When the distance between the bismuth shield and the subject was increased, the image quality deteriorated less, but there was also a decrease in the lens dose reduction rate. Upon changing the number of bismuth shields from 1-ply to 2-ply, the dose reduction rate increased; however, there was a decrease in the image quality. Additionally, placing the bismuth shield outside of the subject improved the dose reduction rate without deteriorating the image quality. The optimum placement conditions of the bismuth shield were concluded as follows: positioned outside, placed 10 mm from the surface of the subject, and used a 1-ply bismuth shield. When these placement conditions were used, the lens dose reduction rate was 26.9 ± 0.36% (right-left average) for the "bismuth shield: separate". The protective device developed in this study will contribute to radiation dose reduction in CBCT scans.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| |
Collapse
|