1
|
van der Linden LR, Vavliakis I, de Groot TM, Jutte PC, Doornberg JN, Lozano-Calderon SA, Groot OQ. Artificial Intelligence in bone Metastases: A systematic review in guideline adherence of 92 studies. J Bone Oncol 2025; 52:100682. [PMID: 40337637 PMCID: PMC12056386 DOI: 10.1016/j.jbo.2025.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/09/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Background The last decade has witnessed a surge in artificial intelligence (AI). With bone metastases becoming more prevalent, there is an increasing call for personalized treatment options, a domain where AI can greatly contribute. However, integrating AI into clinical settings has proven to be difficult. Therefore, we aimed to provide an overview of AI modalities for treating bone metastases and recommend implementation-worthy models based on TRIPOD, CLAIM, and UPM scores. Methods This systematic review included 92 studies on AI models in bone metastases between 2008 and 2024. Using three assessment tools we provided a reliable foundation for recommending AI modalities fit for clinical use (TRIPOD or CLAIM ≥ 70 % and UPM score ≥ 10). Results Most models focused on survival prediction (44/92;48%), followed by imaging studies (37/92;40%). Median TRIPOD completeness was 70% (IQR 64-81%), CLAIM completeness was 57% (IQR 48-67%), and UPM score was 7 (IQR 5-9). In total, 10% (9/92) AI modalities were deemed fit for clinical use. Conclusion Transparent reporting, utilizing the aforementioned three evaluation tools, is essential for effectively integrating AI models into clinical practice, as currently, only 10% of AI models for bone metastases are deemed fit for clinical use. Such transparency ensures that both patients and clinicians can benefit from clinically useful AI models, potentially enhancing AI-driven personalized cancer treatment.
Collapse
Affiliation(s)
- Lotte R. van der Linden
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ioannis Vavliakis
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom M. de Groot
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Paul C. Jutte
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Job N. Doornberg
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Olivier Q. Groot
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Donkor A, Boakye E, Atuanor P, Wiafe YA. Evaluation of a classroom-based medical imaging artificial intelligence educational intervention in Ghana: A pre-test/post-test study design. Radiography (Lond) 2025; 31:102987. [PMID: 40414159 DOI: 10.1016/j.radi.2025.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/19/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
INTRODUCTION The adoption of artificial intelligence (AI) is gaining increased interest in medical imaging. However, most medical imaging students in Ghana do not receive training on AI as part of their education. This study aimed to evaluate the effect of a tailored classroom-based medical imaging AI educational intervention in Ghana. METHODS A pre-test/post-test study was conducted. Medical imaging students were recruited. A one-week structured lecture format was employed, integrating pre-tests at the beginning of each class, followed by theoretical presentations, discussions and post-tests. The pre-test and post-test questions were identical to assess retention and attention. The pre-test survey consisted of socio-demographic details, basic medical imaging AI concepts, applications of AI, developing AI systems and AI ethics. Descriptive, paired t-tests and multiple linear regression analyses were performed. RESULTS A total of 144 medical imaging students participated in this study, with a mean age of 21 ± 2.41 years. All the participants indicated that they have not received any previous training on medical imaging AI systems. There were significant improvements in participants' knowledge and understanding on basic concepts in medical imaging AI, applications of AI in medical imaging, developing medical imaging AI systems and AI ethics after the intervention (p < 0.001). Year of study was identified as a predictive factor to increased understanding post-test (p = 0.015). CONCLUSION The results of this study showed strong evidence that classroom-based intervention is an effective approach to improving students' knowledge and understanding on medical imaging AI systems. IMPLICATION FOR PRACTICE This short medical imaging AI course can be integrated into the medical imaging curriculum in Ghana to provide students with theoretical knowledge in AI.
Collapse
Affiliation(s)
- A Donkor
- Department of Medical Imaging, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; IMPACCT (Improving Palliative, Aged and Chronic Care through Clinical Research and Translation), Faculty of Health, University of Technology Sydney, Australia.
| | - E Boakye
- Department of Medical Imaging, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - P Atuanor
- Department of Medical Imaging, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Y A Wiafe
- Department of Medical Imaging, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
de Camargo TFO, Ribeiro GAS, da Silva MCB, da Silva LO, Torres PPTES, Rodrigues DDSDS, de Santos MON, Filho WS, Rosa MEE, Novaes MDA, Massarutto TA, Junior OL, Yanata E, Reis MRDC, Szarf G, Netto PVS, de Paiva JPQ. Clinical validation of an artificial intelligence algorithm for classifying tuberculosis and pulmonary findings in chest radiographs. Front Artif Intell 2025; 8:1512910. [PMID: 39991462 PMCID: PMC11843218 DOI: 10.3389/frai.2025.1512910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Background Chest X-ray (CXR) interpretation is critical in diagnosing various lung diseases. However, physicians, not specialists, are often the first ones to read them, frequently facing challenges in accurate interpretation. Artificial Intelligence (AI) algorithms could be of great help, but using real-world data is crucial to ensure their effectiveness in diverse healthcare settings. This study evaluates a deep learning algorithm designed for CXR interpretation, focusing on its utility for non-specialists in thoracic radiology physicians. Purpose To assess the performance of a Convolutional Neural Networks (CNNs)-based AI algorithm in interpreting CXRs and compare it with a team of physicians, including thoracic radiologists, who served as the gold-standard. Methods A retrospective study from January 2021 to July 2023 evaluated an algorithm with three independent models for Lung Abnormality, Radiological Findings, and Tuberculosis. The algorithm's performance was measured using accuracy, sensitivity, and specificity. Two groups of physicians validated the model: one with varying specialties and experience levels in interpreting chest radiographs (Group A) and another of board-certified thoracic radiologists (Group B). The study also assessed the agreement between the two groups on the algorithm's heatmap and its influence on their decisions. Results In the internal validation, the Lung Abnormality and Tuberculosis models achieved an AUC of 0.94, while the Radiological Findings model yielded a mean AUC of 0.84. During the external validation, utilizing the ground truth generated by board-certified thoracic radiologists, the algorithm achieved better sensitivity in 6 out of 11 classes than physicians with varying experience levels. Furthermore, Group A physicians demonstrated higher agreement with the algorithm in identifying markings in specific lung regions than Group B (37.56% Group A vs. 21.75% Group B). Additionally, physicians declared that the algorithm did not influence their decisions in 93% of the cases. Conclusion This retrospective clinical validation study assesses an AI algorithm's effectiveness in interpreting Chest X-rays (CXR). The results show the algorithm's performance is comparable to Group A physicians, using gold-standard analysis (Group B) as the reference. Notably, both Groups reported minimal influence of the algorithm on their decisions in most cases.
Collapse
Affiliation(s)
- Thiago Fellipe Ortiz de Camargo
- Image Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Goias, Brazil
| | - Guilherme Alberto Sousa Ribeiro
- Image Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Goias, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Elaine Yanata
- Image Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Gilberto Szarf
- Image Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Saw SN, Yan YY, Ng KH. Current status and future directions of explainable artificial intelligence in medical imaging. Eur J Radiol 2025; 183:111884. [PMID: 39667118 DOI: 10.1016/j.ejrad.2024.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
The inherent "black box" nature of AI algorithms presents a substantial barrier to the widespread adoption of the technology in clinical settings, leading to a lack of trust among users. This review begins by examining the foundational stages involved in the interpretation of medical images by radiologists and clinicians, encompassing both type 1 (fast thinking - ability of the brain to think and act intuitively) and type 2 (slow analytical - slow analytical, laborious approach to decision-making) decision-making processes. The discussion then delves into current Explainable AI (XAI) approaches, exploring both inherent and post-hoc explainability for medical imaging applications and highlighting the milestones achieved. XAI in medicine refers to AI system designed to provide transparent, interpretable, and understandable reasoning behind AI predictions or decisions. Additionally, the paper showcases some commercial AI medical systems that offer explanations through features such as heatmaps. Opportunities, challenges and potential avenues for advancing the field are also addressed. In conclusion, the review observes that state-of-the-art XAI methods are not mature enough for implementation, as the explanations they provide are challenging for medical experts to comprehend. Deeper understanding of the cognitive mechanisms by medical professionals is important in aiming to develop more interpretable XAI methods.
Collapse
Affiliation(s)
- Shier Nee Saw
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yet Yen Yan
- Department of Radiology, Changi General Hospital, Singapore; Radiological Sciences ACP, Duke-NUS Medical School, Singapore; Present Address: Department of Diagnostic Radiology, Mount Elizabeth Hospital, 3 Mount Elizabeth, Singapore 228510, Republic of Singapore
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Din M, Daga K, Saoud J, Wood D, Kierkegaard P, Brex P, Booth TC. Clinicians' perspectives on the use of artificial intelligence to triage MRI brain scans. Eur J Radiol 2025; 183:111921. [PMID: 39805194 DOI: 10.1016/j.ejrad.2025.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Artificial intelligence (AI) tools can triage radiology scans to streamline the patient pathway and also relieve clinician workload. Validated AI tools can mitigate the delays in reporting scans by flagging time-sensitive and actionable findings. In this study, we aim to investigate current stakeholder perspectives and identify obstacles to integrating AI in clinical pathways. We created a survey to ascertain the perspectives of 133 clinicians across the United Kingdom regarding the acceptability of an AI tool that triages MRI brain scans into 'normal' and 'abnormal'. As part of this survey, we supplied clinicians with information on training and validation case numbers, model performance, validation using unseen data, and explainability saliency maps. With regards to the specific use case of AI in MRI brain scans, 71% of respondents preferred the use of an AI-assisted triage compared to the current system without triage, typically chronologically. Notably, information that explained and helped visualise the AI model's decision making was found to improve clinician confidence. When shown a heatmap, 60% of participants felt more confident in the AI's decision. The results of this short communication demonstrate a positive support for the implementation of AI-assistive tools in triage.
Collapse
Affiliation(s)
- Munaib Din
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland; Department of Radiology. Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Karan Daga
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland
| | - Jihad Saoud
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland
| | - David Wood
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland
| | - Patrick Kierkegaard
- CRUK Convergence Science Centre, Institute for Cancer Research & Imperial College London, London, the United Kingdom of Great Britain and Northern Ireland
| | - Peter Brex
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, the United Kingdom of Great Britain and Northern Ireland
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland; Department of Neuroradiology, King's College Hospital National Health Service Foundation Trust, London, the United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
6
|
Yang Y, Chen Y, Dong X, Zhang J, Long C, Jin Z, Dai Y. An annotated heterogeneous ultrasound database. Sci Data 2025; 12:148. [PMID: 39863639 PMCID: PMC11762285 DOI: 10.1038/s41597-025-04464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images. However, many databases are created using a single device type and collection site, limiting the generalizability of machine learning models. Therefore, we have collected a large, publicly accessible ultrasound challenge database that is intended to significantly enhance the performance of AI-assisted ultrasound diagnosis. This database is derived from publicly available data on the Internet and comprises a total of 1,833 distinct ultrasound data. It includes 13 different ultrasound image anomalies, and all data have been anonymized. Our data-sharing program aims to support benchmark testing of ultrasound disease diagnosis in multi-center environments.
Collapse
Affiliation(s)
- Yuezhe Yang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Artificial Intelligence, Anhui University, Hefei, 230601, China
| | - Yonglin Chen
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Xingbo Dong
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Artificial Intelligence, Anhui University, Hefei, 230601, China.
| | - Junning Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chihui Long
- Department of Radiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhe Jin
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Artificial Intelligence, Anhui University, Hefei, 230601, China
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
- The First Hospital, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
7
|
Stogiannos N, O'Regan T, Scurr E, Litosseliti L, Pogose M, Harvey H, Kumar A, Malik R, Barnes A, McEntee MF, Malamateniou C. Lessons on AI implementation from senior clinical practitioners: An exploratory qualitative study in medical imaging and radiotherapy in the UK. J Med Imaging Radiat Sci 2025; 56:101797. [PMID: 39579457 DOI: 10.1016/j.jmir.2024.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Artificial Intelligence (AI) has the potential to transform medical imaging and radiotherapy; both fields where radiographers' use of AI tools is increasing. This study aimed to explore the views of those professionals who are now using AI tools. METHODS A small-scale exploratory research process was employed, where qualitative data was obtained from five UK-based participants; all professionals working in medical imaging and radiotherapy who use AI in clinical practice. Five semi-structured interviews were conducted online. Verbatim transcription was performed using an open-source automatic speech recognition model. Conceptual content analysis was performed to analyse the data and identify common themes. RESULTS Participants spoke about the possibility of AI deskilling staff and changing their roles, they discussed issues around data protection and data sharing strategies, the important role of effective leadership of AI teams, and the seamless integration into workflows. Participants thought that the benefits of adopting AI were smoother clinical workflows, support for the workforce in decision-making, and enhanced patient safety/care. They also highlighted the need for tailored AI education/training, multidisciplinary teamwork and support. CONCLUSION Participants who are now using AI tools felt that clinical staff should be empowered to support AI implementation by adopting new and clearly defined roles and responsibilities. They suggest that attention to patient care and safety is a key to successful AI adoption. Despite the increasing adoption of AI, participants in the UK described a gap in knowledge with professionals still needing clear guidance, education and training regarding AI in preparation for more widespread adoption.
Collapse
Affiliation(s)
- Nikolaos Stogiannos
- Department of Midwifery & Radiography, City St George's, University of London, UK; Magnitiki Tomografia Kerkiras, Corfu, Greece.
| | - Tracy O'Regan
- The Society and College of Radiographers, London, UK
| | | | - Lia Litosseliti
- School of Health & Psychological Sciences, City St George's, University of London, UK
| | | | | | | | | | - Anna Barnes
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, UK
| | - Mark F McEntee
- Discipline of Medical Imaging and Radiation Therapy, University College Cork, Ireland
| | - Christina Malamateniou
- Department of Midwifery & Radiography, City St George's, University of London, UK; The Society and College of Radiographers, London, UK; European Society of Medical Imaging Informatics, Vienna, Austria; European Federation of Radiographer Societies, Cumieira, Portugal
| |
Collapse
|
8
|
Fedeli L, Benelli M, Busoni S, Belli G, Ciccarone A, Coniglio A, Esposito M, Nocetti L, Sghedoni R, Tarducci R, Altabella L, Belligotti E, Bettarini S, Betti M, Caivano R, Carnì M, Chiappiniello A, Cimolai S, Cretti F, Feliciani G, Fulcheri C, Gasperi C, Giacometti M, Levrero F, Lizio D, Maieron M, Marzi S, Mascaro L, Mazzocchi S, Meliadò G, Morzenti S, Niespolo A, Noferini L, Oberhofer N, Orsingher L, Quattrocchi M, Ricci A, Savini A, Taddeucci A, Testa C, Tortoli P, Gobbi G, Gori C, Bernardi L, Giannelli M, Mazzoni LN. Unsupervised clustering analysis-based characterization of spatial profiles of inaccuracy in apparent diffusion coefficient values with varying acquisition plan orientation and diffusion weighting gradient direction - a large multicenter phantom study. Biomed Phys Eng Express 2024; 11:015021. [PMID: 39530644 DOI: 10.1088/2057-1976/ad9156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
This large multicenter study of 37 magnetic resonance imaging scanners aimed at characterizing, for the first time, spatial profiles of inaccuracy (namely, Δ-profiles) in apparent diffusion coefficient (ADC) values with varying acquisition plan orientation and diffusion weighting gradient direction, using a statistical approach exploiting unsupervised clustering analysis. A diffusion-weighted imaging (DWI) protocol (b-value: 0-200-400-600-800-1000 s mm-2) with different combinations of acquisition plan orientation (axial/sagittal/coronal) and diffusion weighting gradient direction (anterior-posterior/left-right/feet-head) was acquired on a standard water phantom. For each acquisition setup, Δ-profiles along the 3 main orthogonal directions were characterized by fitting data with a second order polynomial function (ar2+ br + c). Moreover, for each Δ-profile, the maximum minus minimum of the fitting function (δmax) was calculated. The parametersa,b,c, andδmaxshowed some significant variations between scanner systems by different manufacturers or with different static magnetic field strengths, as well as between different acquisition/estimation setups. Unsupervised clustering analysis showed two evident clusters with significantly different values of parametera(p< 0.0001), which can be grouped by acquisition protocol/Δ-profile direction but not scanner system. The results of ∆-profiles confirm an appreciable inter-scanner variability in ADC measurement and corroborate the importance of guarantying the reliability of ADC estimations in clinical or research studies, considering for each scanner system the specific acquisition sequence in terms of acquisition plan orientation and diffusion weighting gradient direction.
Collapse
Affiliation(s)
- Luca Fedeli
- Azienda USL Toscana Centro, Department of Hospitals Network, Medical Physics Unit Prato-Pistoia, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, A.U.S.L. Toscana Centro, Italy
| | - Simone Busoni
- U.O.C. Fisica Sanitaria, A.O.U. Careggi, Firenze, Italy
| | - Giacomo Belli
- U.O.C. Fisica Sanitaria, A.O.U. Careggi, Firenze, Italy
| | | | | | - Marco Esposito
- S.C. Fisica Sanitaria Firenze-Empoli, A.U.S.L. Toscana Centro, Firenze, Italy
| | - Luca Nocetti
- Servizio di Fisica Medica, A.O.U. Policlinico di Modena, Modena, Italy
| | - Roberto Sghedoni
- Fisica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Luisa Altabella
- U.O.C. Fisica Sanitaria, A.O.U. Integrata di Verona, Verona, Italy
| | - Eleonora Belligotti
- Fisica Medica e Alte Tecnologie, A.O. Ospedali Riuniti Marche Nord, Pesaro, Italy
| | | | - Margherita Betti
- Azienda USL Toscana Centro, Department of Hospitals Network, Medical Physics Unit Prato-Pistoia, Italy
| | | | - Marco Carnì
- U.O.D. Fisica Sanitaria, A.O.U. Policlinico Umberto I, Roma, Italy
| | | | - Sara Cimolai
- U.O. Fisica Sanitaria, U.L.S.S. 2 Marca Trevigiana, Treviso, Italy
| | - Fabiola Cretti
- U.S.C. Fisica Sanitaria, A.O. Papa Giovanni XXIII, Bergamo, Italy
| | - Giacomo Feliciani
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | | | - Chiara Gasperi
- U.O.S.D. Fisica Sanitaria Arezzo, A.U.S.L. Toscana Sud Est, Arezzo, Italy
| | - Mara Giacometti
- S.O.D. Fisica Sanitaria, A.O.U. Ospedali Riuniti di Ancona, Ancona, Italy
| | - Fabrizio Levrero
- U.O. Fisica Sanitaria, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Marta Maieron
- S.O.C. Fisica Sanitaria, A.S.U.I. Udine S. Maria della Misericordia, Udine, Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Roma, Italy
| | - Lorella Mascaro
- U.O.C. Fisica Sanitaria, A.S.S.T. Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Mazzocchi
- S.C. Fisica Sanitaria Firenze-Empoli, A.U.S.L. Toscana Centro, Firenze, Italy
| | - Gabriele Meliadò
- U.O.C. Fisica Sanitaria, A.O.U. Integrata di Verona, Verona, Italy
| | | | - Alessandra Niespolo
- U.O.C. Fisica Sanitaria Area Nord, A.U.S.L. Toscana Nord Ovest, Lucca, Italy
| | | | - Nadia Oberhofer
- Servizio Aziendale di Fisica Sanitaria, A.S. dell'Alto Adige, Bolzano, Italy
| | - Laura Orsingher
- U.O.C. Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | | | | | | | | | - Claudia Testa
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
| | - Paolo Tortoli
- U.O.C. Fisica Sanitaria, A.O.U. Careggi, Firenze, Italy
| | - Gianni Gobbi
- Università degli Studi di Perugia, Perugia, Italy
| | - Cesare Gori
- Università degli Studi di Firenze, Firenze, Italy
| | - Luca Bernardi
- Azienda USL Toscana Centro, Department of Hospitals Network, Medical Physics Unit Prato-Pistoia, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Lorenzo Nicola Mazzoni
- Azienda USL Toscana Centro, Department of Hospitals Network, Medical Physics Unit Prato-Pistoia, Italy
| |
Collapse
|
9
|
Champendal M, De Labouchère S, Ghotra SS, Gremion I, Sun Z, Torre S, Khine R, Marmy L, Malamateniou C, Dos Reis CS. Perspectives of medical imaging professionals about the impact of AI on Swiss radiographers. J Med Imaging Radiat Sci 2024; 55:101741. [PMID: 39197289 DOI: 10.1016/j.jmir.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Artificial Intelligence (AI) is increasingly implemented in medical imaging practice, however, its impact on radiographers practice is not well studied. The aim of this study was to explore the perceived impact of AI on radiographers' activities and profession in Switzerland. METHODS A survey conducted in the UK, translated into French and German, was disseminated through professional bodies and social media. The participants were Swiss radiographers (clinical/educators/ researchers/students) and physicians working within the medical imaging profession (radiology/nuclear medicine/radiation-oncology). The survey covered five sections: demographics, AI-knowledge, skills, confidence, perceptions about the AI impact. Descriptive, association statistics and qualitative thematic analysis were conducted. RESULTS A total of 242 responses were collected (89% radiographers; 11% physicians). AI is being used by 43% of participants in clinical practice, but 64% of them did not feel confident with AI-terminology. Participants viewed AI as an opportunity (57%), while 19% considered it as a threat. The opportunities were associated with streamlining repetitive tasks, minimizing errors, increasing time towards patient-centered care, research, and patient safety. The significant threats identified were reduction on work positions (23%), decrease of the radiographers' expertise level due to automation bias (16%). Participants (68%) did not feel well trained/prepared to implement AI in their practice, highlighting the non-availability of specific training (88%). 93% of the participants mentioned that AI education should be included at undergraduate education program. CONCLUSION Although most participants perceive AI as an opportunity, this study identified areas for improvement including lack of knowledge, educational supports/training, and confidence in radiographers. Customised training needs to be implemented to improve clinical practice and understanding of how AI can benefit radiographers.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland.
| | - Stephanie De Labouchère
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland; University hospital of the canton of Vaud (CHUV), Lausanne, Switzerland.
| | - Switinder Singh Ghotra
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland; Department of Radiology, Hospital of Yverdon-les-Bains (eHnv), 1400 Yverdon-les-Bains, Switzerland.
| | - Isabelle Gremion
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland.
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Western Australia, 6845, Australia.
| | | | - Ricardo Khine
- School of Health and Social Care Professions, Buckinghamshire New University, Wycombe, UK
| | - Laurent Marmy
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland.
| | - Christina Malamateniou
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland; Department of Radiography, Division of Midwifery and Radiography, School of Health Sciences, University of London, London, United Kingdom.
| | - Claudia Sá Dos Reis
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne 1011, Switzerland.
| |
Collapse
|
10
|
Swart R, Boersma L, Fijten R, van Elmpt W, Cremers P, Jacobs MJG. Implementation Strategy for Artificial Intelligence in Radiotherapy: Can Implementation Science Help? JCO Clin Cancer Inform 2024; 8:e2400101. [PMID: 39705640 DOI: 10.1200/cci.24.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 12/22/2024] Open
Abstract
PURPOSE Artificial intelligence (AI) applications in radiotherapy (RT) are expected to save time and improve quality, but implementation remains limited. Therefore, we used implementation science to develop a format for designing an implementation strategy for AI. This study aimed to (1) apply this format to develop an AI implementation strategy for our center; (2) identify insights gained to enhance AI implementation using this format; and (3) assess the feasibility and acceptability of this format to design a center-specific implementation strategy for departments aiming to implement AI. METHODS We created an AI-implementation strategy for our own center using implementation science methods. This included a stakeholder analysis, literature review, and interviews to identify facilitators and barriers, and designed strategies to overcome the barriers. These methods were subsequently used in a workshop with teams from seven Dutch RT centers to develop their own AI-implementation plans. The applicability, appropriateness, and feasibility were evaluated by the workshop participants, and relevant insights for AI implementation were summarized. RESULTS The stakeholder analysis identified internal (physicians, physicists, RT technicians, information technology, and education) and external (patients and representatives) stakeholders. Barriers and facilitators included concerns about opacity, privacy, data quality, legal aspects, knowledge, trust, stakeholder involvement, ethics, and multidisciplinary collaboration, all integrated into our implementation strategy. The workshop evaluation showed high acceptability (18 participants [90%]), appropriateness (17 participants [85%]), and feasibility (15 participants [75%]) of the implementation strategy. Sixteen participants fully agreed with the format. CONCLUSION Our study highlights the need for a collaborative approach to implement AI in RT. We designed a strategy to overcome organizational challenges, improve AI integration, and enhance patient care. Workshop feedback indicates the proposed methods are useful for multiple RT centers. Insights gained by applying the methods highlight the importance of multidisciplinary collaboration in the development and implementation of AI.
Collapse
Affiliation(s)
- Rachelle Swart
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Rianne Fijten
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Paul Cremers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maria J G Jacobs
- Tilburg School of Economics and Management, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
11
|
Liu H, Ding N, Li X, Chen Y, Sun H, Huang Y, Liu C, Ye P, Jin Z, Bao H, Xue H. Artificial Intelligence and Radiologist Burnout. JAMA Netw Open 2024; 7:e2448714. [PMID: 39576636 PMCID: PMC11584928 DOI: 10.1001/jamanetworkopen.2024.48714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
IMPORTANCE Understanding the association of artificial intelligence (AI) with physician burnout is crucial for fostering a collaborative interactive environment between physicians and AI. OBJECTIVE To estimate the association between AI use in radiology and radiologist burnout. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study conducted a questionnaire survey between May and October 2023, using the national quality control system of radiology in China. Participants included radiologists from 1143 hospitals. Radiologists reporting regular or consistent AI use were categorized as the AI group. Statistical analysis was performed from October 2023 to May 2024. EXPOSURE AI use in radiology practice. MAIN OUTCOMES AND MEASURES Burnout was defined by emotional exhaustion (EE) or depersonalization according to the Maslach Burnout Inventory. Workload was assessed based on working hours, number of image interpretations, hospital level, device type, and role in the workflow. AI acceptance was determined via latent class analysis considering AI-related knowledge, attitude, confidence, and intention. Propensity score-based mixed-effect generalized linear logistic regression was used to estimate the associations between AI use and burnout and its components. Interactions of AI use, workload, and AI acceptance were assessed on additive and multiplicative scales. RESULTS Among 6726 radiologists included in this study, 2376 (35.3%) were female and 4350 (64.7%) were male; the median (IQR) age was 41 (34-48) years; 3017 were in the AI group (1134 [37.6%] female; median [IQR] age, 40 [33-47] years) and 3709 in the non-AI group (1242 [33.5%] female; median [IQR] age, 42 [34-49] years). The weighted prevalence of burnout was significantly higher in the AI group compared with the non-AI group (40.9% vs 38.6%; P < .001). After adjusting for covariates, AI use was significantly associated with increased odds of burnout (odds ratio [OR], 1.20; 95% CI, 1.10-1.30), primarily driven by its association with EE (OR, 1.21; 95% CI, 1.10-1.34). A dose-response association was observed between the frequency of AI use and burnout (P for trend < .001). The associations were more pronounced among radiologists with high workload and lower AI acceptance. A significant negative interaction was noted between high AI acceptance and AI use. CONCLUSIONS AND RELEVANCE In this cross-sectional study of radiologist burnout, frequent AI use was associated with an increased risk of radiologist burnout, particularly among those with high workload or lower AI acceptance. Further longitudinal studies are needed to provide more evidence.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Ding
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| | - Xinying Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yunli Chen
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Sun
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| | - Yuanyuan Huang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Liu
- Psychological Health Center, Beijing United Family Hospital, Beijing, China
| | - Pengpeng Ye
- National Centre for Non-Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Zhengyu Jin
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| | - Heling Bao
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huadan Xue
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| |
Collapse
|
12
|
Li F, Wang D, Yang Z, Zhang Y, Jiang J, Liu X, Kong K, Zhou F, Tham CC, Medeiros F, Han Y, Grzybowski A, Zangwill LM, Lam DSC, Zhang X. The AI revolution in glaucoma: Bridging challenges with opportunities. Prog Retin Eye Res 2024; 103:101291. [PMID: 39186968 DOI: 10.1016/j.preteyeres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the "black box" nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Fengqi Zhou
- Ophthalmology, Mayo Clinic Health System, Eau Claire, WI, USA.
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Felipe Medeiros
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ying Han
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA; The Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, CA, USA.
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, CA, USA.
| | - Dennis S C Lam
- The International Eye Research Institute of the Chinese University of Hong Kong (Shenzhen), Shenzhen, China; The C-MER Dennis Lam & Partners Eye Center, C-MER International Eye Care Group, Hong Kong, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
13
|
Finkelstein J, Gabriel A, Schmer S, Truong TT, Dunn A. Identifying Facilitators and Barriers to Implementation of AI-Assisted Clinical Decision Support in an Electronic Health Record System. J Med Syst 2024; 48:89. [PMID: 39292314 PMCID: PMC11410896 DOI: 10.1007/s10916-024-02104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Recent advancements in computing have led to the development of artificial intelligence (AI) enabled healthcare technologies. AI-assisted clinical decision support (CDS) integrated into electronic health records (EHR) was demonstrated to have a significant potential to improve clinical care. With the rapid proliferation of AI-assisted CDS, came the realization that a lack of careful consideration of socio-technical issues surrounding the implementation and maintenance of these tools can result in unanticipated consequences, missed opportunities, and suboptimal uptake of these potentially useful technologies. The 48-h Discharge Prediction Tool (48DPT) is a new AI-assisted EHR CDS to facilitate discharge planning. This study aimed to methodologically assess the implementation of 48DPT and identify the barriers and facilitators of adoption and maintenance using the validated implementation science frameworks. The major dimensions of RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) and the constructs of the Consolidated Framework for Implementation Research (CFIR) frameworks have been used to analyze interviews of 24 key stakeholders using 48DPT. The systematic assessment of the 48DPT implementation allowed us to describe facilitators and barriers to implementation such as lack of awareness, lack of accuracy and trust, limited accessibility, and transparency. Based on our evaluation, the factors that are crucial for the successful implementation of AI-assisted EHR CDS were identified. Future implementation efforts of AI-assisted EHR CDS should engage the key clinical stakeholders in the AI tool development from the very inception of the project, support transparency and explainability of the AI models, provide ongoing education and onboarding of the clinical users, and obtain continuous input from clinical staff on the CDS performance.
Collapse
Affiliation(s)
- Joseph Finkelstein
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Rm. 2028, Salt Lake City, UT, 84108, USA.
| | - Aileen Gabriel
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Rm. 2028, Salt Lake City, UT, 84108, USA
| | - Susanna Schmer
- Department of Case Management, Mount Sinai Health System, New York, NY, USA
| | - Tuyet-Trinh Truong
- Division of Hospital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Dunn
- Division of Hospital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Kameyama J, Kodera S, Inoue Y. Ethical, legal, and social issues (ELSI) and reporting guidelines of AI research in healthcare. PLOS DIGITAL HEALTH 2024; 3:e0000607. [PMID: 39298409 DOI: 10.1371/journal.pdig.0000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Affiliation(s)
- Junko Kameyama
- Department of Healthcare Ethics, Kyoto University School of Public Health, Kyoto, Japan
| | - Satoshi Kodera
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yusuke Inoue
- Department of Healthcare Ethics, Kyoto University School of Public Health, Kyoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Siddiqui IA, Littlefield N, Carlson LA, Gong M, Chhabra A, Menezes Z, Mastorakos GM, Thakar SM, Abedian M, Lohse I, Weiss KR, Plate JF, Moradi H, Amirian S, Tafti AP. Fair AI-powered orthopedic image segmentation: addressing bias and promoting equitable healthcare. Sci Rep 2024; 14:16105. [PMID: 38997335 PMCID: PMC11245517 DOI: 10.1038/s41598-024-66873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
AI-powered segmentation of hip and knee bony anatomy has revolutionized orthopedics, transforming pre-operative planning and post-operative assessment. Despite the remarkable advancements in AI algorithms for medical imaging, the potential for biases inherent within these models remains largely unexplored. This study tackles these concerns by thoroughly re-examining AI-driven segmentation for hip and knee bony anatomy. While advanced imaging modalities like CT and MRI offer comprehensive views, plain radiographs (X-rays) predominate the standard initial clinical assessment due to their widespread availability, low cost, and rapid acquisition. Hence, we focused on plain radiographs to ensure the utilization of our contribution in diverse healthcare settings, including those with limited access to advanced imaging technologies. This work provides insights into the underlying causes of biases in AI-based knee and hip image segmentation through an extensive evaluation, presenting targeted mitigation strategies to alleviate biases related to sex, race, and age, using an automatic segmentation that is fair, impartial, and safe in the context of AI. Our contribution can enhance inclusivity, ethical practices, equity, and an unbiased healthcare environment with advanced clinical outcomes, aiding decision-making and osteoarthritis research. Furthermore, we have made all the codes and datasets publicly and freely accessible to promote open scientific research.
Collapse
Affiliation(s)
- Ismaeel A Siddiqui
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA
| | | | - Luke A Carlson
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Matthew Gong
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Avani Chhabra
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA
| | - Zoe Menezes
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA
| | | | - Sakshi Mehul Thakar
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA
| | - Mehrnaz Abedian
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Kurt R Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Johannes F Plate
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213, USA.
| | - Hamidreza Moradi
- Department of Computer Science, North Carolina Agricultural and Technical State University, Greensboro, 27411, USA.
| | - Soheyla Amirian
- Seidenberg School of Computer Science and Information Systems, Pace University, New York, 10038, USA.
| | - Ahmad P Tafti
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, 15620, USA.
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, 5620, USA.
| |
Collapse
|
16
|
Wee NK, Git KA, Lee WJ, Raval G, Pattokhov A, Ho ELM, Chuapetcharasopon C, Tomiyama N, Ng KH, Tan CH. Position Statements of the Emerging Trends Committee of the Asian Oceanian Society of Radiology on the Adoption and Implementation of Artificial Intelligence for Radiology. Korean J Radiol 2024; 25:603-612. [PMID: 38942454 PMCID: PMC11214917 DOI: 10.3348/kjr.2024.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/30/2024] Open
Abstract
Artificial intelligence (AI) is rapidly gaining recognition in the radiology domain as a greater number of radiologists are becoming AI-literate. However, the adoption and implementation of AI solutions in clinical settings have been slow, with points of contention. A group of AI users comprising mainly clinical radiologists across various Asian countries, including India, Japan, Malaysia, Singapore, Taiwan, Thailand, and Uzbekistan, formed the working group. This study aimed to draft position statements regarding the application and clinical deployment of AI in radiology. The primary aim is to raise awareness among the general public, promote professional interest and discussion, clarify ethical considerations when implementing AI technology, and engage the radiology profession in the ever-changing clinical practice. These position statements highlight pertinent issues that need to be addressed between care providers and care recipients. More importantly, this will help legalize the use of non-human instruments in clinical deployment without compromising ethical considerations, decision-making precision, and clinical professional standards. We base our study on four main principles of medical care-respect for patient autonomy, beneficence, non-maleficence, and justice.
Collapse
Affiliation(s)
- Nicole Kessa Wee
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Kim-Ann Git
- Department of Diagnostic Radiology, Pantai Hospital, Kuala Lumpur, Malaysia
| | - Wen-Jeng Lee
- Department of Diagnostic Radiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gaurang Raval
- Department of Diagnostic Radiology, Workhardt Hospitals Limited, Mumbai, India
| | - Aziz Pattokhov
- Faculty of Medicine, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Evelyn Lai Ming Ho
- Department of Diagnostic Radiology, ParkCity Medical Centre, Kuala Lumpur, Malaysia
| | | | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology Suita, Osaka University Hospital, Osaka, Japan
| | - Kwan Hoong Ng
- Department of Biomedical Imaging and University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University Springhill Campus, Port Dickson, Malaysia
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
17
|
Moldt JA, Festl-Wietek T, Fuhl W, Zabel S, Claassen M, Wagner S, Nieselt K, Herrmann-Werner A. Assessing AI Awareness and Identifying Essential Competencies: Insights From Key Stakeholders in Integrating AI Into Medical Education. JMIR MEDICAL EDUCATION 2024; 10:e58355. [PMID: 38989834 PMCID: PMC11238140 DOI: 10.2196/58355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 07/12/2024]
Abstract
Background The increasing importance of artificial intelligence (AI) in health care has generated a growing need for health care professionals to possess a comprehensive understanding of AI technologies, requiring an adaptation in medical education. Objective This paper explores stakeholder perceptions and expectations regarding AI in medicine and examines their potential impact on the medical curriculum. This study project aims to assess the AI experiences and awareness of different stakeholders and identify essential AI-related topics in medical education to define necessary competencies for students. Methods The empirical data were collected as part of the TüKITZMed project between August 2022 and March 2023, using a semistructured qualitative interview. These interviews were administered to a diverse group of stakeholders to explore their experiences and perspectives of AI in medicine. A qualitative content analysis of the collected data was conducted using MAXQDA software. Results Semistructured interviews were conducted with 38 participants (6 lecturers, 9 clinicians, 10 students, 6 AI experts, and 7 institutional stakeholders). The qualitative content analysis revealed 6 primary categories with a total of 24 subcategories to answer the research questions. The evaluation of the stakeholders' statements revealed several commonalities and differences regarding their understanding of AI. Crucial identified AI themes based on the main categories were as follows: possible curriculum contents, skills, and competencies; programming skills; curriculum scope; and curriculum structure. Conclusions The analysis emphasizes integrating AI into medical curricula to ensure students' proficiency in clinical applications. Standardized AI comprehension is crucial for defining and teaching relevant content. Considering diverse perspectives in implementation is essential to comprehensively define AI in the medical context, addressing gaps and facilitating effective solutions for future AI use in medical studies. The results provide insights into potential curriculum content and structure, including aspects of AI in medicine.
Collapse
Affiliation(s)
- Julia-Astrid Moldt
- Tübingen Institute for Medical Education, University of Tübingen, Tübingen, Germany
| | - Teresa Festl-Wietek
- Tübingen Institute for Medical Education, University of Tübingen, Tübingen, Germany
| | - Wolfgang Fuhl
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Susanne Zabel
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Board of the Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Anne Herrmann-Werner
- Tübingen Institute for Medical Education, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine VI - Psychosomatic Medicine and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Rousta F, Esteki A, Shalbaf A, Sadeghi A, Moghadam PK, Voshagh A. Application of artificial intelligence in pancreas endoscopic ultrasound imaging- A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108205. [PMID: 38703435 DOI: 10.1016/j.cmpb.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The pancreas is a vital organ in digestive system which has significant health implications. It is imperative to evaluate and identify malignant pancreatic lesions promptly in light of the high mortality rate linked to such malignancies. Endoscopic Ultrasound (EUS) is a non-invasive precise technique to detect pancreas disorders, but it is highly operator dependent. Artificial intelligence (AI), including traditional machine learning (ML) and deep learning (DL) techniques can play a pivotal role to enhancing the performance of EUS regardless of operator. AI performs a critical function in the detection, classification, and segmentation of medical images. The utilization of AI-assisted systems has improved the accuracy and productivity of pancreatic analysis, including the detection of diverse pancreatic disorders (e.g., pancreatitis, masses, and cysts) as well as landmarks and parenchyma. This systematic review examines the rapidly developing domain of AI-assisted system in EUS of the pancreas. Its objective is to present a thorough study of the present research status and developments in this area. This paper explores the significant challenges of AI-assisted system in pancreas EUS imaging, highlights the potential of AI techniques in addressing these challenges, and suggests the scope for future research in domain of AI-assisted EUS systems.
Collapse
Affiliation(s)
- Fatemeh Rousta
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esteki
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardalan Voshagh
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Lopes J, Faria M, Santos MF. Exploring trends and autonomy levels of adaptive business intelligence in healthcare: A systematic review. PLoS One 2024; 19:e0302697. [PMID: 38728308 PMCID: PMC11086907 DOI: 10.1371/journal.pone.0302697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE In order to comprehensively understand the characteristics of Adaptive Business Intelligence (ABI) in Healthcare, this study is structured to provide insights into the common features and evolving patterns within this domain. Applying the Sheridan's Classification as a framework, we aim to assess the degree of autonomy exhibited by various ABI components. Together, these objectives will contribute to a deeper understanding of ABI implementation and its implications within the Healthcare context. METHODS A comprehensive search of academic databases was conducted to identify relevant studies, selecting AIS e-library (AISel), Decision Support Systems Journal (DSSJ), Nature, The Lancet Digital Health (TLDH), PubMed, Expert Systems with Application (ESWA) and npj Digital Medicine as information sources. Studies from 2006 to 2022 were included based on predefined eligibility criteria. PRISMA statements were used to report this study. RESULTS The outcomes showed that ABI systems present distinct levels of development, autonomy and practical deployment. The high levels of autonomy were essentially associated with predictive components. However, the possibility of completely autonomous decisions by these systems is totally excluded. Lower levels of autonomy are also observed, particularly in connection with prescriptive components, granting users responsibility in the generation of decisions. CONCLUSION The study presented emphasizes the vital connection between desired outcomes and the inherent autonomy of these solutions, highlighting the critical need for additional research on the consequences of ABI systems and their constituent elements. Organizations should deploy these systems in a way consistent with their objectives and values, while also being mindful of potential adverse effects. Providing valuable insights for researchers, practitioners, and policymakers aiming to comprehend the diverse levels of ABI systems implementation, it contributes to well-informed decision-making in this dynamic field.
Collapse
Affiliation(s)
- João Lopes
- ALGORITMI Research Center, University of Minho, Braga, Portugal
| | - Mariana Faria
- ALGORITMI Research Center, University of Minho, Braga, Portugal
| | | |
Collapse
|
20
|
Ross J, Hammouche S, Chen Y, Rockall AG. Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment. Clin Radiol 2024; 79:338-345. [PMID: 38360516 DOI: 10.1016/j.crad.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The implementation of artificial intelligence (AI) applications in routine practice, following regulatory approval, is currently limited by practical concerns around reliability, accountability, trust, safety, and governance, in addition to factors such as cost-effectiveness and institutional information technology support. When a technology is new and relatively untested in a field, professional confidence is lacking and there is a sense of the need to go above the baseline level of validation and compliance. In this article, we propose an approach that goes beyond standard regulatory compliance for AI apps that are approved for marketing, including independent benchmarking in the lab as well as clinical audit in practice, with the aims of increasing trust and preventing harm.
Collapse
Affiliation(s)
- J Ross
- Department of Cancer and Surgery, Imperial College London, UK.
| | - S Hammouche
- Department of Cancer and Surgery, Imperial College London, UK
| | - Y Chen
- School of Medicine, University of Nottingham, UK
| | - A G Rockall
- Department of Cancer and Surgery, Imperial College London, UK
| |
Collapse
|
21
|
Yang L, Wang B, Shi X, Li B, Xie J, Wang C. Application research of radiomics in colorectal cancer: A bibliometric study. Medicine (Baltimore) 2024; 103:e37827. [PMID: 38608072 PMCID: PMC11018182 DOI: 10.1097/md.0000000000037827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Radiomics has shown great potential in the clinical field of colorectal cancer (CRC). However, few bibliometric studies have systematically analyzed existing research in this field. The purpose of this study is to understand the current research status and future development directions of CRC. METHODS Search the English documents on the application of radiomics in the field of CRC research included in the Web of Science Core Collection from its establishment to October 2023. VOSviewer and CiteSpace software were used to conduct bibliometric and visual analysis of online publications related to countries/regions, authors, journals, references, and keywords in this field. RESULTS A total of 735 relevant documents published from Web of Science Core Collection to October 2023 were retrieved, and a total of 419 documents were obtained based on the screening criteria, including 376 articles and 43 reviews. The number of publications is increasing year by year. Among them, China publishes the most relevant documents (n = 238), which is much higher than Italy (n = 69) and the United States (n = 63). Tian Jie is the author with the most publications and citations (n = 17, citations = 2128), GE Healthcare is the most productive institution (n = 26), Frontiers in Oncology is the journal with the most publications (n = 60), and European Radiology is the most cited journal (n = 776). Hot spots for the application of radiomics in CRC include magnetic resonance, neoadjuvant chemoradiotherapy, survival, texture analysis, and machine learning. These directions are the current hot spots for the application of radiomics research in CRC and may be the direction of continued development in the future. CONCLUSION Through bibliometric analysis, the application of radiomics in CRC has been increasing year by year. The application of radiomics improves the accuracy of preoperative diagnosis, prediction, and prognosis of CRC. The results of bibliometrics analysis provide a valuable reference for the research direction of radiomics. However, radiomics still faces many challenges in the future, such as the single nature of the data source which may affect the comprehensiveness of the results. Future studies can further expand the data sources and build a multicenter public database to more comprehensively reflect the research status and development trend of CRC radiomics.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Binjie Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaoying Shi
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Bairu Li
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Jiaqiang Xie
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Changfu Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
22
|
Serrador L, Villani FP, Moccia S, Santos CP. Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net. Comput Med Imaging Graph 2024; 113:102350. [PMID: 38340574 DOI: 10.1016/j.compmedimag.2024.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.
Collapse
Affiliation(s)
- Luís Serrador
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Guimaraes, Portugal; Clinical Academic Center of Braga (2CA-Braga), Hospital of Braga, Braga, Portugal.
| | | | - Sara Moccia
- The BioRobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Italy
| | - Cristina P Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Guimaraes, Portugal; Clinical Academic Center of Braga (2CA-Braga), Hospital of Braga, Braga, Portugal
| |
Collapse
|
23
|
Stogiannos N, O'Regan T, Scurr E, Litosseliti L, Pogose M, Harvey H, Kumar A, Malik R, Barnes A, McEntee MF, Malamateniou C. AI implementation in the UK landscape: Knowledge of AI governance, perceived challenges and opportunities, and ways forward for radiographers. Radiography (Lond) 2024; 30:612-621. [PMID: 38325103 DOI: 10.1016/j.radi.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Despite the rapid increase of AI-enabled applications deployed in clinical practice, many challenges exist around AI implementation, including the clarity of governance frameworks, usability of validation of AI models, and customisation of training for radiographers. This study aimed to explore the perceptions of diagnostic and therapeutic radiographers, with existing theoretical and/or practical knowledge of AI, on issues of relevance to the field, such as AI implementation, including knowledge of AI governance and procurement, perceptions about enablers and challenges and future priorities for AI adoption. METHODS An online survey was designed and distributed to UK-based qualified radiographers who work in medical imaging and/or radiotherapy and have some previous theoretical and/or practical knowledge of working with AI. Participants were recruited through the researchers' professional networks on social media with support from the AI advisory group of the Society and College of Radiographers. Survey questions related to AI training/education, knowledge of AI governance frameworks, data privacy procedures, AI implementation considerations, and priorities for AI adoption. Descriptive statistics were employed to analyse the data, and chi-square tests were used to explore significant relationships between variables. RESULTS In total, 88 valid responses were received. Most radiographers (56.6 %) had not received any AI-related training. Also, although approximately 63 % of them used an evaluation framework to assess AI models' performance before implementation, many (36.9 %) were still unsure about suitable evaluation methods. Radiographers requested clearer guidance on AI governance, ample time to implement AI in their practice safely, adequate funding, effective leadership, and targeted support from AI champions. AI training, robust governance frameworks, and patient and public involvement were seen as priorities for the successful implementation of AI by radiographers. CONCLUSION AI implementation is progressing within radiography, but without customised training, clearer governance, key stakeholder engagement and suitable new roles created, it will be hard to harness its benefits and minimise related risks. IMPLICATIONS FOR PRACTICE The results of this study highlight some of the priorities and challenges for radiographers in relation to AI adoption, namely the need for developing robust AI governance frameworks and providing optimal AI training.
Collapse
Affiliation(s)
- N Stogiannos
- Division of Midwifery & Radiography, City, University of London, UK; Medical Imaging Department, Corfu General Hospital, Greece.
| | - T O'Regan
- The Society and College of Radiographers, London, UK.
| | - E Scurr
- The Royal Marsden NHS Foundation Trust, UK.
| | - L Litosseliti
- School of Health & Psychological Sciences, City, University of London, UK.
| | - M Pogose
- Quality Assurance and Regulatory Affairs, Hardian Health, UK.
| | | | - A Kumar
- Frimley Health NHS Foundation Trust, UK.
| | - R Malik
- Bolton NHS Foundation Trust, UK.
| | - A Barnes
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, UK.
| | - M F McEntee
- Discipline of Medical Imaging and Radiation Therapy, University College Cork, Ireland.
| | - C Malamateniou
- Division of Midwifery & Radiography, City, University of London, UK; Society and College of Radiographers AI Advisory Group, London, UK; European Society of Medical Imaging Informatics, Vienna, Austria; European Federation of Radiographer Societies, Cumieira, Portugal.
| |
Collapse
|
24
|
Rony MKK, Parvin MR, Ferdousi S. Advancing nursing practice with artificial intelligence: Enhancing preparedness for the future. Nurs Open 2024; 11:10.1002/nop2.2070. [PMID: 38268252 PMCID: PMC10733565 DOI: 10.1002/nop2.2070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024] Open
Abstract
AIM This article aimed to explore the role of AI in advancing nursing practice, focusing on its impact on readiness for the future. DESIGN AND METHODS A position paper, the methodology comprises three key steps. First, a comprehensive literature search using specific keywords in reputable databases was conducted to gather current information on AI in nursing. Second, data extraction and synthesis from selected articles were performed. Finally, a thematic analysis identifies recurring themes to provide insights into AI's impact on future nursing practice. RESULTS The findings highlight the transformative role of AI in advancing nursing practice and preparing nurses for the future, including enhancing nursing practice with AI, preparing nurses for the future (AI education and training) and associated, ethical considerations and challenges. AI-enabled robotics and telehealth solutions expand the reach of nursing care, improving accessibility of healthcare services and remote monitoring capabilities of patients' health conditions.
Collapse
Affiliation(s)
| | - Mst. Rina Parvin
- Major of Bangladesh ArmyCombined Military HospitalDhakaBangladesh
| | - Silvia Ferdousi
- International University of Business Agriculture and TechnologyDhakaBangladesh
| |
Collapse
|
25
|
Irmici G, Cè M, Pepa GD, D'Ascoli E, De Berardinis C, Giambersio E, Rabiolo L, La Rocca L, Carriero S, Depretto C, Scaperrotta G, Cellina M. Exploring the Potential of Artificial Intelligence in Breast Ultrasound. Crit Rev Oncog 2024; 29:15-28. [PMID: 38505878 DOI: 10.1615/critrevoncog.2023048873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Breast ultrasound has emerged as a valuable imaging modality in the detection and characterization of breast lesions, particularly in women with dense breast tissue or contraindications for mammography. Within this framework, artificial intelligence (AI) has garnered significant attention for its potential to improve diagnostic accuracy in breast ultrasound and revolutionize the workflow. This review article aims to comprehensively explore the current state of research and development in harnessing AI's capabilities for breast ultrasound. We delve into various AI techniques, including machine learning, deep learning, as well as their applications in automating lesion detection, segmentation, and classification tasks. Furthermore, the review addresses the challenges and hurdles faced in implementing AI systems in breast ultrasound diagnostics, such as data privacy, interpretability, and regulatory approval. Ethical considerations pertaining to the integration of AI into clinical practice are also discussed, emphasizing the importance of maintaining a patient-centered approach. The integration of AI into breast ultrasound holds great promise for improving diagnostic accuracy, enhancing efficiency, and ultimately advancing patient's care. By examining the current state of research and identifying future opportunities, this review aims to contribute to the understanding and utilization of AI in breast ultrasound and encourage further interdisciplinary collaboration to maximize its potential in clinical practice.
Collapse
Affiliation(s)
- Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Elisa D'Ascoli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Claudia De Berardinis
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Emilia Giambersio
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Lidia Rabiolo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Policlinico Università di Palermo, Palermo, Italy
| | - Ludovica La Rocca
- Postgraduation School in Radiodiagnostics, Università degli Studi di Napoli
| | - Serena Carriero
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Catherine Depretto
- Breast Radiology Unit, Fondazione IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | | | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
26
|
Chauvie S, Mazzoni LN, O’Doherty J. A Review on the Use of Imaging Biomarkers in Oncology Clinical Trials: Quality Assurance Strategies for Technical Validation. Tomography 2023; 9:1876-1902. [PMID: 37888741 PMCID: PMC10610870 DOI: 10.3390/tomography9050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Imaging biomarkers (IBs) have been proposed in medical literature that exploit images in a quantitative way, going beyond the visual assessment by an imaging physician. These IBs can be used in the diagnosis, prognosis, and response assessment of several pathologies and are very often used for patient management pathways. In this respect, IBs to be used in clinical practice and clinical trials have a requirement to be precise, accurate, and reproducible. Due to limitations in imaging technology, an error can be associated with their value when considering the entire imaging chain, from data acquisition to data reconstruction and subsequent analysis. From this point of view, the use of IBs in clinical trials requires a broadening of the concept of quality assurance and this can be a challenge for the responsible medical physics experts (MPEs). Within this manuscript, we describe the concept of an IB, examine some examples of IBs currently employed in clinical practice/clinical trials and analyze the procedure that should be carried out to achieve better accuracy and reproducibility in their use. We anticipate that this narrative review, written by the components of the EFOMP working group on "the role of the MPEs in clinical trials"-imaging sub-group, can represent a valid reference material for MPEs approaching the subject.
Collapse
Affiliation(s)
- Stephane Chauvie
- Medical Physics Division, Santa Croce e Carle Hospital, 12100 Cuneo, Italy;
| | | | - Jim O’Doherty
- Siemens Medical Solutions, Malvern, PA 19355, USA;
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC 20455, USA
- Radiography & Diagnostic Imaging, University College Dublin, D04 C7X2 Dublin, Ireland
| |
Collapse
|
27
|
Debs P, Fayad LM. The promise and limitations of artificial intelligence in musculoskeletal imaging. FRONTIERS IN RADIOLOGY 2023; 3:1242902. [PMID: 37609456 PMCID: PMC10440743 DOI: 10.3389/fradi.2023.1242902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
With the recent developments in deep learning and the rapid growth of convolutional neural networks, artificial intelligence has shown promise as a tool that can transform several aspects of the musculoskeletal imaging cycle. Its applications can involve both interpretive and non-interpretive tasks such as the ordering of imaging, scheduling, protocoling, image acquisition, report generation and communication of findings. However, artificial intelligence tools still face a number of challenges that can hinder effective implementation into clinical practice. The purpose of this review is to explore both the successes and limitations of artificial intelligence applications throughout the muscuskeletal imaging cycle and to highlight how these applications can help enhance the service radiologists deliver to their patients, resulting in increased efficiency as well as improved patient and provider satisfaction.
Collapse
Affiliation(s)
- Patrick Debs
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Laura M. Fayad
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Ramesh KK, Xu KM, Trivedi AG, Huang V, Sharghi VK, Kleinberg LR, Mellon EA, Shu HKG, Shim H, Weinberg BD. A Fully Automated Post-Surgical Brain Tumor Segmentation Model for Radiation Treatment Planning and Longitudinal Tracking. Cancers (Basel) 2023; 15:3956. [PMID: 37568773 PMCID: PMC10417353 DOI: 10.3390/cancers15153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) has a poor survival rate even with aggressive surgery, concomitant radiation therapy (RT), and adjuvant chemotherapy. Standard-of-care RT involves irradiating a lower dose to the hyperintense lesion in T2-weighted fluid-attenuated inversion recovery MRI (T2w/FLAIR) and a higher dose to the enhancing tumor on contrast-enhanced, T1-weighted MRI (CE-T1w). While there have been several attempts to segment pre-surgical brain tumors, there have been minimal efforts to segment post-surgical tumors, which are complicated by a resection cavity and postoperative blood products, and tools are needed to assist physicians in generating treatment contours and assessing treated patients on follow up. This report is one of the first to train and test multiple deep learning models for the purpose of post-surgical brain tumor segmentation for RT planning and longitudinal tracking. Post-surgical FLAIR and CE-T1w MRIs, as well as their corresponding RT targets (GTV1 and GTV2, respectively) from 225 GBM patients treated with standard RT were trained on multiple deep learning models including: Unet, ResUnet, Swin-Unet, 3D Unet, and Swin-UNETR. These models were tested on an independent dataset of 30 GBM patients with the Dice metric used to evaluate segmentation accuracy. Finally, the best-performing segmentation model was integrated into our longitudinal tracking web application to assign automated structured reporting scores using change in percent cutoffs of lesion volume. The 3D Unet was our best-performing model with mean Dice scores of 0.72 for GTV1 and 0.73 for GTV2 with a standard deviation of 0.17 for both in the test dataset. We have successfully developed a lightweight post-surgical segmentation model for RT planning and longitudinal tracking.
Collapse
Affiliation(s)
- Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karen M. Xu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
| | - Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 45056, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.K.R.); (A.G.T.); (V.H.)
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brent D. Weinberg
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Reginelli A, Giacobbe G, Del Canto MT, Alessandrella M, Balestrucci G, Urraro F, Russo GM, Gallo L, Danti G, Frittoli B, Stoppino L, Schettini D, Iafrate F, Cappabianca S, Laghi A, Grassi R, Brunese L, Barile A, Miele V. Peritoneal Carcinosis: What the Radiologist Needs to Know. Diagnostics (Basel) 2023; 13:diagnostics13111974. [PMID: 37296826 DOI: 10.3390/diagnostics13111974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Peritoneal carcinosis is a condition characterized by the spread of cancer cells to the peritoneum, which is the thin membrane that lines the abdominal cavity. It is a serious condition that can result from many different types of cancer, including ovarian, colon, stomach, pancreatic, and appendix cancer. The diagnosis and quantification of lesions in peritoneal carcinosis are critical in the management of patients with the condition, and imaging plays a central role in this process. Radiologists play a vital role in the multidisciplinary management of patients with peritoneal carcinosis. They need to have a thorough understanding of the pathophysiology of the condition, the underlying neoplasms, and the typical imaging findings. In addition, they need to be aware of the differential diagnoses and the advantages and disadvantages of the various imaging methods available. Imaging plays a central role in the diagnosis and quantification of lesions, and radiologists play a critical role in this process. Ultrasound, computed tomography, magnetic resonance, and PET/CT scans are used to diagnose peritoneal carcinosis. Each imaging procedure has advantages and disadvantages, and particular imaging techniques are recommended based on patient conditions. Our aim is to provide knowledge to radiologists regarding appropriate techniques, imaging findings, differential diagnoses, and treatment options. With the advent of AI in oncology, the future of precision medicine appears promising, and the interconnection between structured reporting and AI is likely to improve diagnostic accuracy and treatment outcomes for patients with peritoneal carcinosis.
Collapse
Affiliation(s)
- Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, "Antonio Cardarelli" Hospital, 80131 Naples, Italy
| | - Maria Teresa Del Canto
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Marina Alessandrella
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Giovanni Balestrucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Gaetano Maria Russo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Luigi Gallo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Ginevra Danti
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Barbara Frittoli
- Department of Radiology, Spedali Civili Hospital, 25123 Brescia, Italy
| | - Luca Stoppino
- Department of Radiology, University Hospital of Foggia, 71122 Foggia, Italy
| | - Daria Schettini
- Department of Radiology, Villa Scassi Hospital, Corso Scassi 1, 16121 Genova, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza-University of Rome, Radiology Unit-Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Roberto Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vittorio Miele
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
30
|
Ng KH, Tan CH. It is Time to Incorporate Artificial Intelligence in Radiology Residency Programs. Korean J Radiol 2023; 24:177-179. [PMID: 36788774 PMCID: PMC9971836 DOI: 10.3348/kjr.2022.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Affiliation(s)
- Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University, Springhill, Negri Sembilan, Malaysia.
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
31
|
Haneberg AG, Pierre K, Winter-Reinhold E, Hochhegger B, Peters KR, Grajo J, Arreola M, Asadizanjani N, Bian J, Mancuso A, Forghani R. Introduction to Radiomics and Artificial Intelligence: A Primer for Radiologists. Semin Roentgenol 2023; 58:152-157. [PMID: 37087135 DOI: 10.1053/j.ro.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 04/03/2023]
Abstract
Health informatics and artificial intelligence (AI) are expected to transform the healthcare enterprise and the future practice of radiology. There is an increasing body of literature on radiomics and deep learning/AI applications in medical imaging. There are also a steadily increasing number of FDA cleared AI applications in radiology. It is therefore essential for radiologists to have a basic understanding of these approaches, whether in academia or private practice. In this article, we will provide an overview of the field and familiarize the readers with the fundamental concepts behind these approaches.
Collapse
|
32
|
A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation. Phys Med 2023; 107:102560. [PMID: 36878133 DOI: 10.1016/j.ejmp.2023.102560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
PURPOSE Breast cancer is one of the major reasons of death due to cancer in women. Early diagnosis is the most critical key for disease screening, control, and reducing mortality. A robust diagnosis relies on the correct classification of breast lesions. While breast biopsy is referred to as the "gold standard" in assessing both the activity and degree of breast cancer, it is an invasive and time-consuming approach. METHOD The current study's primary objective was to develop a novel deep-learning architecture based on the InceptionV3 network to classify ultrasound breast lesions. The main promotions of the proposed architecture were converting the InceptionV3 modules to residual inception ones, increasing their number, and altering the hyperparameters. In addition, we used a combination of five datasets (three public datasets and two prepared from different imaging centers) for training and evaluating the model. RESULTS The dataset was split into the train (80%) and test (20%) groups. The model achieved 0.83, 0.77, 0.8, 0.81, 0.81, 0.18, and 0.77 for the precision, recall, F1 score, accuracy, AUC, Root Mean Squared Error, and Cronbach's α in the test group, respectively. CONCLUSIONS This study illustrates that the improved InceptionV3 can robustly classify breast tumors, potentially reducing the need for biopsy in many cases.
Collapse
|
33
|
Yi Z, Wang J, Li M. Deep image and feature prior algorithm based on U-ConformerNet structure. Phys Med 2023; 107:102535. [PMID: 36764130 DOI: 10.1016/j.ejmp.2023.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE The reconstruction performance of the deep image prior (DIP) approach is limited by the conventional convolutional layer structure and it is difficult to enhance its potential. In order to improve the quality of image reconstruction and suppress artifacts, we propose a DIP algorithm with better performance, and verify its superiority in the latest case. METHODS We construct a new U-ConformerNet structure as the DIP algorithm's network, replacing the traditional convolutional layer-based U-net structure, and introduce the 'lpips' deep network based feature distance regularization method. Our algorithm can switch between supervised and unsupervised modes at will to meet different needs. RESULTS The reconstruction was performed on the low dose CT dataset (LoDoPaB). Our algorithm attained a PSNR of more than 35 dB under unsupervised conditions, and the PSNR under the supervised condition is greater than 36 dB. Both of which are better than the performance of the DIP-TV. Furthermore, the accuracy of this method is positively connected with the quality of the a priori image with the help of deep networks. In terms of noise eradication and artifact suppression, the DIP algorithm with U-ConformerNet structure outperforms the standard DIP method based on convolutional structure. CONCLUSIONS It is known by experimental verification that, in unsupervised mode, the algorithm improves the output PSNR by at least 2-3 dB when compared to the DIP-TV algorithm (proposed in 2020). In supervised mode, our algorithm approaches that of the state-of-the-art end-to-end deep learning algorithms.
Collapse
Affiliation(s)
- Zhengming Yi
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Metallurgy and Resources Utilization of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Junjie Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Metallurgy and Resources Utilization of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Mingjie Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Metallurgy and Resources Utilization of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| |
Collapse
|
34
|
EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation. Phys Med 2023; 107:102534. [PMID: 36804696 DOI: 10.1016/j.ejmp.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/30/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness. METHODS A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200×. RESULTS Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%. CONCLUSION To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
Collapse
|
35
|
Belov MV, Kozlov VA, Tskhay VS, Zavertyaev MV. Resolution estimation in different monolithic PET detectors using neural networks. Phys Med 2023; 106:102527. [PMID: 36610177 DOI: 10.1016/j.ejmp.2023.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
PURPOSE We use neural networks to evaluate and compare the spatial resolution of two different simulated monolithic PET detector elements. The effects of mixing events with single photoeffect interactions and multiple Compton scatterings are also studied. METHODS Two PET detector models were used in this study. The first one consisted of a LYSO crystal plate with 19.25 × 19.25 × 12 mm3 dimensions and 256-channel photomultiplier with parameters modeled after a Hamamatsu S-13615-1050N-16 SiPM. The second model used a larger LYSO crystal (57.6 × 57.6 × 12 mm3) and a 64-channel Sensl ARRAYC-60035-64P-PCB photomultiplier. A feed-forward neural network was used to reconstruct the point of 511 keV gamma interaction. The number of layers and the number of neurons per layer were varied. RESULTS The best resolution was achieved with the 57.6 × 57.6 mm2 detector model, with an average of 0.74 ± 0.01 mm for the XY plane and an average 1.01 ± 0.01 mm for the Z coordinate (depth of interaction). CONCLUSIONS Neural networks can be a powerful tool that can help to determine the optimal parameters for a design of an experimental device. This study demonstrates how neural networks can be used to evaluate the performance of two detector variants while not being dependent on specific signal and noise functions.
Collapse
Affiliation(s)
- M V Belov
- Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia
| | - V A Kozlov
- Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia
| | - V S Tskhay
- Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia.
| | - M V Zavertyaev
- Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia
| |
Collapse
|
36
|
Silkens MEWM, Ross J, Hall M, Scarbrough H, Rockall A. The time is now: making the case for a UK registry of deployment of radiology artificial intelligence applications. Clin Radiol 2023; 78:107-114. [PMID: 36639171 DOI: 10.1016/j.crad.2022.09.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Artificial intelligence (AI)-based healthcare applications (apps) are rapidly evolving, and radiology is a target specialty for their implementation. In this paper, we put the case for a national deployment registry to track the spread of AI apps into clinical use in radiology in the UK. By gathering data on the specific locations, purposes, and people associated with AI app deployment, such a registry would provide greater transparency on their spread in the radiology field. In combination with other regulatory and audit mechanisms, it would provide radiologists and patients with greater confidence and trust in AI apps. At the same time, coordination of this information would reduce costs for the National Health Service (NHS) by preventing duplication of piloting activities. This commentary discusses the need for a UK-wide registry for such apps, its benefits and risks, and critical success factors for its establishment. We conclude by noting that a critical window of opportunity has opened up for the development of a deployment registry, before the current pattern of localised clusters of activity turns into the widespread proliferation of AI apps across clinical practice.
Collapse
Affiliation(s)
- M E W M Silkens
- Centre for Healthcare Innovation Research, City University of London, London, UK.
| | - J Ross
- Department of Cancer and Surgery, Imperial College London, London, UK
| | - M Hall
- Queen Elizabeth University Hospital, Glasgow, UK
| | - H Scarbrough
- Centre for Healthcare Innovation Research, City University of London, London, UK
| | - A Rockall
- Department of Cancer and Surgery, Imperial College London, London, UK
| |
Collapse
|
37
|
MRI data quality assessment for the RIN - Neuroimaging Network using the ACR phantoms. Phys Med 2022; 104:93-100. [PMID: 36379160 DOI: 10.1016/j.ejmp.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Generating big-data is becoming imperative with the advent of machine learning. RIN-Neuroimaging Network addresses this need by developing harmonized protocols for multisite studies to identify quantitative MRI (qMRI) biomarkers for neurological diseases. In this context, image quality control (QC) is essential. Here, we present methods and results of how the RIN performs intra- and inter-site reproducibility of geometrical and image contrast parameters, demonstrating the relevance of such QC practice. METHODS American College of Radiology (ACR) large and small phantoms were selected. Eighteen sites were equipped with a 3T scanner that differed by vendor, hardware/software versions, and receiver coils. The standard ACR protocol was optimized (in-plane voxel, post-processing filters, receiver bandwidth) and repeated monthly. Uniformity, ghosting, geometric accuracy, ellipse's ratio, slice thickness, and high-contrast detectability tests were performed using an automatic QC script. RESULTS Measures were mostly within the ACR tolerance ranges for both T1- and T2-weighted acquisitions, for all scanners, regardless of vendor, coil, and signal transmission chain type. All measurements showed good reproducibility over time. Uniformity and slice thickness failed at some sites. Scanners that upgraded the signal transmission chain showed a decrease in geometric distortion along the slice encoding direction. Inter-vendor differences were observed in uniformity and geometric measurements along the slice encoding direction (i.e. ellipse's ratio). CONCLUSIONS Use of the ACR phantoms highlighted issues that triggered interventions to correct performance at some sites and to improve the longitudinal stability of the scanners. This is relevant for establishing precision levels for future multisite studies of qMRI biomarkers.
Collapse
|