1
|
Dar MA, Xie R, Zabed HM, Ali S, Zhu D, Sun J. Termite Microbial Symbiosis as a Model for Innovative Design of Lignocellulosic Future Biorefinery: Current Paradigms and Future Perspectives. BIOMASS 2024; 4:180-201. [DOI: 10.3390/biomass4010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology. This review highlights the gut system of termites, particularly the wood-feeding species, as a unique model for future biorefinery. The gut system of termites is a treasure-trove for prospecting novel microbial species, including protists, bacteria, and fungi, having higher biocatalytic efficiencies and biotechnological potentials. The significance of potential bacteria and fungi for harnessing the enzymes appropriate for lignocellulosic biorefinery is also discussed. Termite digestomes are rich sources of lignocellulases and related enzymes that could be utilized in various industrial processes and biomass-related applications. Consideration of the host and symbiont as a single functioning unit will be one of the most crucial strategies to expedite developments in termite-modeled biotechnology in the future.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hossain M. Zabed
- School of Life Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Shehbaz Ali
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Nalepa CA. What Kills the Hindgut Flagellates of Lower Termites during the Host Molting Cycle? Microorganisms 2017; 5:E82. [PMID: 29258251 PMCID: PMC5748591 DOI: 10.3390/microorganisms5040082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Subsocial wood feeding cockroaches in the genus Cryptocercus, the sister group of termites, retain their symbiotic gut flagellates during the host molting cycle, but in lower termites, closely related flagellates die prior to host ecdysis. Although the prevalent view is that termite flagellates die because of conditions of starvation and desiccation in the gut during the host molting cycle, the work of L.R. Cleveland in the 1930s through the 1960s provides a strong alternate hypothesis: it was the changed hormonal environment associated with the origin of eusociality and its concomitant shift in termite developmental ontogeny that instigates the death of the flagellates in termites. Although the research on termite gut microbial communities has exploded since the advent of modern molecular techniques, the role of the host hormonal environment on the life cycle of its gut flagellates has been neglected. Here Cleveland's studies are revisited to provide a basis for re-examination of the problem, and the results framed in the context of two alternate hypotheses: the flagellate symbionts are victims of the change in host social status, or the flagellates have become incorporated into the life cycle of the eusocial termite colony. Recent work on parasitic protists suggests clear paths for exploring these hypotheses and for resolving long standing issues regarding sexual-encystment cycles in flagellates of the Cryptocercus-termite lineage using molecular methodologies, bringing the problem into the modern era.
Collapse
Affiliation(s)
- Christine A Nalepa
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
3
|
Kruse A, Fattah-Hosseini S, Saha S, Johnson R, Warwick E, Sturgeon K, Mueller L, MacCoss MJ, Shatters RG, Cilia Heck M. Combining 'omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS One 2017; 12:e0179531. [PMID: 28632769 PMCID: PMC5478155 DOI: 10.1371/journal.pone.0179531] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Huanglongbing, or citrus greening disease, is an economically devastating bacterial disease of citrus. It is associated with infection by the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas). CLas is transmitted by Diaphorina citri, the Asian citrus psyllid (ACP). For insect transmission to occur, CLas must be ingested during feeding on infected phloem sap and cross the gut barrier to gain entry into the insect vector. To investigate the effects of CLas exposure at the gut-pathogen interface, we performed RNAseq and mass spectrometry-based proteomics to analyze the transcriptome and proteome, respectively, of ACP gut tissue. CLas exposure resulted in changes in pathways involving the TCA cycle, iron metabolism, insecticide resistance and the insect's immune system. We identified 83 long non-coding RNAs that are responsive to CLas, two of which appear to be specific to the ACP. Proteomics analysis also enabled us to determine that Wolbachia, a symbiont of the ACP, undergoes proteome regulation when CLas is present. Fluorescent in situ hybridization (FISH) confirmed that Wolbachia and CLas inhabit the same ACP gut cells, but do not co-localize within those cells. Wolbachia cells are prevalent throughout the gut epithelial cell cytoplasm, and Wolbachia titer is more variable in the guts of CLas exposed insects. CLas is detected on the luminal membrane, in puncta within the gut epithelial cell cytoplasm, along actin filaments in the gut visceral muscles, and rarely, in association with gut cell nuclei. Our study provides a snapshot of how the psyllid gut copes with CLas exposure and provides information on pathways and proteins for targeted disruption of CLas-vector interactions at the gut interface.
Collapse
Affiliation(s)
- Angela Kruse
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
- Boyce Thompson Institute, Ithaca, New York, United States of America
| | | | - Surya Saha
- Boyce Thompson Institute, Ithaca, New York, United States of America
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - EricaRose Warwick
- Subtropical Insects and Horticulture Research Unit, U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, Florida, United States of America
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Kasie Sturgeon
- Subtropical Insects and Horticulture Research Unit, U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, Florida, United States of America
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Lukas Mueller
- Boyce Thompson Institute, Ithaca, New York, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Robert G. Shatters
- Subtropical Insects and Horticulture Research Unit, U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, Florida, United States of America
| | - Michelle Cilia Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
- Boyce Thompson Institute, Ithaca, New York, United States of America
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Schulz F, Horn M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol 2015; 25:339-46. [PMID: 25680230 DOI: 10.1016/j.tcb.2015.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
Abstract
Intracellular bacteria including major pathogens live in the cytoplasm or in cytoplasmic vacuoles within their host cell. However, some can invade more unusual intracellular niches such as the eukaryotic nucleus. Phylogenetically diverse intranuclear bacteria have been discovered in various protist, arthropod, marine invertebrate, and mammalian hosts. Although targeting the same cellular compartment, they have apparently developed fundamentally-different infection strategies. The nucleus provides a rich pool of nutrients and protection against host cytoplasmic defense mechanisms; intranuclear bacteria can directly manipulate the host by interfering with nuclear processes. The impact on their host cells ranges from stable associations with a neutral or beneficial effect on host fitness to rapid host lysis. The analysis of the intranuclear lifestyle will extend our current framework for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Smejkalová P, Votýpka J, Lukeš J, Čepička I. First report on trichomonads from true bugs. Folia Parasitol (Praha) 2014. [DOI: 10.14411/fp.2014.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjšek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME JOURNAL 2014; 8:1634-44. [PMID: 24500618 PMCID: PMC4817620 DOI: 10.1038/ismej.2014.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/13/2014] [Accepted: 01/01/2014] [Indexed: 11/09/2022]
Abstract
Amoebae serve as hosts for various intracellular bacteria, including human pathogens. These microbes are able to overcome amoebal defense mechanisms and successfully establish a niche for replication, which is usually the cytoplasm. Here, we report on the discovery of a bacterial symbiont that is located inside the nucleus of its Hartmannella sp. host. This symbiont, tentatively named 'Candidatus Nucleicultrix amoebiphila', is only moderately related to known bacteria (∼90% 16S and 23S rRNA sequence similarity) and member of a novel clade of protist symbionts affiliated with the Rickettsiales and Rhodospirillales. Screening of 16S rRNA amplicon data sets revealed a broad distribution of these bacteria in freshwater and soil habitats. 'Candidatus Nucleicultrix amoebiphila' traffics within 6 h post infection to the host nucleus. Maximum infection levels are reached after 96-120 h, at which time point the nucleus is pronouncedly enlarged and filled with bacteria. Transmission of the symbionts occurs vertically upon host cell division but may also occur horizontally through host cell lysis. Although we observed no impact on the fitness of the original Hartmannella sp. host, the bacteria are rather lytic for Acanthamoeba castellanii. Intranuclear symbiosis is an exceptional phenomenon, and amoebae represent an ideal model system to further investigate evolution and underlying molecular mechanisms of these unique microbial associations.
Collapse
Affiliation(s)
- Frederik Schulz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ilias Lagkouvardos
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Florian Wascher
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Karin Aistleitner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Horn
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME JOURNAL 2013; 8:1008-19. [PMID: 24335826 DOI: 10.1038/ismej.2013.222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 11/09/2022]
Abstract
In 1944, Harold Kirby described microorganisms living within nuclei of the protists Trichonympha in guts of termites; however, their taxonomic assignment remains to be accomplished. Here, we identified intranuclear symbionts of Trichonympha agilis in the gut of the termite Reticulitermes speratus. We isolated single nuclei of T. agilis, performed whole-genome amplification, and obtained bacterial 16S rRNA genes by PCR. Unexpectedly, however, all of the analyzed clones were from pseudogenes of 16S rRNA with large deletions and numerous sequence variations even within a single-nucleus sample. Authentic 16S rRNA gene sequences were finally recovered by digesting the nuclear DNA; these pseudogenes were present on the host Trichonympha genome. The authentic sequences represented two distinct bacterial species belonging to the phylum Verrucomicrobia, and the pseudogenes have originated from each of the two species. Fluorescence in situ hybridization confirmed that both species are specifically localized, and occasionally co-localized, within nuclei of T. agilis. Transmission electron microscopy revealed that they are distorted cocci with characteristic electron-dense and lucent regions, which resemble the intranuclear symbionts illustrated by Kirby. For these symbionts, we propose a novel genus and species, 'Candidatus Nucleococcus trichonymphae' and 'Candidatus Nucleococcus kirbyi'. These formed a termite-specific cluster with database sequences, other members of which were also detected within nuclei of various gut protists, including both parabasalids and oxymonads. We suggest that this group is widely distributed as intranuclear symbionts of diverse protists in termite guts and that they might have affected the evolution of the host genome through lateral gene transfer.
Collapse
|
8
|
Hu XB, Xu K, Wang Z, Ding LL, Ren HQ. Characteristics of biofilm attaching to carriers in moving bed biofilm reactor used to treat vitamin C wastewater. SCANNING 2013; 35:283-291. [PMID: 23168685 DOI: 10.1002/sca.21064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
In order to investigate characteristics of biofilm attaching firmly to carriers in the moving bed biofilm reactor (MBBR) used for vitamin C wastewater treatment, experiments were undertaken with instrumental analysis methods. Scanning electron microscopy (SEM) micrographs of MBBR biofilms revealed that there were rod-shaped microbes and cocci in the biofilm, and microbes were embedded within medium substances and the biofilm matrix adhered firmly to carriers, leading to the formation of a smooth compacted surface at the base of the biofilm. Transmission electron microscopy (TEM) analysis revealed that extracellular polymeric substances (EPS) layer surrounded cell, sequestered inorganics to form a mixed structure, which ensured firm attachment of the biofilm to the carrier. X-ray diffraction (XRD) experiments and thermogravimetry analysis revealed that (i) the biofilm contained many inorganic substances, about 70.5%, and the inorganic substances contained multiple classes of inorganic with a high boiling point; (ii) inorganic elements such as calcium and phosphorous were selectively absorbed and accumulated in the biofilm as insoluble compounds with amorphous phases, rendering the biofilm highly resistant to detachment. Fourier-transform infrared (FTIR) spectroscopy showed carbohydrates were the main EPS.
Collapse
Affiliation(s)
- Xiao-bing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Gile GH, Carpenter KJ, James ER, Scheffrahn RH, Keeling PJ. Morphology and Molecular Phylogeny of Staurojoenina mulleri
sp. nov. (Trichonymphida, Parabasalia) from the Hindgut of the Kalotermitid Neotermes jouteli. J Eukaryot Microbiol 2013; 60:203-13. [DOI: 10.1111/jeu.12024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Gillian H. Gile
- Canadian Institute for Advanced Research; Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Kevin J. Carpenter
- Canadian Institute for Advanced Research; Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Erick R. James
- Canadian Institute for Advanced Research; Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Rudolf H. Scheffrahn
- University of Florida Research and Education Center; Fort Lauderdale Florida 33314 USA
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research; Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
10
|
Critical Taxonomic Revision of Parabasalids with Description of one New Genus and three New Species. Protist 2010; 161:400-33. [DOI: 10.1016/j.protis.2009.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/21/2009] [Indexed: 11/17/2022]
|
11
|
Wier AM, Sacchi L, Dolan MF, Bandi C, Macallister J, Margulis L. Spirochete attachment ultrastructure: Implications for the origin and evolution of cilia. THE BIOLOGICAL BULLETIN 2010; 218:25-35. [PMID: 20203251 DOI: 10.1086/bblv218n1p25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fine structure of spirochete attachments to the plasma membrane of anaerobic protists displays variations here interpreted as legacies of an evolutionary sequence analogous to that from free-living spirochetes to undulipodia (eukaryotic "flagella" and homologous structures). Attached spirochetes form a vestment, a wriggling fringe of motile cells at the edge of the plasma membrane of unidentified cellulolytic protist cells in the hypertrophied hindgut of the digestive system of Mastotermes darwiniensis, the large wood-feeding termite from northern Australia. From the membrane extend both undulipodia and a complex of comparably sized (10-12 microm x 0.2-0.3 microm) ectosymbiotic spirochetes that resembles unruly ciliated epithelium. In the intestines are helical (swimming) and round-body morphotypes. Round bodies (RBs) are slow or immotile spirochetes, propagules known to revert to typical swimming helices under culture conditions favorable for growth. The surfaces of both the spirochete gram-negative eubacteria and the parabasalid protists display distinctive attachment structures. The attached hypertrophied structures, some of which resemble ciliate kinetids, are found consistently at sites where the spirochete termini contact the protist plasma membranes.
Collapse
Affiliation(s)
- Andrew M Wier
- Pace University, Pleasantville, New York 10570-2799, USA
| | | | | | | | | | | |
Collapse
|
12
|
Noda S, Hongoh Y, Sato T, Ohkuma M. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 2009; 9:158. [PMID: 19586555 PMCID: PMC2717939 DOI: 10.1186/1471-2148-9-158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/09/2009] [Indexed: 12/03/2022] Open
Abstract
Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria for associations with the protist cells. The similar morphologies are considered a result of evolutionary convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific, suggesting their cospeciations at the protist genus level with only occasional replacements.
Collapse
Affiliation(s)
- Satoko Noda
- Ecomolecular Biorecycling Science Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
13
|
Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vectors 2009; 2:12. [PMID: 19226475 PMCID: PMC2669471 DOI: 10.1186/1756-3305-2-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/18/2009] [Indexed: 12/02/2022] Open
Abstract
Background The remarkable mutualistic associations between termites and protists are in large part responsible for the evolutionary success of these eusocial insects. It is unknown when this symbiosis was first established, but the present study shows that fossil termite protists existed in the Mesozoic. Results A new species of termite (Kalotermes burmensis n. sp.) in Early Cretaceous Burmese amber had part of its abdomen damaged, thus exposing trophic stages and cysts of diverse protists. Some protists were still attached to the gut intima while others were in the amber matrix adjacent to the damaged portion. Ten new fossil flagellate species in the Trichomonada, Hypermastigida and Oxymonadea are described in nine new genera assigned to 6 extant families. Systematic placement and names of the fossil flagellates are based on morphological similarities with extant genera associated with lower termites. The following new flagellate taxa are established: Foainites icelus n. gen. n. sp., Spiromastigites acanthodes n. gen. n. sp., Trichonymphites henis n. gen., n. sp., Teranymphites rhabdotis n. gen. n. sp., Oxymonas protus n. sp., Oxymonites gerus n. gen., n. sp., Microrhopalodites polynucleatis n. gen., n. sp., Sauromonites katatonis n. gen., n. sp., Dinenymphites spiris n. gen., n. sp., Pyrsonymphites cordylinis n. gen., n. sp. A new genus of fossil amoeba is also described as Endamoebites proterus n. gen., n. sp. Fourteen additional trophic and encystid protist stages are figured and briefly characterized. Conclusion This represents the earliest fossil record of mutualism between microorganisms and animals and the first descriptions of protists from a fossil termite. Discovering the same orders, families and possibly genera of protists that occur today in Early Cretaceous kalotermitids shows considerable behaviour and morphological stability of both host and protists. The possible significance of protist cysts associated with the fossil termite is discussed in regards the possibility that coprophagy, as well as proctodeal trophallaxis, was a method by which some termite protozoa were transferred intrastadially and intergenerationally at this time.
Collapse
|
14
|
Radek R, Nitsch G. Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation. Eur J Protistol 2007; 43:281-94. [PMID: 17764914 DOI: 10.1016/j.ejop.2007.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/24/2007] [Accepted: 06/02/2007] [Indexed: 10/22/2022]
Abstract
The association of the gut flagellates Mixotricha paradoxa and Deltotrichonympha sp. from the termite Mastotermes darwiniensis with ectobiotic spirochetes and bacterial rods is investigated with light and electron microscopy. Treatment with different chemicals disturbing molecular interactions and use of the freeze-fracture and freeze-etch technique show that hydrophobic interactions and integral membrane proteins seem to be involved in the firm attachment at the contact sites. Application of antibiotics reduces the number of ectobionts and leads to a disintegration of the cortical attachment systems. As a result Mixotricha becomes spherical and immotile. In both flagellates the antibiotics have a further effect: they lead to a transformation of some of the spirochetes into cystic bodies. Cyst formation of ectobiotic spirochetes is here reported for the first time. Starvation has a similar but less dramatic influence than antibiotics. The cysts contain protoplasmic cylinders in the periphery and sometimes larger central bodies. Production of dormant cystic forms may be a survival mechanism under hostile conditions.
Collapse
Affiliation(s)
- Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str 1-3, 14195, Berlin, Germany.
| | | |
Collapse
|
15
|
Hampl V, Cepicka I, Flegr J, Tachezy J, Kulda J. Morphological and molecular diversity of the monocercomonadid genera Monocercomonas, Hexamastix, and Honigbergiella gen. nov. Protist 2007; 158:365-83. [PMID: 17499022 DOI: 10.1016/j.protis.2007.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 02/24/2007] [Indexed: 10/23/2022]
Abstract
The family Monocercomonadidae (Parabasala, Trichomonadida) is characterized by the absence of a costa and in most species also of an undulating membrane; both of which are typical structures of trichomonadids. We have examined 25 isolates of Monocercomonadidae species by sequencing of the SSU rDNA and the ITS region and by light and transmission electron microscopy. The isolates formed three distinct phylogenetically unrelated clades: (1) Monocercomonas colubrorum, (2) Monocercomonas ruminantium together with a strain ATCC 50321 designated as Pseudotrichomonas keilini, and (3) Hexamastix. Twenty isolates of Monocercomonas colubrorum split into three clades with no host-specificity. The morphological differences among clades were insufficient to classify them as a separate species. Non-monophyly of the cattle commensal Monocercomonas ruminantium with the type species Monocercomonas colubrorum and absence of Pseudotrichomonas characters in the free-living strain ATCC 50321 led to their reclassification into a new genus (Honigbergiella gen. nov.). The close relationship of these strains indicates a recent switch between a free-living habit and endobiosis. Two strains of Hexamastix represented different species -Hexamastix kirbyi Honigberg 1955 and Hexamastix mitis sp. nov. Polyphyly of the Monocercomonadidae confirmed that the absence of a costa and an undulating membrane are not taxonomically significant characters and were probably secondarily lost in some or all clades. Our observations, however, indicated that other characters - infrakinetosomal body, comb-like structure, marginal lamella, and the type of axostyle - are fully consistent with the position of Monocercomonadidae species in the parabasalian tree and are, therefore, reasonable taxonomic characters.
Collapse
MESH Headings
- Animals
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Genes, rRNA
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Organelles/ultrastructure
- Phylogeny
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Trichomonadida/classification
- Trichomonadida/cytology
- Trichomonadida/genetics
- Trichomonadida/ultrastructure
Collapse
Affiliation(s)
- Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Maass A, Radek R. The gut flagellate community of the termite Neotermes cubanus with special reference to Staurojoenina and Trichocovina hrdyi nov. gen. nov. sp. Eur J Protistol 2006; 42:125-41. [PMID: 17070758 DOI: 10.1016/j.ejop.2006.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 11/20/2022]
Abstract
At least seven species of flagellates have been found to inhabit the paunch of the termite Neotermes cubanus. Staurojoenina sp. is the largest species, measuring 100-150mum in length. Three small parabasalids belong to the genera Tritrichomonas, Metadevescovina, and Foaina. A fourth small type is described as Trichocovina hrdyi nov. gen. nov. sp.; the combination of features in this flagellate, such as the presence of a costa, undulating membrane and spiralled dictyosome, does not fit to any known genus. The two oxymonad species do not possess a rostellum. One belongs to the family Polymastigidae; it has one unattached flagellum and three partially attached flagella. The second is a member of the family Pyrsonymphidae, but this one possesses ring-like surface structures, one free flagellum and three spirally attached flagella. It is the first report of a pyrsonymphid in a kalotermitid termite.
Collapse
Affiliation(s)
- Annelie Maass
- Pathology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|