1
|
Matiz-González JM, Silva-Ramos CR, Herrera-Sepúlveda MT, Patiño LH, Ramírez JD, Mateus J, Pavia PX, Miguel Pinto C, Pérez-Torres J, Cuervo C. Molecular detection of trypanosomatids among cave-dwelling bats from Colombia. Int J Parasitol 2025; 55:253-261. [PMID: 39832613 DOI: 10.1016/j.ijpara.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Bats play crucial roles in various ecosystems including caves. Although the presence of trypanosomatid species in bats has been documented in Colombia, their diversity in cave-dwelling bats remains unclear. This study aimed to characterize the frequency and diversity of protists from the family Trypanosomatidae circulating in bats from the Macaregua cave ecosystem in Santander, Colombia. A total of 112 specimens from the three permanently residing bat species were examined for trypanosomatid presence through the amplification and sequencing of a region of the 18S rRNA gene in blood samples. We report an overall trypanosomatid detection rate of 42.9% (n = 48), involving the three evaluated bat species: Carollia perspicillata (19/43, 44.2%), Natalus tumidirostris (17/39, 43.6%), and Mormoops megalophylla (12/30, 40.0%). The trypanosomatids were classified by amplicon sequencing and phylogenetic analysis as Trypanosoma spp. (33/112, 29.5%), Leishmania spp. (8/112, 7.1%), and Crithidia spp. (9/112, 8%). In addition, two individuals simultaneously carried more than one genus: Trypanosoma and Leishmania (MT087, C. perspicillata), and Trypanosoma and Crithidia (MT120, M. megalophylla). Some of the samples positive for trypanosomatids were characterized at the species level using the same method with the Cytochrome B gene, identifying Trypanosoma cruzi cruzi (TcI-III and TcBat), Trypanosoma cruzi marinkellei, and Leishmania braziliensis in the evaluated bats. We describe the presence of pathogenic trypanosomatids (T. cruzi cruzi, T. cruzi marinkellei, and L. braziliensis), as well as monoxenous trypanosomatids such as Crithidia spp. as the Trypanosomatidae protists carried by bats in cave ecosystems from Colombia. The discussion on how bats become infected by these parasites and their potential role in wild transmission cycles is provided below.
Collapse
Affiliation(s)
- J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María T Herrera-Sepúlveda
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Unidad de Ecología y Sistemática (UNESIS). Laboratorio de Ecología Funcional. Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Mateus
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Vividion Therapeutics, San Diego, CA, USA
| | - Paula X Pavia
- Centro de Investigaciones Méderi CIMED, Hospital Universitario Mayor de Méderi, Bogotá, Colombia
| | - C Miguel Pinto
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador
| | - Jairo Pérez-Torres
- Unidad de Ecología y Sistemática (UNESIS). Laboratorio de Ecología Funcional. Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
2
|
Monteiro EF, da Silva RA, Marcili A, Kirchgatter K. Molecular Characterization of Trypanosoma cruzi from Triatomine Species in São Paulo State, an Area Free of Vector-Borne Chagas Disease. INSECTS 2025; 16:161. [PMID: 40003791 PMCID: PMC11856546 DOI: 10.3390/insects16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Chagas disease (ChD) is a neglected tropical disease caused by Trypanosoma cruzi, endemic in 21 countries across the Americas, with increasing cases globally. In São Paulo, Brazil, vector control has focused on Triatoma infestans, but secondary triatomine species continue to pose transmission risks. This study aimed to investigate the prevalence of T. cruzi in triatomine feces and characterize its genetic diversity using molecular techniques. Fecal samples were collected from 570 triatomines across 25 municipalities in São Paulo, followed by DNA extraction and PCR amplification targeting the mitochondrial cytochrome b gene and the V7V8 region of the 18S rRNA gene. The results revealed a low overall infection rate (3.2%). However, excluding the triatomines collected in palm trees, all of which were negative, we found mainly Panstrongylus megistus in residences and peridomiciles, showing the highest infection rate (65%) for T. cruzi, followed by Triatoma sordida and Rhodnius neglectus. Phylogenetic analysis confirmed that DTU TcI was the most prevalent genotype, consistent with previous findings in the region. This study highlights the importance of continued vector surveillance, as these secondary species are capable of maintaining T. cruzi transmission in both urban and rural environments, underscoring the ongoing risk of ChD resurgence in São Paulo.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo 01027-000, SP, Brazil;
| | | | - Arlei Marcili
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade de São Paulo, São Paulo 05508-270, SP, Brazil
- Programa de Medicina e Bem-Estar Animal e Saúde Única, Universidade Santo Amaro, São Paulo 04829-300, SP, Brazil
| | - Karin Kirchgatter
- Laboratório de Bioquímica e Biologia Molecular, Instituto Pasteur, São Paulo 01027-000, SP, Brazil;
| |
Collapse
|
3
|
Pessoa LMB, Silva CR, Sales KGDS, de Souza DC, Bonifácio LLN, de Luna RLN, Dantas-Torres F, Viana LA. Molecular Detection of Trypanosomatids in Rodents and Marsupials in the State of Amapá, Brazil. Microorganisms 2025; 13:242. [PMID: 40005609 PMCID: PMC11857483 DOI: 10.3390/microorganisms13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Trypanosomatids of the genera Trypanosoma and Leishmania are parasites of medical and veterinary importance that infect mammals, including humans and domestic and wild animals. Among mammals, rodents and marsupials play a crucial role in maintaining and spreading the zoonotic transmission cycle of these parasites. The present study aimed to detect the natural occurrence of Trypanosoma spp. and Leishmania spp. in rodents and marsupials in the state of Amapá, northern Brazil. In total, 137 samples were analyzed, of which 19 (6 marsupials and 13 rodents) were positive for trypanosomatid DNA. Partial sequences of the 18S rRNA gene of trypanosomatids were obtained from 10 out of 19 positive samples. Specifically, an undescribed Trypanosoma sp. was detected in Marmosa demerarae, Marmosa murina, Zygodontomys brevicauda, and Neacomys paracou. Trypanosoma cruzi was detected in a Philander opossum, whereas sequences close to Trypanosoma wauwau and Trypanosoma freitasi were obtained from Didelphis imperfecta and N. paracou, respectively. Finally, Leishmania (Viannia) sp. was detected in Mesomys hispidus, Hylaeamys megacephalus, and Z. brevicauda. The present study expands the knowledge about marsupials and rodents as hosts of trypanosomatids and emphasizes the need for further studies on the role of these animals as potential reservoirs of these parasites in the Amazon region.
Collapse
Affiliation(s)
- Lourdes Marina Bezerra Pessoa
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| | - Claudia Regina Silva
- Laboratório de Mamíferos, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá 68903-329, AP, Brazil;
| | - Kamila Gaudêncio da Silva Sales
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Darlison Chagas de Souza
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| | - Lucas Lisboa Nunes Bonifácio
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Rafaela Lira Nogueira de Luna
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Filipe Dantas-Torres
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife 50740-465, PE, Brazil; (K.G.d.S.S.); (L.L.N.B.); (R.L.N.d.L.)
| | - Lúcio André Viana
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil; (L.M.B.P.); (D.C.d.S.); (L.A.V.)
| |
Collapse
|
4
|
Ahmad W, Tipu MY, Khan MUR, Akbar H, Anjum AA, Omer MO. Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions. Pathogens 2025; 14:66. [PMID: 39861027 PMCID: PMC11768309 DOI: 10.3390/pathogens14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: Surra is a debilitating disease of wild and domestic animals caused by Trypanosoma evansi (T. evansi), resulting in significant mortality and production losses in the affected animals. This study is the first to assess the genetic relationships of T. evansi in naturally affected buffaloes from Multan district, Pakistan, using ITS-1 primers and evaluating the effects of parasitemia and oxidative stress on DNA damage and hematobiochemical changes in infected buffaloes. (2) Methods: Blood samples were collected from 167 buffaloes using a multi-stage cluster sampling strategy, and trypomastigote identification was performed through microscopy and PCR targeting RoTat 1.2 and ITS-1 primers. Molecular characterization involved ITS-1 via neighbor-joining analysis. The impact of parasitemia loads was correlated with oxidative stress markers, genotoxicity, and hematobiochemical parameters using Pearson correlation and multivariable regression models. (3) Results: Field-stained thin blood film microscopy and molecular identification revealed 8.98% and 10.18% infection rates, respectively. Phylogenetic analysis based on ITS-1 region sequences of the identified isolates showed close genetic associations with Indian isolates. The mean trypomastigote count observed in the infected buffaloes was 5.15 × 106 (±5.3 × 102)/µL of blood. The parasitemia loads were significantly correlated with the alterations in oxidative stress markers, DNA damage, and changes in hematobiochemical parameters. Infected animals exhibited significant (p < 0.05) alterations in oxidative stress biomarkers, including catalase, nitric oxide, and malondialdehyde concentrations. Noteworthily, a comet assay revealed a significantly (p < 0.0001) higher mean genetic damage index in the infected buffaloes (0.7 ± 0.04) compared with the healthy ones (0.196 ± 0.004). Alongside significant (p < 0.05) reductions in red cell indices, a marked elevation in leukocyte counts and serum hepatic enzyme levels was recorded in the affected buffaloes. (4) Conclusion: T. evansi isolates of buffaloes from Multan, Pakistan, have genetic similarities to Indian isolates. This study also revealed that higher parasitemia loads induce genotoxicity in the infected animals through oxidative stress and cause hematobiochemical alterations under natural field conditions.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
- Livestock and Dairy Development Department, Government of Punjab, Lahore 54000, Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
| | - Muti ur Rehman Khan
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
| | - Haroon Akbar
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Aftab Ahmad Anjum
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Machado-Silva MP, de Abreu FVS, Alves FM, Aquino-Teixeira SM, de Oliveira F, Dario MA, das Chagas Xavier SC, Lourenço-de-Oliveira R, Roque ALR. High infection prevalences by Trypanosoma minasense in non-human primates from the Southeast region of Brazil. Sci Rep 2024; 14:30669. [PMID: 39730413 DOI: 10.1038/s41598-024-74235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 12/29/2024] Open
Abstract
Non-human primates (NHPs) are reported as exclusive hosts of Trypanosoma minasense, whose transmission cycle remains unknown. We investigated trypanosomatid infections in 194 NHPs of nine species from the Brazilian Southeast region. We evaluated the impact of landscape composition and forest fragmentation on T. minasense infection. In the Atlantic Forest areas, Sapajus nigritus presented a higher positivity for T. minasense on the blood slides (60.9%) compared to Callithrix spp. (24.6%) and Alouatta guariba clamitans (20.7%); molecular analysis revealed higher infection prevalences in S. nigritus (87.0%) and A. g. clamitans (78.8%) than Callithrix spp. (50.8%). Callithrix spp. from the Cerrado and bordering areas showed higher infection prevalences by T. minasense on the blood slides (51.8%) and molecular diagnosis (77.6%). Eight (7.8%) positive hemocultures were obtained, but in only one (from A. g. clamitans) parasites were isolated and characterized as Crithidia mellificae. Trypanosoma cruzi TcII and T. rangeli lineage A were identified in Leontopithecus rosalia and C. penicillata, respectively. The results indicate that Alouatta, Callithrix, and Sapajus genera are highly exposed to T. minasense in the study area and landscape analysis revealed that these infections were inversely correlated with the proportion of forest and directly correlated with the forest fragmentation.
Collapse
Affiliation(s)
- Maria Paula Machado-Silva
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernanda Moreira Alves
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Felipe de Oliveira
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Berchtenbreiter L, Mumcu AE, Rackevei AS, Cock JM, Kawai H, Wolf M. 18S and ITS2 rRNA gene sequence-structure phylogeny of the Phaeophyceae (SAR, Stramenopiles) with special reference to Laminariales. Eur J Protistol 2024; 95:126107. [PMID: 39024684 DOI: 10.1016/j.ejop.2024.126107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The phylogeny of brown algae (Phaeophyceae) has undergone extensive changes in the recent past due to regular new scientific insights. We used nuclear 18S rDNA with an extensive dataset, aiming to increase the accuracy and robustness of the reconstructed phylogenetic trees using a simultaneous sequence-structure approach. Individual secondary structures were generated for all 18S rDNA sequences. The sequence-structure information was encoded and used for an automated simultaneous sequence-structure alignment. Neighbor-joining and profile neighbor-joining trees were calculated based on 186 phaeophycean sequence-structure pairs. Additionally, sequence-structure neighbor-joining, maximum parsimony and maximum likelihood trees were reconstructed on a representative subset. Using a similar approach, ITS2 rDNA sequence-structure information was used to reconstruct a neighbor-joining tree including 604 sequence-structure pairs of the Laminariales. Our study results are in significant agreement with previous single marker 18S and ITS2 rDNA analyses. Moreover, the 18S results are in wide agreement with recent multi-marker analyses. The bootstrap support was significantly higher for our sequence-structure analysis in comparison to sequence-only analyses in this study and the available literature. This study supports the simultaneous inclusion of sequence-structure data at least for 18S to obtain more accurate and robust phylogenetic trees compared to sequence-only analyses.
Collapse
Affiliation(s)
- Leon Berchtenbreiter
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Abdullah Emir Mumcu
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | - J Mark Cock
- Department UMR 8227, CNRS-UPMC, Station Biologique, Place Georges Teissier, CS 90074, 29688 Roscoff, France
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Duarte RG, Jardim THA, Paulino PG, Dias RJP, Rossi MF, D Agosto M, Peixoto MP, Guedes Junior DS, Gonçalves NP, Massard CL, Santos HA. Molecular diversity and polyparasitism of avian trypanosomes in the Brazilian Atlantic Rainforest. AN ACAD BRAS CIENC 2024; 96:e20230629. [PMID: 38922254 DOI: 10.1590/0001-3765202420230629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/16/2023] [Indexed: 06/27/2024] Open
Abstract
The current study proposes to investigate the diversity and phylogeny of trypanosomes parasitizing wild birds from the Brazilian Atlantic Forest. Cytological examination was carried out by light microscopy of blood smears and positive birds were selected for amplification of the 18S rDNA sequence through PCR. The resulting amplicons were subjected to purification, cloning, and sequencing analysis. Phylogenetic reconstruction was conducted, including all avian trypanosomes representative's lineages. A total of ten bird samples from species of Turdus flavipes (N=1/12), T. albicollis (N=1/8), Tachyphonus coronatus (N=6/121), Thamnophilus caerulescens (N=1/22) and Synallaxis spixi (N=1/8) were positive for Trypanosoma spp. In the six specimens of T. coronatus, five distinct lineages of Trypanosoma spp. 18S-rRNA were observed in ninety sequences obtained, and using the strategy of cloning independent PCR, it was possible to observe that two of them were related to T. avium (JB01/JB02), and three were closed related to T. bennetti (JB03/ JB04/JB05). Addionaly, all fifteen sequences obtained from T. caerulescens/ S. spixi/T. flavipes/T. albicollis were identical. The present research is the first study to access molecular diversity and polyparasitism by avian trypanosomes in Brazil. The current research exhibits the wide genetic variability in avian trypanosomes and its non-specific relationship with its avian hosts.
Collapse
Affiliation(s)
- Rodrigo G Duarte
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Talys Henrique A Jardim
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Patrícia G Paulino
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Roberto J P Dias
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Mariana F Rossi
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Marta D Agosto
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Maristela P Peixoto
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Parasitologia Animal, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Daniel S Guedes Junior
- Fundação Oswaldo Cruz/FIOCRUZ, Instituto de Tecnologia em Imunobiológicos, Departamento de Controle de Qualidade, Av. Brasil, 4365, Manguinhos, 21040-090 Rio de Janeiro, RJ, Brazil
| | - Natalia P Gonçalves
- Fundação Oswaldo Cruz/FIOCRUZ, Instituto de Tecnologia em Imunobiológicos, Departamento de Controle de Qualidade, Av. Brasil, 4365, Manguinhos, 21040-090 Rio de Janeiro, RJ, Brazil
| | - Carlos L Massard
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Parasitologia Animal, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Huarrisson A Santos
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| |
Collapse
|
8
|
Cruz-Saavedra L, Ospina C, Patiño LH, Villar JC, Sáenz Pérez LD, Cantillo-Barraza O, Jaimes-Dueñez J, Ballesteros N, Cáceres T, Vallejo G, Ramírez JD. Enhancing Trypanosomatid Identification and Genotyping with Oxford Nanopore Sequencing: Development and Validation of an 18S rRNA Amplicon-Based Method. J Mol Diagn 2024; 26:323-336. [PMID: 38360211 DOI: 10.1016/j.jmoldx.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Ospina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan C Villar
- Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | | | | - Jeiczon Jaimes-Dueñez
- Research Group in Animal Sciences-GRICA, Faculty of Veterinary Medicine and Zootechnics, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Gustavo Vallejo
- Tropical Parasitology Research Laboratory, Faculty of Sciences, Universidad del Tolima, Ibagué, Colombia
| | - Juan D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
9
|
Rapp E, Wolf M. 18S rDNA sequence-structure phylogeny of the eukaryotes simultaneously inferred from sequences and their individual secondary structures. BMC Res Notes 2024; 17:124. [PMID: 38693573 PMCID: PMC11064340 DOI: 10.1186/s13104-024-06786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE The eukaryotic tree of life has been subject of numerous studies ever since the nineteenth century, with more supergroups and their sister relations being decoded in the last years. In this study, we reconstructed the phylogeny of eukaryotes using complete 18S rDNA sequences and their individual secondary structures simultaneously. After the sequence-structure data was encoded, it was automatically aligned and analyzed using sequence-only as well as sequence-structure approaches. We present overall neighbor-joining trees of 211 eukaryotes as well as the respective profile neighbor-joining trees, which helped to resolve the basal branching pattern. A manually chosen subset was further inspected using neighbor-joining, maximum parsimony, and maximum likelihood analyses. Additionally, the 75 and 100 percent consensus structures of the subset were predicted. RESULTS All sequence-structure approaches show improvements compared to the respective sequence-only approaches: the average bootstrap support per node of the sequence-structure profile neighbor-joining analyses with 90.3, was higher than the average bootstrap support of the sequence-only profile neighbor-joining analysis with 73.9. Also, the subset analyses using sequence-structure data were better supported. Furthermore, more subgroups of the supergroups were recovered as monophyletic and sister group relations were much more comparable to results as obtained by multi-marker analyses.
Collapse
Affiliation(s)
- Eva Rapp
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Lima MB, Borges A, Wolf M, Santos HA, Dias RJP, Rossi MF. First record of Trypanosoma (Ornithotrypanum) infecting Neotropical birds. Parasitol Res 2024; 123:156. [PMID: 38457016 DOI: 10.1007/s00436-024-08179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Parasites play a pivotal role in ecosystem health, influencing human and zoonotic diseases, as well as biodiversity preservation. The genus Trypanosoma comprises approximately 500 species mostly found in wildlife animals. This study focuses on identifying trypanosomes found in the white-necked thrush (Turdus albicollis) and the yellow-legged thrush (Turdus flavipes) in the Neotropics. First, we demonstrate the utility of an 18S rDNA sequence-structure phylogeny as an alternative method for trypanosome classification, especially when gGAPDH sequences are unavailable. Subsequently, the sequence-structure phylogeny is employed to classify new trypanosome sequences discovered in wild birds, placing them within the Ornithotrypanum subgenus. This marks the first identification of Ornithotrypanum in Neotropical birds, contributing to the understanding of the distribution and ecological adaptation of avian trypanosomes. Beyond taxonomy, this study broadens our comprehension of the ecological implications of avian trypanosomes in the Neotropics, emphasizing the need for continued research in this field. These findings underscore the importance of alternative classification methods, which are essential to unravel the complex interactions between parasites, wildlife hosts, and their ecosystems.
Collapse
Affiliation(s)
- Mylena B Lima
- Laboratory of Protozoology (LabProto), Graduate Program in Biodiversity and Nature Conservation, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Wolf
- Department of Bioinformatics, University of Würzburg, BiocenterWürzburg, Germany
| | - Huarrisson A Santos
- Department of Epidemiology and Public Health, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratory of Protozoology (LabProto), Graduate Program in Biodiversity and Nature Conservation, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Mariana F Rossi
- Laboratory of Protozoology (LabProto), Graduate Program in Biodiversity and Nature Conservation, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Zeke A, Gibson TJ, Dobson L. Linear motifs regulating protein secretion, sorting and autophagy in Leishmania parasites are diverged with respect to their host equivalents. PLoS Comput Biol 2024; 20:e1011902. [PMID: 38363808 PMCID: PMC10903960 DOI: 10.1371/journal.pcbi.1011902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The pathogenic, tropical Leishmania flagellates belong to an early-branching eukaryotic lineage (Kinetoplastida) with several unique features. Unfortunately, they are poorly understood from a molecular biology perspective, making development of mechanistically novel and selective drugs difficult. Here, we explore three functionally critical targeting short linear motif systems as well as their receptors in depth, using a combination of structural modeling, evolutionary sequence divergence and deep learning. Secretory signal peptides, endoplasmic reticulum (ER) retention motifs (KDEL motifs), and autophagy signals (motifs interacting with ATG8 family members) are ancient and essential components of cellular life. Although expected to be conserved amongst the kinetoplastids, we observe that all three systems show a varying degree of divergence from their better studied equivalents in animals, plants, or fungi. We not only describe their behaviour, but also build models that allow the prediction of localization and potential functions for several uncharacterized Leishmania proteins. The unusually Ala/Val-rich secretory signal peptides, endoplasmic reticulum resident proteins ending in Asp-Leu-COOH and atypical ATG8-like proteins are all unique molecular features of kinetoplastid parasites. Several of their critical protein-protein interactions could serve as targets of selective antimicrobial agents against Leishmaniasis due to their systematic divergence from the host.
Collapse
Affiliation(s)
- Andras Zeke
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Budapest, Hungary
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Laszlo Dobson
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Budapest, Hungary
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Verma R, Punia V, Das G, Kumar S, Nath S, Swamy M. Assessment of genetic diversity of Trypanosoma evansi in the domestic animal populations through ITS-1 gene sequence analysis. Parasitol Res 2023; 123:2. [PMID: 38047956 DOI: 10.1007/s00436-023-08024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Trypanosoma evansi infects domestic animals, causing a debilitating and occasionally fatal disease. The disease leads to significant economic losses to farmers and poses a substantial impediment to the growth of livestock production in developing nations, including India. Considering the challenges associated with managing this infection, there is an urgent need to enhance our understanding of the molecular and genetic diversity of T. evansi. Therefore, this study was planned to analyze the genetic diversity of T. evansi using available internal transcribed spacer-1 (ITS-1) gene sequences from India and compare them with sequences from around the globe. Blood samples used in this study were collected from naturally infected animals including dogs, cattle, and buffaloes in the Indian state of Madhya Pradesh. Using the ITS-1 gene, we amplified a 540 base pairs (bp) segment using polymerase chain reaction (PCR), sequenced it, and identified intra-specific variations. Phylogenetic analysis of 90 sequences, including 27 from India, revealed three distinct clusters with high bootstrap support values. A haplotype network analysis identified 34 haplotypes, with H7 being the most prevalent, indicating a complex evolutionary history involving multiple countries. The genetic analysis of the Indian population revealed distinct characteristics. Despite low nucleotide diversity, there was high haplotype diversity in comparison to other populations. Tajima's D, Fu and Li's D, and Fu and Li's F exhibited non-significant negative values, indicating potential stability. Additionally, the slightly positive values in Fu's Fs, Raggedness (r), and Ramos-Onsins and Rozas (R2) statistics suggested a lack of recent significant selective pressures or population expansions. Furthermore, the presence of genetic differentiation and gene flow among T. evansi populations highlighted ongoing evolutionary processes. These findings collectively depicted a complex genetic landscape, suggesting both stability and ongoing evolutionary dynamics within the Indian population of T. evansi. The findings of this study are important for understanding the evolutionary history and population dynamics of T. evansi, and they may help us develop effective control strategies.
Collapse
Affiliation(s)
- Rupesh Verma
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India.
| | - Vikram Punia
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Giridhari Das
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Suman Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Subhradal Nath
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| | - Madhu Swamy
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Nanaji Deshmukh Veterinary Science University, South Civil Lines, Jabalpur, MP, 482001, India
| |
Collapse
|
13
|
Rackevei AS, Karnkowska A, Wolf M. 18S rDNA sequence-structure phylogeny of the Euglenophyceae (Euglenozoa, Euglenida). J Eukaryot Microbiol 2023; 70:e12959. [PMID: 36478494 DOI: 10.1111/jeu.12959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The phylogeny of Euglenophyceae (Euglenozoa, Euglenida) has been discussed for decades with new genera being described in the last few years. In this study, we reconstruct a phylogeny using 18S rDNA sequence and structural data simultaneously. Using homology modeling, individual secondary structures were predicted. Sequence-structure data are encoded and automatically aligned. Here, we present a sequence-structure neighbor-joining tree of more than 300 taxa classified as Euglenophyceae. Profile neighbor-joining was used to resolve the basal branching pattern. Neighbor-joining, maximum parsimony, and maximum likelihood analyses were performed using sequence-structure information for manually chosen subsets. All analyses supported the monophyly of Eutreptiella, Discoplastis, Lepocinclis, Strombomonas, Cryptoglena, Monomorphina, Euglenaria, and Colacium. Well-supported topologies were generally consistent with previous studies using a combined dataset of genetic markers. Our study supports the simultaneous use of sequence and structural data to reconstruct more accurate and robust trees. The average bootstrap value is significantly higher than the average bootstrap value obtained from sequence-only analyses, which is promising for resolving relationships between more closely related taxa.
Collapse
Affiliation(s)
- Antonia S Rackevei
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Koual R, Buysse M, Grillet J, Binetruy F, Ouass S, Sprong H, Duhayon M, Boulanger N, Jourdain F, Alafaci A, Verdon J, Verheyden H, Rispe C, Plantard O, Duron O. Phylogenetic evidence for a clade of tick-associated trypanosomes. Parasit Vectors 2023; 16:3. [PMID: 36604731 PMCID: PMC9817367 DOI: 10.1186/s13071-022-05622-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trypanosomes are protozoan parasites of vertebrates that are of medical and veterinary concern. A variety of blood-feeding invertebrates have been identified as vectors, but the role of ticks in trypanosome transmission remains unclear. METHODS In this study, we undertook extensive molecular screening for the presence and genetic diversity of trypanosomes in field ticks. RESULTS Examination of 1089 specimens belonging to 28 tick species from Europe and South America led to the identification of two new trypanosome strains. The prevalence may be as high as 4% in tick species such as the castor bean tick Ixodes ricinus, but we found no evidence of transovarial transmission. Further phylogenetic analyses based on 18S rRNA, EF1-α, hsp60 and hsp85 gene sequences revealed that different tick species, originating from different continents, often harbour phylogenetically related trypanosome strains and species. Most tick-associated trypanosomes cluster in a monophyletic clade, the Trypanosoma pestanai clade, distinct from clades of trypanosomes associated with transmission by other blood-feeding invertebrates. CONCLUSIONS These observations suggest that ticks may be specific arthropod hosts for trypanosomes of the T. pestanai clade. Phylogenetic analyses provide further evidence that ticks may transmit these trypanosomes to a diversity of mammal species (including placental and marsupial species) on most continents.
Collapse
Affiliation(s)
- Rachid Koual
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Marie Buysse
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Justine Grillet
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Florian Binetruy
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Sofian Ouass
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Hein Sprong
- grid.31147.300000 0001 2208 0118Laboratory for Zoonoses and Environmental Microbiology (Z&O), Centre for Infectious Disease Control (CIb), National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Maxime Duhayon
- grid.121334.60000 0001 2097 0141ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
| | - Nathalie Boulanger
- grid.11843.3f0000 0001 2157 9291UR7290: VBP: Borrelia Group, Hôpitaux Universitaires de Strasbourg, University of Strasbourg and French National Reference Center for Borrelia, Strasbourg, France
| | - Frédéric Jourdain
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Aurélien Alafaci
- grid.11166.310000 0001 2160 6368UMR CNRS 7267, EBI, University of Poitiers, Poitiers, France
| | - Julien Verdon
- grid.11166.310000 0001 2160 6368UMR CNRS 7267, EBI, University of Poitiers, Poitiers, France
| | - Hélène Verheyden
- grid.508721.9INRAE, CEFS, Université de Toulouse, Castanet Tolosan Cedex, France ,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Claude Rispe
- grid.418682.10000 0001 2175 3974Oniris, INRAE, BIOEPAR, Nantes, France
| | - Olivier Plantard
- grid.418682.10000 0001 2175 3974Oniris, INRAE, BIOEPAR, Nantes, France
| | - Olivier Duron
- grid.121334.60000 0001 2097 0141MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|