1
|
Bhansali D, Tu NH, Inoue K, Teng S, Li T, Tran HD, Kim DH, Dong J, Peach CJ, Sokrat B, Jensen DD, Dolan JC, Yamano S, Robinson VM, Bunnett NW, Albertson DG, Leong KW, Schmidt BL. PAR 2 on oral cancer cells and nociceptors contributes to oral cancer pain that can be relieved by nanoparticle-encapsulated AZ3451. Biomaterials 2025; 314:122874. [PMID: 39418848 DOI: 10.1016/j.biomaterials.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Oral cancer is notoriously painful. Activation of protease-activated receptor 2 (PAR2, encoded by F2RL1) by proteases in the cancer microenvironment is implicated in oral cancer pain. PAR2 is a G protein-coupled receptor (GPCR) expressed on neurons and cells in the cancer microenvironment. Sustained signaling of PAR2 from endosomes of neurons mediates sensitization and nociception. We focused on the differential contribution of PAR2 on oral cancer cells and neurons to oral cancer pain and whether encapsulation of a PAR2 inhibitor, AZ3451 in nanoparticles (NP) more effectively reverses PAR2 activation. We report that F2RL1 was overexpressed in human oral cancers and cancer cell lines. Deletion of F2RL1 on cancer cells reduced cancer-associated mechanical allodynia. A third-generation polyamidoamine dendrimer, functionalized with cholesterol was self-assembled into NPs encapsulating AZ3451. NP encapsulated AZ3451 (PAMAM-Chol-AZ NPs) more effectively reversed activation of PAR2 at the plasma membrane and early endosomes than free drug. The PAMAM-Chol-AZ NPs showed greater efficacy in reversing nociception than free drug, with respect to both level and duration, in three preclinical mouse models of oral cancer pain. The antinociceptive efficacy was confirmed with an operant orofacial assay. Genetic deletion of F2RL1 on cancer cells or F2rl1 on neurons each partially reversed mechanical cancer allodynia. The remaining nociception could be effectively reversed by PAMAM-Chol-AZ NPs. These findings suggest that PAR2 on oral cancer cells and neurons contribute to oral cancer nociception and NPs loaded with a PAR2 antagonist provide increased antinociception and improved oral function compared to free drug.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Nguyen H Tu
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA; Pain Research Center, New York University, New York, NY, 10010, USA.
| | - Kenji Inoue
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA; Pain Research Center, New York University, New York, NY, 10010, USA.
| | - Shavonne Teng
- Pain Research Center, New York University, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University Dentistry, New York, NY, 10010, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Hung D Tran
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA.
| | - Dong H Kim
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA.
| | - Jessy Dong
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA.
| | - Chloe J Peach
- Pain Research Center, New York University, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University Dentistry, New York, NY, 10010, USA; Centre of Membrane Proteins and Receptors, School of Life Sciences, Queen's Medical Centre, University of Nottingham, UK.
| | - Badr Sokrat
- Pain Research Center, New York University, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University Dentistry, New York, NY, 10010, USA.
| | - Dane D Jensen
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA; Pain Research Center, New York University, New York, NY, 10010, USA.
| | - John C Dolan
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA.
| | - Seiichi Yamano
- Department of Prosthodontics, New York University Dentistry, New York, NY, 10010, USA.
| | - Valeria Mezzano Robinson
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Nigel W Bunnett
- Pain Research Center, New York University, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University Dentistry, New York, NY, 10010, USA; Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Donna G Albertson
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA; Pain Research Center, New York University, New York, NY, 10010, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Brian L Schmidt
- New York University Dentistry Translational Research Center, New York University Dentistry, New York, NY, 10010, USA; Pain Research Center, New York University, New York, NY, 10010, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Dong MP, Dharmaraj N, Kaminagakura E, Xue J, Leach DG, Hartgerink JD, Zhang M, Hanks HJ, Ye Y, Aouizerat BE, Vining K, Thomas CM, Dovat S, Young S, Viet CT. Stimulator of Interferon Genes Pathway Activation through the Controlled Release of STINGel Mediates Analgesia and Anti-Cancer Effects in Oral Squamous Cell Carcinoma. Biomedicines 2024; 12:920. [PMID: 38672274 PMCID: PMC11047833 DOI: 10.3390/biomedicines12040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-β pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-β signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.
Collapse
Affiliation(s)
- Minh Phuong Dong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Neeraja Dharmaraj
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Estela Kaminagakura
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São Paulo 12245-00, Brazil;
| | - Jianfei Xue
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - David G. Leach
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Michael Zhang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Hana-Joy Hanks
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Yi Ye
- Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA;
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Bradley E. Aouizerat
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Kyle Vining
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Materials Science and Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Simon Young
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| |
Collapse
|
3
|
Macharia JM, Raposa BL, Sipos D, Melczer C, Toth Z, Káposztás Z. The Impact of Palliative Care on Mitigating Pain and Its Associated Effects in Determining Quality of Life among Colon Cancer Outpatients. Healthcare (Basel) 2023; 11:2954. [PMID: 37998446 PMCID: PMC10671794 DOI: 10.3390/healthcare11222954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Pain continues to be a significant problem for cancer patients, and the impact of a population-based strategy on their experiences is not completely understood. Our study aimed to determine the impact of palliative care on mitigating pain and its associated effects in determining the quality of life (QoL) among colon cancer outpatients. Six collection databases were used to perform a structured systematic review of the available literature, considering all papers published between the year 2000 and February 2023. PRISMA guidelines were adopted in our study, and a total of 9792 papers were evaluated. However, only 126 articles met the inclusion criteria. A precise diagnosis of disruptive colorectal cancer (CRC) pain disorders among patients under palliative care is necessary to mitigate it and its associated effects, enhance health, promote life expectancy, increase therapeutic responsiveness, and decrease comorbidity complications. Physical activities, the use of validated pain assessment tools, remote outpatient education and monitoring, chemotherapeutic pain reduction strategies, music and massage therapies, and bridging social isolation gaps are essential in enhancing QoL. We recommend and place a strong emphasis on the adoption of online training/or coaching programs and the integration of formal and informal palliative care systems for maximum QoL benefits among CRC outpatients.
Collapse
Affiliation(s)
- John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Str 4, 7621 Pẻcs, Hungary
| | - Bence L. Raposa
- Faculty of Health Sciences, University of Pécs, Vörösmarty Str 4, 7621 Pẻcs, Hungary
| | - Dávid Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Szent Imre Str 14/B, 7400 Kaposvár, Hungary
| | - Csaba Melczer
- Institute of Physiotherapy and Sport Science, Faculty of Health Sciences, University of Pécs, Vörösmarty Str 4, 7621 Pẻcs, Hungary;
| | - Zoltan Toth
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Str 4, 7621 Pẻcs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pécs, Vörösmarty Str 4, 7621 Pẻcs, Hungary
| |
Collapse
|
4
|
Son GY, Tu NH, Santi MD, Lopez SL, Souza Bomfim GH, Vinu M, Zhou F, Chaloemtoem A, Alhariri R, Idaghdour Y, Khanna R, Ye Y, Lacruz RS. The Ca 2+ channel ORAI1 is a regulator of oral cancer growth and nociceptive pain. Sci Signal 2023; 16:eadf9535. [PMID: 37669398 PMCID: PMC10747475 DOI: 10.1126/scisignal.adf9535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| | - Nguyen Huu Tu
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Maria Daniela Santi
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Santiago Loya Lopez
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | | | - Manikandan Vinu
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY 10010
| | - Ariya Chaloemtoem
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rama Alhariri
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Yi Ye
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| |
Collapse
|
5
|
Tu NH, Inoue K, Lewis PK, Khan A, Hwang JH, Chokshi V, Dabovic BB, Selvaraj S, Bhattacharya A, Dubeykovskaya Z, Pinkerton NM, Bunnett NW, Loomis CA, Albertson DG, Schmidt BL. Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain. Cells 2023; 12:1675. [PMID: 37443709 PMCID: PMC10341289 DOI: 10.3390/cells12131675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
Collapse
Affiliation(s)
- Nguyen Huu Tu
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Kenji Inoue
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Parker K. Lewis
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA; (P.K.L.); (N.M.P.)
| | - Ammar Khan
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Jun Hyeong Hwang
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Varun Chokshi
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Branka Brukner Dabovic
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Shanmugapriya Selvaraj
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Zinaida Dubeykovskaya
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
| | - Nathalie M. Pinkerton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA; (P.K.L.); (N.M.P.)
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Cynthia A. Loomis
- Department of Pathology, NYU Langone Health, New York, NY 10010, USA; (B.B.D.); (S.S.); (C.A.L.)
| | - Donna G. Albertson
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Brian L. Schmidt
- Department of Oral and Maxillofacial Surgery, Translational Research Center, New York University College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (A.K.); (J.H.H.); (V.C.); (A.B.); (Z.D.)
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
6
|
Gonzales CB, De La Chapa JJ, Patwardhan AM, Hargreaves KM. Oral Cancer Pain Includes Thermal Allodynia That May Be Attenuated by Chronic Alcohol Consumption. Pharmaceuticals (Basel) 2023; 16:ph16040518. [PMID: 37111275 PMCID: PMC10142169 DOI: 10.3390/ph16040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Oral cancer is one of the most painful cancer types, and is often refractory to existing analgesics. Oral cancer patients frequently develop a tolerance to opioids, the mainstay of current cancer pain therapy, leaving them with limited therapeutic options. Thus, there is a great need to identify molecular mechanisms driving oral cancer pain in an effort to develop new analgesics. Previous reports demonstrate that oral cancer patients experience intense mechanical pain and pain in function. To date, no studies have examined thermal pain in oral cancer patients or the role that alcohol consumption plays in oral cancer pain. This study aims to evaluate patient-reported pain levels and thermal allodynia, potential molecular mechanisms mediating thermal allodynia, and the effects of alcohol consumption on patient-perceived pain. Methods: This study evaluated human oral squamous cell carcinoma (OSCC) cell lines for their ability to activate thermosensitive channels in vitro and validated these findings in a rat model of orofacial pain. Patient-reported pain in a south Texas OSCC cohort (n = 27) was examined using a visual analog scale (VAS). Covariant analysis examined variables such as tobacco and alcohol consumption, ethnicity, gender, and cancer stage. Results: We determined that OSCC secretes factors that stimulate both the Transient Receptor Potential Ankyrin type 1 channel (TRPA1; noxious cold sensor) and the Transient Receptor Potential Vanilloid type 1 channel (TRPV1; noxious heat sensor) in vitro and that OSCC-secreted factors sensitize TRPV1 nociceptors in vivo. These findings were validated in this cohort, in which allodynia to cold and heat were reported. Notably, subjects that reported regular alcohol consumption also reported lower pain scores for every type of pain tested, with significantly reduced cold-induced pain, aching pain, and burning pain. Conclusion: Oral cancer patients experience multiple types of cancer pain, including thermal allodynia. Alcohol consumption correlates with reduced OSCC pain and reduced thermal allodynia, which may be mediated by TRPA1 and TRPV1. Hence, reduced pain in these patients may contribute to a delay in seeking care, and thus a delay in early detection and treatment.
Collapse
Affiliation(s)
- Cara B. Gonzales
- Department of Comprehensive Dentistry, UT Health San Antonio, School of Dentistry, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Jorge J. De La Chapa
- Department of Comprehensive Dentistry, UT Health San Antonio, School of Dentistry, San Antonio, TX 78229, USA
| | - Amol M. Patwardhan
- Department of Anesthesiology and Pain Management, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth M. Hargreaves
- Department of Endodontics, UT Health San Antonio, School of Dentistry, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Haroun R, Wood JN, Sikandar S. Mechanisms of cancer pain. FRONTIERS IN PAIN RESEARCH 2023; 3:1030899. [PMID: 36688083 PMCID: PMC9845956 DOI: 10.3389/fpain.2022.1030899] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.
Collapse
Affiliation(s)
- Rayan Haroun
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Dubeykovskaya ZA, Tu NH, Garcia PDR, Schmidt BL, Albertson DG. Oral Cancer Cells Release Vesicles that Cause Pain. Adv Biol (Weinh) 2022; 6:e2200073. [PMID: 35802912 PMCID: PMC9474716 DOI: 10.1002/adbi.202200073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Indexed: 01/28/2023]
Abstract
Oral cancer pain is attributed to the release from cancers of mediators that sensitize and activate sensory neurons. Intraplantar injection of conditioned media (CM) from human tongue cancer cell line HSC-3 or OSC-20 evokes nociceptive behavior. By contrast, CM from noncancer cell lines, DOK, and HaCaT are non-nociceptive. Pain mediators are carried by extracellular vesicles (EVs) released from cancer cells. Depletion of EVs from cancer cell line CM reverses mechanical allodynia and thermal hyperalgesia. CM from non-nociceptive cell lines become nociceptive when reconstituted with HSC-3 EVs. Two miRNAs (hsa-miR-21-5p and hsa-miR-221-3p) are identified that are present in increased abundance in EVs from HSC-3 and OSC-20 CM compared to HaCaT CM. The miRNA target genes suggest potential involvement in oral cancer pain of the toll like receptor 7 (TLR7) and 8 (TLR8) pathways, as well as signaling through interleukin 6 cytokine family signal transducer receptor (gp130, encoded by IL6ST) and colony stimulating factor receptor (G-CSFR, encoded by CSF3R), Janus kinase and signal transducer and activator of transcription 3 (JAK/STAT3). These studies confirm the recent discovery of the role of cancer EVs in pain and add to the repertoire of algesic and analgesic cancer pain mediators and pathways that contribute to oral cancer pain.
Collapse
Affiliation(s)
- Zinaida A Dubeykovskaya
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Paulina D Ramírez Garcia
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Donna G Albertson
- Bluestone Center for Clinical Research and Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| |
Collapse
|
9
|
Greco C, Basso L, Désormeaux C, Fournel A, Demuynck B, Lafendi L, Chapiro S, Lemoine A, Zhu YY, Knauf C, Cenac N, Boucheix C, Dietrich G. Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. FRONTIERS IN PAIN RESEARCH 2022; 2:613187. [PMID: 35295482 PMCID: PMC8915553 DOI: 10.3389/fpain.2021.613187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peritoneal carcinomatosis often results in alterations in intestinal peristalsis and recurrent abdominal pain. Pain management in these patients is often unsatisfactory. This study aimed to investigate whether endothelin-1 (EDN1) was involved in pain mediation in peritoneal carcinomatosis, and thus whether the EDN1 pathway could be a new therapeutic target for peritoneal carcinomatosis-associated pain. Methods: EDN1 plasma levels and abdominal pain severity were assessed in patients with abdominal tumors, with or without peritoneal carcinomatosis, and in healthy donors. The effects of EDN1 on the visceromotor response to colorectal distension, and on colonic contractions were then examined in mice, and the mechanism of action of EDN1 was then investigated by measuring the impact of EDN1 exposure on calcium mobilization in cultured neurons. Inhibition studies were also performed to determine if the effects of EDN1 exposure could be reversed by EDN1-specific receptor antagonists. Results: A positive correlation between EDN1 plasma levels and abdominal pain was identified in patients with peritoneal carcinomatosis. EDN1 exposure increased visceral sensitivity and the amplitude of colonic contractions in mice and induced calcium mobilization by direct binding to its receptors on sensory neurons. The effects of EDN1 were inhibited by antagonists of the EDN1 receptors. Conclusions: This preliminary study, using data from patients with peritoneal carcinomatosis combined with data from experiments performed in mice, suggests that EDN1 may play a key role mediating pain in peritoneal carcinomatosis. Our findings suggest that antagonists of the EDN1 receptors might be beneficial in the management of pain in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Céline Greco
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Cléo Désormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audren Fournel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Benedicte Demuynck
- Department of Oncology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Leila Lafendi
- Department of Medical Biology and Physiology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Sylvie Chapiro
- Department of Palliative Care, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Antoinette Lemoine
- UMR-S1093, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Biochemistry, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Ying-Ying Zhu
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Claude Boucheix
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
10
|
Chadwick A, Frazier A, Khan TW, Young E. Understanding the Psychological, Physiological, and Genetic Factors Affecting Precision Pain Medicine: A Narrative Review. J Pain Res 2021; 14:3145-3161. [PMID: 34675643 PMCID: PMC8517910 DOI: 10.2147/jpr.s320863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Precision pain medicine focuses on employing methods to assess each patient individually, identify their risk profile for disproportionate pain and/or the development of chronic pain, and optimize therapeutic strategies to target specific pathological processes underlying chronic pain. This review aims to provide a concise summary of the current body of knowledge regarding psychological, physiological, and genetic determinants of chronic pain related to precision pain medicine. METHODS Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we employed PubMed/Medline to identify relevant articles using primary database search terms to query articles such as: precision medicine, non-modifiable factors, pain, anesthesiology, quantitative sensory testing, genetics, pain medicine, and psychological. RESULTS Precision pain medicine provides an opportunity to identify populations at risk, develop personalized treatment strategies, and reduce side effects and cost through elimination of ineffective treatment strategies. As in other complex chronic health conditions, there are two broad categories that contribute to chronic pain risk: modifiable and non-modifiable patient factors. This review focuses on three primary determinants of health, representing both modifiable and non-modifiable factors, that may contribute to a patient's profile for risk of developing pain and most effective management strategies: psychological, physiological, and genetic factors. CONCLUSION Consideration of these three domains is already being integrated into patient care in other specialties, but by understanding the role they play in development and maintenance of chronic pain, we can begin to implement both precision and personalized treatment regimens.
Collapse
Affiliation(s)
- Andrea Chadwick
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew Frazier
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Talal W Khan
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erin Young
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Tu NH, Inoue K, Chen E, Anderson BM, Sawicki CM, Scheff NN, Tran HD, Kim DH, Alemu RG, Yang L, Dolan JC, Liu CZ, Janal MN, Latorre R, Jensen DD, Bunnett NW, Edgington-Mitchell LE, Schmidt BL. Cathepsin S Evokes PAR 2-Dependent Pain in Oral Squamous Cell Carcinoma Patients and Preclinical Mouse Models. Cancers (Basel) 2021; 13:4697. [PMID: 34572924 PMCID: PMC8466361 DOI: 10.3390/cancers13184697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (SCC) pain is more prevalent and severe than pain generated by any other form of cancer. We previously showed that protease-activated receptor-2 (PAR2) contributes to oral SCC pain. Cathepsin S is a lysosomal cysteine protease released during injury and disease that can activate PAR2. We report here a role for cathepsin S in PAR2-dependent cancer pain. We report that cathepsin S was more active in human oral SCC than matched normal tissue, and in an orthotopic xenograft tongue cancer model than normal tongue. The multiplex immunolocalization of cathepsin S in human oral cancers suggests that carcinoma and macrophages generate cathepsin S in the oral cancer microenvironment. After cheek or paw injection, cathepsin S evoked nociception in wild-type mice but not in mice lacking PAR2 in Nav1.8-positive neurons (Par2Nav1.8), nor in mice treated with LY3000328 or an endogenous cathepsin S inhibitor (cystatin C). The human oral SCC cell line (HSC-3) with homozygous deletion of the gene for cathepsin S (CTSS) with CRISPR/Cas9 provoked significantly less mechanical allodynia and thermal hyperalgesia, as did those treated with LY3000328, compared to the control cancer mice. Our results indicate that cathepsin S is activated in oral SCC, and that cathepsin S contributes to cancer pain through PAR2 on neurons.
Collapse
Affiliation(s)
- Nguyen Huu Tu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Kenji Inoue
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Elyssa Chen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Bethany M. Anderson
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Caroline M. Sawicki
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Nicole N. Scheff
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Hillman Cancer Research Center, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Hung D. Tran
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Dong H. Kim
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Robel G. Alemu
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Lei Yang
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - John C. Dolan
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
| | - Cheng Z. Liu
- Pathology Department, New York University (NYU) Langone Health, New York, NY 10016, USA;
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, New York University (NYU) College of Dentistry, New York, NY 10010, USA;
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Dane D. Jensen
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (R.L.); (N.W.B.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| | - Laura E. Edgington-Mitchell
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia;
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University (NYU) College of Dentistry, New York, NY 10010, USA; (N.H.T.); (K.I.); (E.C.); (C.M.S.); (N.N.S.); (H.D.T.); (D.H.K.); (R.G.A.); (L.Y.); (J.C.D.); (D.D.J.)
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University (NYU) Langone Health, New York, NY 10016, USA
| |
Collapse
|
12
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
13
|
Andriessen AS, Donnelly CR, Ji RR. Reciprocal interactions between osteoclasts and nociceptive sensory neurons in bone cancer pain. Pain Rep 2021; 6:e867. [PMID: 33981921 PMCID: PMC8108580 DOI: 10.1097/pr9.0000000000000867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Many common cancers such as breast, prostate, and lung cancer metastasize to bones at advanced stages, producing severe pain and functional impairment. At present, the current pharmacotherapies available for bone cancer pain are insufficient to provide safe and efficacious pain relief. In this narrative review, we discuss the mechanisms used by cancer cells within the bone tumor microenvironment (TME) to drive bone cancer pain. In particular, we highlight the reciprocal interactions between tumor cells, bone-resorbing osteoclasts, and pain-sensing sensory neurons (nociceptors), which drive bone cancer pain. We discuss how tumor cells present within the bone TME accelerate osteoclast differentiation (osteoclastogenesis) and alter osteoclast activity and function. Furthermore, we highlight how this perturbed state of osteoclast overactivation contributes to bone cancer pain through (1) direct mechanisms, through their production of pronociceptive factors that act directly on sensory afferents; and (2) by indirect mechanisms, wherein osteoclasts drive bone resorption that weakens tumor-bearing bones and predisposes them to skeletal-related events, thereby driving bone cancer pain and functional impairment. Finally, we discuss some potential therapeutic agents, such as denosumab, bisphosphonates, and nivolumab, and discuss their respective effects on bone cancer pain, osteoclast overactivation, and tumor growth within the bone TME.
Collapse
Affiliation(s)
- Amanda S. Andriessen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher R. Donnelly
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Dang D, Ye Y, Aouizerat BE, Patel YK, Viet DT, Chan KC, Ono K, Doan C, Figueroa JD, Yu G, Viet CT. Targeting the endothelin axis as a therapeutic strategy for oral cancer metastasis and pain. Sci Rep 2020; 10:20832. [PMID: 33257729 PMCID: PMC7704690 DOI: 10.1038/s41598-020-77642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Metastasis reduces survival in oral cancer patients and pain is their greatest complaint. We have shown previously that oral cancer metastasis and pain are controlled by the endothelin axis, which is a pathway comprised of the endothelin A and B receptors (ETAR and ETBR). In this study we focus on individual genes of the pathway, demonstrating that the endothelin axis genes are methylated and dysregulated in cancer tissue. Based on these findings in patients, we hypothesize that ETAR and ETBR play dichotomous roles in oral carcinogenesis and pain, such that ETAR activation and silenced ETBR expression result in increased carcinogenesis and pain. We test a treatment strategy that targets the dichotomous functions of the two receptors by inhibiting ETAR with macitentan, an ETAR antagonist approved for treatment of pulmonary hypertension, and re-expressing the ETBR gene with adenovirus transduction, and determine the treatment effect on cancer invasion (i.e., metastasis), proliferation and pain in vitro and in vivo. We demonstrate that combination treatment of macitentan and ETBR gene therapy inhibits invasion, but not proliferation, in cell culture and in a mouse model of tongue cancer. Furthermore, the treatment combination produces an antinociceptive effect through inhibition of endothelin-1 mediated neuronal activation, revealing the analgesic potential of macitentan. Our treatment approach targets a pathway shown to be dysregulated in oral cancer patients, using gene therapy and repurposing an available drug to effectively treat both oral cancer metastasis and pain in a preclinical model.
Collapse
Affiliation(s)
- Dongmin Dang
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA.,Bluestone Center for Clinical Research, New York University, New York, NY, USA.,Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Yogin K Patel
- Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - King Chong Chan
- Division of Oral and Maxillofacial Radiology, Section of Hospital Dentistry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kentaro Ono
- Department of Physiology, Kyushu Dental University, Kitakyushu, Japan
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Johnny D Figueroa
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. J Neurosci 2020; 41:193-210. [PMID: 33172978 DOI: 10.1523/jneurosci.1211-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not β-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.
Collapse
|
17
|
A disintegrin and metalloproteinase domain 17-epidermal growth factor receptor signaling contributes to oral cancer pain. Pain 2020; 161:2330-2343. [PMID: 32453136 PMCID: PMC9244849 DOI: 10.1097/j.pain.0000000000001926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells secrete pronociceptive mediators that sensitize adjacent sensory neurons and cause pain. Identification and characterization of these mediators could pinpoint novel targets for cancer pain treatment. In this study, we identified candidate genes in cancer cell lines that encode for secreted or cell surface proteins that may drive nociception. To undertake this work, we used an acute cancer pain mouse model, transcriptomic analysis of publicly available human tumor-derived cell line data, and a literature review. Cancer cell line supernatants were assigned a phenotype based on evoked nociceptive behavior in an acute cancer pain mouse model. We compared gene expression data from nociceptive and nonnociceptive cell lines. Our analyses revealed differentially expressed genes and pathways; many of the identified genes were not previously associated with cancer pain signaling. Epidermal growth factor receptor (EGFR) and disintegrin metalloprotease domain 17 (ADAM17) were identified as potential targets among the differentially expressed genes. We found that the nociceptive cell lines contained significantly more ADAM17 protein in the cell culture supernatant compared to nonnociceptive cell lines. Cytoplasmic EGFR was present in almost all (>90%) tongue primary afferent neurons in mice. Monoclonal antibody against EGFR, cetuximab, inhibited cell line supernatant-induced nociceptive behavior in an acute oral cancer pain mouse model. We infer from these data that ADAM17-EGFR signaling is involved in cancer mediator-induced nociception. The differentially expressed genes and their secreted protein products may serve as candidate therapeutic targets for oral cancer pain and warrant further evaluation.
Collapse
|
18
|
Bhattacharya A, Janal MN, Veeramachaneni R, Dolgalev I, Dubeykovskaya Z, Tu NH, Kim H, Zhang S, Wu AK, Hagiwara M, Kerr AR, DeLacure MD, Schmidt BL, Albertson DG. Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes. Sci Rep 2020; 10:14724. [PMID: 32895418 PMCID: PMC7477576 DOI: 10.1038/s41598-020-71298-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Oral cancer patients experience pain at the site of the primary cancer. Patients with metastatic oral cancers report greater pain. Lack of pain identifies patients at low risk of metastasis with sensitivity = 0.94 and negative predictive value = 0.89. In the same cohort, sensitivity and negative predictive value of depth of invasion, currently the best predictor, were 0.95 and 0.92, respectively. Cancer pain is attributed to cancer-derived mediators that sensitize neurons and is associated with increased neuronal density. We hypothesized that pain mediators would be overexpressed in metastatic cancers from patients reporting high pain. We identified 40 genes overexpressed in metastatic cancers from patients reporting high pain (n = 5) compared to N0 cancers (n = 10) and normal tissue (n = 5). The genes are enriched for functions in extracellular matrix organization and angiogenesis. They have oncogenic and neuronal functions and are reported in exosomes. Hierarchical clustering according to expression of neurotrophic and axon guidance genes also separated cancers according to pain and nodal status. Depletion of exosomes from cancer cell line supernatant reduced nociceptive behavior in a paw withdrawal assay, supporting a role for exosomes in cancer pain. The identified genes and exosomes are potential therapeutic targets for stopping cancer and attenuating pain.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ratna Veeramachaneni
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Zinaida Dubeykovskaya
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Hyesung Kim
- New York University College of Dentistry, New York, NY, 10010, USA
| | - Susanna Zhang
- New York University College of Dentistry, New York, NY, 10010, USA
| | - Angie K Wu
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA
| | - Mari Hagiwara
- Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - A Ross Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University, New York, NY, 10010, USA
| | - Mark D DeLacure
- Division of Head and Neck Surgery and Oncology, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Donna G Albertson
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, Room 233W, New York, NY, 10010, USA. .,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
19
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022]
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
20
|
Endothelin Signaling Contributes to Modulation of Nociception in Early-stage Tongue Cancer in Rats. Anesthesiology 2019; 128:1207-1219. [PMID: 29461271 DOI: 10.1097/aln.0000000000002139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients with early stage tongue cancer do not frequently complain of tongue pain. Endothelin-1 signaling is upregulated in the cancerous tongue at the early stage. We tested the hypothesis that endothelin-1 signaling contributes to the modulation of tongue nociception. METHODS Squamous cell carcinoma cells were inoculated into the tongue under general anesthesia. Lingual mechanical sensitivity under light anesthesia using forceps from days 1 to 21 (n = 8) and the amounts of endothelin-1 and β-endorphin in the tongue on days 6, 14, and 21 (n = 5 to 7) were examined after the inoculation. The effect of endothelin-A or µ-opioid receptor antagonism on the mechanical sensitivity was examined (n = 5 to 7). RESULTS Lingual mechanical sensitivity did not change at the early stage (days 5 to 6) but increased at the late stage (days 13 to 14). The amount of endothelin-1 increased (25.4 ± 4.8 pg/ml vs. 15.0 ± 5.2 pg/ml; P = 0.008), and endothelin-A receptor antagonism in the tongue induced mechanical hypersensitivity at the early stage (51 ± 9 g vs. 81 ± 6 g; P = 0.0001). The µ-opioid receptor antagonism enhanced mechanical hypersensitivity (39 ± 7 g vs. 81 ± 6 g; P < 0.0001), and the amount of β-endorphin increased at the early stage. CONCLUSIONS β-Endorphin released from the cancer cells via endothelin-1 signaling is involved in analgesic action in mechanical hypersensitivity at the early stage.
Collapse
|
21
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
22
|
Grayson M, Furr A, Ruparel S. Depiction of Oral Tumor-Induced Trigeminal Afferent Responses Using Single-Fiber Electrophysiology. Sci Rep 2019; 9:4574. [PMID: 30872649 PMCID: PMC6418205 DOI: 10.1038/s41598-019-39824-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Considerable gap in knowledge exists about the mechanisms by which oral tumors regulate peripheral sensory fibers to produce pain and altered sensations. To address this gap, we used a murine model of oral squamous cell carcinoma (OSCC) of the tongue to investigate changes in response properties of trigeminal afferent neurons. Using this model, we developed an ex vivo method for single neuron recordings of the lingual nerve from isolated tongue tissue. Our data demonstrated that the tongue tumor produced increased spontaneous firing of lingual fibers compared to control as well as produced mechanical hypersensitivity and reduced von Frey thresholds of C- and A-slow-high-threshold mechanoreceptors (HTMR) fibers but had no effect on C-LTMR, A-slow-LTMR and A-fast lingual fibers. Mechanically-insensitive fibers were also detected in lingual afferents of the control group, that were significantly decreased in tumor-bearing preparations. Collectively, using single fiber electrophysiology of lingual sensory fibers, we show that human OSCC tumors sensitize peripheral trigeminal nerve terminals, providing a unique opportunity to study mechanisms of oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Ashley Furr
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Kopruszinski CM, dos Reis RC, Rae GA, Chichorro JG. Blockade of peripheral endothelin receptors abolishes heat hyperalgesia and spontaneous nociceptive behavior in a rat model of facial cancer. Arch Oral Biol 2019; 97:231-237. [DOI: 10.1016/j.archoralbio.2018.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
|
24
|
Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation. Pain 2018; 158:2396-2409. [PMID: 28885456 DOI: 10.1097/j.pain.0000000000001044] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Patients with oral cancer report severe pain during function. Inflammation plays a role in the oral cancer microenvironment; however, the role of immune cells and associated secretion of inflammatory mediators in oral cancer pain has not been well defined. In this study, we used 2 oral cancer mouse models: a cell line supernatant injection model and the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogenesis model. We used the 2 models to study changes in immune cell infiltrate and orofacial nociception associated with oral squamous cell carcinoma (oSCC). Oral cancer cell line supernatant inoculation and 4NQO-induced oSCC resulted in functional allodynia and neuronal sensitization of trigeminal tongue afferent neurons. Although the infiltration of immune cells is a prominent component of both oral cancer models, our use of immune-deficient mice demonstrated that oral cancer-induced nociception was not dependent on the inflammatory component. Furthermore, the inflammatory cytokine, tumor necrosis factor alpha (TNFα), was identified in high concentration in oral cancer cell line supernatant and in the tongue tissue of 4NQO-treated mice with oSCC. Inhibition of TNFα signaling abolished oral cancer cell line supernatant-evoked functional allodynia and disrupted T-cell infiltration. With these data, we identified TNFα as a prominent mediator in oral cancer-induced nociception and inflammation, highlighting the need for further investigation in neural-immune communication in cancer pain.
Collapse
|
25
|
Khodorova A, Zhang Y, Nicol G, Strichartz G. Interactions of peripheral endothelin-1 and nerve growth factor as contributors to persistent cutaneous pain. Physiol Res 2018; 67:S215-S225. [PMID: 29947541 DOI: 10.33549/physiolres.933819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endothelin-1 (ET-1) and Nerve Growth Factor (NGF) are proteins, released from cancer-ridden tissues, which cause spontaneous pain and hypersensitivity to noxious stimuli. Here we examined the electrophysiological and behavioral effects of these two agents for evidence of their interactions. Individual small-medium cultured DRG sensory neurons responded to both ET-1 (50 nM, n=6) and NGF (100 ng/ml, n=4), with increased numbers of action potentials and decreased slow K(+) currents; pre-exposure to ET-1 potentiated NGF´s actions, but not vice versa. Behaviorally, single intraplantar (i.pl.) injection of low doses of ET-1 (20 pmol) or NGF (100 ng), did not increase hindpaw tactile or thermal sensitivity, but their simultaneous injections sensitized the paw to both modalities. Daily i.pl. injections of low ET-1 doses in male rats caused tactile sensitization after 21 days, and enabled further tactile and thermal sensitization from low dose NGF, in ipsilateral and contralateral hindpaws. Single injections of 100 ng NGF, without changing the paw's tactile sensitivity by itself, acutely sensitized the ipsilateral paw to subsequent injections of low ET-1. The sensitization from repeated low ET-1 dosing and the cross-sensitization between NGF and ET-1 were both significantly greater in female than in male rats. These findings reveal a synergistic interaction between cutaneously administered low doses of NGF and ET-1, which could contribute to cancer-related pain.
Collapse
Affiliation(s)
- A Khodorova
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
26
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
27
|
Abstract
Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid. The vector has high transfection efficiency with little cytotoxicity in cancer cell lines including HSC-3 (human tongue squamous cell carcinoma) and exhibits differential expression in HSC-3 (∼45-fold) relative to HGF-1 (human gingival fibroblasts) cells. We used the nonviral vector to transfect cancer with OPRM1, the μ-opioid receptor gene, as a novel method for treating cancer-induced pain. After HSC-3 cells were transfected with OPRM1, a cancer mouse model was created by inoculating the transfected HSC-3 cells into the hind paw or tongue of athymic mice to determine the analgesic potential of OPRM1 transfection. Mice with HSC-3 tumors expressing OPRM1 demonstrated significant antinociception compared with control mice. The effect was reversible with local naloxone administration. We quantified β-endorphin secretion from HSC-3 cells and showed that HSC-3 cells transfected with OPRM1 secreted significantly more β-endorphin than control HSC-3 cells. These findings indicate that nonviral delivery of the OPRM1 gene targeted to the cancer microenvironment has an analgesic effect in a preclinical cancer model, and nonviral gene delivery is a potential treatment for cancer pain.
Collapse
|
28
|
Souza RFD, Oliveira LLD, Nones CFM, dos Reis RC, Araya EI, Kopruszinski CM, Rae GA, Chichorro JG. Mechanisms involved in facial heat hyperalgesia induced by endothelin-1 in female rats. Arch Oral Biol 2017; 83:297-303. [DOI: 10.1016/j.archoralbio.2017.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 01/29/2023]
|
29
|
Ono K, Viet CT, Ye Y, Dang D, Hitomi S, Toyono T, Inenaga K, Dolan JC, Schmidt BL. Cutaneous pigmentation modulates skin sensitivity via tyrosinase-dependent dopaminergic signalling. Sci Rep 2017; 7:9181. [PMID: 28835637 PMCID: PMC5569050 DOI: 10.1038/s41598-017-09682-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
We propose a new mechanism of sensory modulation through cutaneous dopaminergic signalling. We hypothesize that dopaminergic signalling contributes to differential cutaneous sensitivity in darker versus lighter pigmented humans and mouse strains. We show that thermal and mechanical cutaneous sensitivity is pigmentation dependent. Meta-analyses in humans and mice, along with our own mouse behavioural studies, reveal higher thermal sensitivity in pigmented skin relative to less-pigmented or albino skin. We show that dopamine from melanocytes activates the D1-like dopamine receptor on primary sensory neurons. Dopaminergic activation increases expression of the heat-sensitive TRPV1 ion channel and reduces expression of the mechanically-sensitive Piezo2 channel; thermal threshold is lower and mechanical threshold is higher in pigmented skin.
Collapse
Affiliation(s)
- Kentaro Ono
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chi T Viet
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Ye
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Dongmin Dang
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Toyono
- Division of Oral Anatomy, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - John C Dolan
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
30
|
Viet CT, Dang D, Aouizerat BE, Miaskowski C, Ye Y, Viet DT, Ono K, Schmidt BL. OPRM1 Methylation Contributes to Opioid Tolerance in Cancer Patients. THE JOURNAL OF PAIN 2017; 18:1046-1059. [PMID: 28456745 DOI: 10.1016/j.jpain.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
Cancer patients in pain require high doses of opioids and quickly become opioid-tolerant. Previous studies have shown that chronic cancer pain as well as high-dose opioid use lead to mu-opioid receptor downregulation. In this study we explore downregulation of the mu-opioid receptor gene (OPRM1), as a mechanism for opioid tolerance in the setting of opioid use for cancer pain. We demonstrate in a cohort of 84 cancer patients that high-dose opioid use correlates with OPRM1 hypermethylation in peripheral leukocytes of these patients. We then reverse-translate our clinical findings by creating a mouse cancer pain model; we create opioid tolerance in the mouse cancer model to mimic opioid tolerance in the cancer patients. Using this model we determine the functional significance of OPRM1 methylation on cancer pain and opioid tolerance. We focus on 2 main cells within the cancer microenvironment: the cancer cell and the neuron. We show that targeted re-expression of mu-opioid receptor on cancer cells inhibits mechanical and thermal hypersensitivity, and prevents opioid tolerance, in the mouse model. The resultant analgesia and protection against opioid tolerance are likely due to preservation of mu-opioid receptor expression on the cancer-associated neurons. PERSPECTIVE We demonstrate that epigenetic regulation of OPRM1 contributes to opioid tolerance in cancer patients, and that targeted gene therapy could treat cancer-induced nociception and opioid tolerance in a mouse cancer model.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Dongmin Dang
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York; School of Nursing, University of California, San Francisco, California; Institute for Human Genetics, University of California, San Francisco, California
| | | | - Yi Ye
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Dan T Viet
- Bluestone Center for Clinical Research, New York University, New York, New York
| | - Kentaro Ono
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York
| | - Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University, New York, New York; Bluestone Center for Clinical Research, New York University, New York, New York.
| |
Collapse
|
31
|
Romero-Reyes M, Salvemini D. Cancer and orofacial pain. Med Oral Patol Oral Cir Bucal 2016; 21:e665-e671. [PMID: 27694791 PMCID: PMC5116107 DOI: 10.4317/medoral.21515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cancer pain is a devastating condition. Pain in the orofacial region, may be present as the single symptom of cancer or as a symptom of cancer in its later stages. This manuscript revises in a comprehensive manner the content of the conference entitled "Orofacial Pain and Cancer" (Dolor Orofacial y Cancer) given at the VI Simposio International "Advances in Oral Cancer" on the 22 July, 2016 in San Sebastioan-Donostia, Spain. MATERIAL AND METHODS We have reviewed (pubmed-medline) from the most relevant literature including reviews, systematic reviews and clinical cases, the significant and evidence-based mechanisms and mediators of cancer-associated facial pain, the diverse types of cancers that can be present in the craniofacial region locally or from distant sites that can refer to the orofacial region, cancer therapy that may induce pain in the orofacial region as well as discussed some of the new advancements in cancer pain therapy. RESULTS There is still a lack of understanding of cancer pain pathophysiology since depends of the intrinsic heterogeneity, type and anatomic location that the cancer may present, making more challenging the creation of better therapeutic options. Orofacial pain can arise from regional or distant tumor effects or as a consequence of cancer therapy. CONCLUSIONS The clinician needs to be aware that the pain may present the characteristics of any other orofacial pain disorder so a careful differential diagnosis needs to be given. Cancer pain diagnosis is made by exclusion and only can be reached after a thorough medical history, and all the common etiologies have been carefully investigated and ruled out. The current management tools are not optimal but there is hope for new, safer and effective therapies coming in the next years.
Collapse
Affiliation(s)
- M Romero-Reyes
- Department of Oral & Maxillofacial, Pathology, Radiology & Medicine, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010,
| | | |
Collapse
|
32
|
Abstract
Most cancer patients experience severe pain during their disease course, and the management of cancer pain is a major challenge for patients and the healthcare team. Many diverse translational models of cancer pain in recent years have improved our understanding of cancer-related pain. Cancer and associated cells in the cancer microenvironment may release various peripheral mediators, including ATP, formaldehyde, protons, proteases, endothelin, bradykinin, TNF and NGF, that result in the activation and/or sensitization of peripheral and central neurons, that contribute to the clinical manifestations of cancer-related pain. Identification of these mediators and the peripheral and central mechanisms by which they contribute to cancer-related pain may provide novel therapeutic targets to alleviate cancer patient suffering.
Collapse
Affiliation(s)
- David K Lam
- Oral & Maxillofacial Surgery, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Dental Oncology, Maxillofacial & Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Wasser Pain Management Centre, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Schmidt BL. The Neurobiology of Cancer Pain. J Oral Maxillofac Surg 2016; 73:S132-5. [PMID: 26608142 DOI: 10.1016/j.joms.2015.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 12/18/2022]
Abstract
Oral cancers are often severely painful and clinically difficult to manage. Few researchers have investigated the neurobiologic factors responsible for cancer pain; however, the study of oral cancer pain might inform us about the fundamental biology of cancer. The purpose of the present report was to summarize the clinical challenges inherent in oral cancer pain management, oral cancer pain mechanisms and mediators, and the convergence of the investigation of carcinogenesis and pain.
Collapse
Affiliation(s)
- Brian L Schmidt
- Professor, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY.
| |
Collapse
|
34
|
Tang Y, Peng H, Liao Q, Gan L, Zhang R, Huang L, Ding Z, Yang H, Yan X, Gu Y, Zang X, Huang D, Cao S. Study of breakthrough cancer pain in an animal model induced by endothelin-1. Neurosci Lett 2016; 617:108-15. [PMID: 26828300 DOI: 10.1016/j.neulet.2016.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/03/2015] [Accepted: 01/26/2016] [Indexed: 01/05/2023]
Abstract
Cancer patients with bone metastases often suffer breakthrough pain. However, little progress has been made in the treatment of breakthrough pain and its associated mechanism(s) in the patient with cancer due to lacking of resembling and predictive animal models. We previously have demonstrated that endothelin-1 plays an important role in breakthrough cancer pain. In the present study, we have established an animal model of breakthrough cancer pain induced by endothelin-1. The animal model of breakthrough cancer pain is strictly followed the definition and meets the characteristics of breakthrough pain. The model is reliable, reproducible and easy to be produced. To our knowledge, this is the first report for establishing such an animal model. In addition, we also found that a selective ETA receptor antagonist BQ-123 could reverse endothelin-1 induced breakthrough pain. We further studied the characteristics of pain behaviors such as hind limb use score and voluntary wheel running as well as the electrophysiology of sciatic nerve fibers with the model. The murine model shows high resemblance compared to the breakthrough cancer pain in the patients with cancer clinically. It provides a platform for further study of the pathogenesis of breakthrough cancer pain and targeted intervention.
Collapse
Affiliation(s)
- Yixun Tang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Hao Peng
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Qian Liao
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Li Gan
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Raoxiang Zhang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Lihua Huang
- Medical Experimental Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhigang Ding
- Medical Experimental Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Yang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Xuebin Yan
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Yonghong Gu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaofang Zang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China.
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Sichuan Medical University, Luzhou, Sichuan Province, China; Visiting Professor, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
35
|
Yan XB, Peng TC, Huang D. Correlations between plasma endothelin-1 levels and breakthrough pain in patients with cancer. Onco Targets Ther 2015; 8:3703-6. [PMID: 26677337 PMCID: PMC4677760 DOI: 10.2147/ott.s90272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endothelin-1 (ET-1) may be involved in driving pain in patients with advanced cancer. However, a few studies focus on the role of ET-1 in breakthrough pain (BP). The aim of this pivotal study was to explore the correlation between the plasma (ET-1) level and BP intensity. A total of 40 patients were enrolled in the study, and they were divided into two groups: BP group and non-BP group. Moreover, 20 healthy adults were used as the normal control group. Pain intensity was measured using visual analog scale (VAS) scores of 1–10. Plasma ET-1 levels were detected by an ET radioimmunoassay kit. Subsequently, the correlation of ET-1 level with the VAS score and cancer types was analyzed by Pearson’s correlation coefficient. The plasma ET-1 level in the BP group (35.31±8.02 pg/mL) was higher than that in the non-BP group (29.51±6.78 pg/mL) and the normal control group (24.77±10.10 pg/mL, P<0.05). In addition, the VAS score in the BP group (7.45±0.82) was higher than that in the non-BP group (2.80±1.23, P<0.05). The plasma ET-1 level was positively correlated with the VAS score of the BP group (Pearson’s r=0.42). There was no significant correlation between the plasma ET-1 level and VAS score of the non-BP group (Pearson’s r=−0.22) or/and cancer types (P>0.05). The elevated plasma ET-1 levels were positively related to BP, and targeting ET-1 may provide a novel pain-reducing therapeutic treatment in BP.
Collapse
Affiliation(s)
- Xue-Bin Yan
- Department of Anesthesiologist, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Tuo-Chao Peng
- Department of Anesthesiologist, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Dong Huang
- Department of Anesthesiologist, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
36
|
Treatment of Cancer Pain by Targeting Cytokines. Mediators Inflamm 2015; 2015:984570. [PMID: 26538839 PMCID: PMC4619962 DOI: 10.1155/2015/984570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/18/2022] Open
Abstract
Inflammation is one of the most important causes of the majority of cancer symptoms, including pain, fatigue, cachexia, and anorexia. Cancer pain affects 17 million people worldwide and can be caused by different mediators which act in primary efferent neurons directly or indirectly. Cytokines can be aberrantly produced by cancer and immune system cells and are of particular relevance in pain. Currently, there are very few strategies to control the release of cytokines that seems to be related to cancer pain. Nevertheless, in some cases, targeted drugs are available and in use for other diseases. In this paper, we aim to review the importance of cytokines in cancer pain and targeted strategies that can have an impact on controlling this symptom.
Collapse
|
37
|
Thompson ML, Jimenez-Andrade JM, Chartier S, Tsai J, Burton EA, Habets G, Lin PS, West BL, Mantyh PW. Targeting cells of the myeloid lineage attenuates pain and disease progression in a prostate model of bone cancer. Pain 2015; 156:1692-1702. [PMID: 25993548 PMCID: PMC4545688 DOI: 10.1097/j.pain.0000000000000228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor cells frequently metastasize to bone where they can generate cancer-induced bone pain (CIBP) that can be difficult to fully control using available therapies. Here, we explored whether PLX3397, a high-affinity small molecular antagonist that binds to and inhibits phosphorylation of colony-stimulating factor-1 receptor, the tyrosine-protein kinase c-Kit, and the FMS-like tyrosine kinase 3, can reduce CIBP. These 3 targets all regulate the proliferation and function of a subset of the myeloid cells including macrophages, osteoclasts, and mast cells. Preliminary experiments show that PLX3397 attenuated inflammatory pain after formalin injection into the hind paw of the rat. As there is an inflammatory component in CIBP, involving macrophages and osteoclasts, the effect of PLX3397 was explored in a prostate model of CIBP where skeletal pain, cancer cell proliferation, tumor metastasis, and bone remodeling could be monitored in the same animal. Administration of PLX3397 was initiated on day 14 after prostate cancer cell injection when the tumor was well established, and tumor-induced bone remodeling was first evident. Over the next 6 weeks, sustained administration of PLX3397 attenuated CIBP behaviors by approximately 50% and was equally efficacious in reducing tumor cell growth, formation of new tumor colonies in bone, and pathological tumor-induced bone remodeling. Developing a better understanding of potential effects that analgesic therapies have on the tumor itself may allow the development of therapies that not only better control the pain but also positively impact disease progression and overall survival in patients with bone cancer.
Collapse
Affiliation(s)
- Michelle L. Thompson
- Department of Pharmacology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Juan Miguel Jimenez-Andrade
- Department of Pharmacology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Stephane Chartier
- Department of Pharmacology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - James Tsai
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | | | - Gaston Habets
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Paul S. Lin
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Brian L. West
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | - Patrick W. Mantyh
- Department of Pharmacology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| |
Collapse
|
38
|
Ruparel S, Bendele M, Wallace A, Green D. Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain. Mol Pain 2015; 11:30. [PMID: 26007300 PMCID: PMC4456056 DOI: 10.1186/s12990-015-0016-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
Background Pain in the head neck area is an early symptom in oral cancer, supporting the hypothesis that cancer cells control the activities of surrounding nociceptors at the site of the tumor. Several reports implicate TRPV1 and TRPA1 in cancer pain, although there is a large gap in knowledge since the mechanisms for tumor-induced activation of these TRP receptors are unknown. Interestingly, TRP-active lipids such as linoleic acid, arachidonic acid, hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid are significantly elevated in the saliva of oral cancer patients compared to normal patients, supporting a possible linkage between these lipids and oral cancer pain. We therefore hypothesize that oral squamous cell carcinomas release certain lipids that activate TRPV1 and/or TRPA1 on sensory neurons, contributing to the development of oral cancer pain. Methods Lipid extracts were made from conditioned media of three human oral squamous cell carcinoma (OSCC) cell lines as well as one normal human oral keratinocytes cell line. These were then injected intraplantarly into rat hindpaws to measure spontaneous nocifensive behavior, as well as thermal and mechanical allodynia. For interventional experiments, the animals were pretreated with AMG517 (TRPV1 antagonist) or HC030031 (TRPA1 antagonist) prior to extract injection. Results These studies demonstrate that lipids released from the three OSCC cell lines, but not the normal cell line, were capable of producing significant spontaneous nocifensive behaviors, as well as thermal and mechanical allodynia. Notably each of the cell lines produced a different magnitude of response for each of three behavioral assays. Importantly, pre-treatment with a TRPVI antagonist blocked lipid-mediated nocifensive and thermal hypersensitivity, but not mechanical hypersensitivity. In addition, pre-treatment with a TRPA1 antagonist only reversed thermal hypersensitivity without affecting lipid-induced nocifensive behavior or mechanical allodynia. Conclusions These data reveal a novel mechanism for cancer pain and provide strong direction for future studies evaluating the cellular mechanism regulating the TRP-active lipids by OSCC tumors.
Collapse
Affiliation(s)
- Shivani Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA.
| | - Michelle Bendele
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA.
| | - Ashley Wallace
- Department of Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | - Dustin Green
- Department of Physiology, University of Texas Health Science Center at San Antonio, Texas, USA.
| |
Collapse
|
39
|
Abstract
More than half of all cancer patients have significant pain during the course of their disease. The strategic localization of TMPRSS2, a membrane-bound serine protease, on the cancer cell surface may allow it to mediate signal transduction between the cancer cell and its extracellular environment. We show that TMPRSS2 expression is not only dramatically increased in the primary cancers of patients but TMPRSS2 immunopositivity is also directly correlated with cancer pain severity in these patients. TMPRSS2 induced proteolytic activity, activated trigeminal neurons, and produced marked mechanical hyperalgesia when administered into the hind paw of wild-type mice but not PAR2-deficient mice. Coculture of human cancer cells with murine trigeminal neurons demonstrated colocalization of TMPRSS2 with PAR2. These results point to a novel role for a cell membrane-anchored mediator in cancer pain, as well as pain in general.
Collapse
Affiliation(s)
- David K. Lam
- Discipline of Oral and Maxillofacial Surgery, University of Toronto, 124 Edward Street, Room 143, Toronto, ON, Canada M5G 1G6
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON Canada M5G 1X5
| | - Dongmin Dang
- Department of Oral and Maxillofacial Surgery, New York University
| | | | | | - Brian L. Schmidt
- Department of Oral and Maxillofacial Surgery, New York University
- Bluestone Center for Clinical Research, New York University
| |
Collapse
|
40
|
Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015; 38:237-46. [PMID: 25765319 DOI: 10.1016/j.tins.2015.02.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Neuropathic and inflammatory pain promote a large number of persisting adaptations at the cellular and molecular level, allowing even transient tissue or nerve damage to elicit changes in cells that contribute to the development of chronic pain and associated symptoms. There is evidence that injury-induced changes in chromatin structure drive stable changes in gene expression and neural function, which may cause several symptoms, including allodynia, hyperalgesia, anxiety, and depression. Recent findings on epigenetic changes in the spinal cord and brain during chronic pain may guide fundamental advances in new treatments. Here, we provide a brief overview of epigenetic regulation in the nervous system and then discuss the still-limited literature that directly implicates epigenetic modifications in chronic pain syndromes.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daigo Ikegami
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
41
|
Yang Y, Yan J, Huang Y, Xu H, Zhang Y, Hu R, Jiang J, Chen Z, Jiang H. The cancer pain related factors affected by celecoxib together with cetuximab in head and neck squamous cell carcinoma. Biomed Pharmacother 2015; 70:181-9. [DOI: 10.1016/j.biopha.2015.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 01/25/2023] Open
|
42
|
Hua B, Gao Y, Kong X, Yang L, Hou W, Bao Y. New insights of nociceptor sensitization in bone cancer pain. Expert Opin Ther Targets 2014; 19:227-43. [PMID: 25547644 DOI: 10.1517/14728222.2014.980815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Numerous studies have shown that an intact CNS is required for the conscious perception of cancer-induced bone pain (CIBP) and that changes in the CNS are clearly evident. Accordingly, the blockage of nociceptive stimulus into the CNS can effectively relieve or markedly attenuate CIBP, revealing the clinical implication of the blockage of ongoing peripheral inputs for the control of CIBP. AREAS COVERED In this review, the heterogeneity and excitability of nociceptors in bone are covered. Furthermore, their role in initiating and maintaining CIBP is also described. EXPERT OPINION Developing mechanistic therapies to treat CIBP is a challenge, but they have the potential to fundamentally change our ability to effectively block/relieve CIBP and increase the functional status and quality of life of patients with bone metastasis. Further studies are desperately needed at both the preclinical and clinical levels to determine whether the targets as mentioned in this review are viable and feasible for patient populations.
Collapse
Affiliation(s)
- Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001340 ;
| | | | | | | | | | | |
Collapse
|
43
|
Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J Pain Res 2014; 7:531-45. [PMID: 25210474 PMCID: PMC4155994 DOI: 10.2147/jpr.s65923] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Tami Haymond
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sherika N Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sarah M Sweitzer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA ; Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
44
|
Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 2014; 9:3719-35. [PMID: 25143724 PMCID: PMC4134022 DOI: 10.2147/ijn.s61670] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oral cancer (oral cavity and oropharynx) is a common and aggressive cancer that invades local tissue, can cause metastasis, and has a high mortality rate. Conventional treatment strategies, such as surgery and chemoradiotherapy, have improved over the past few decades; however, they remain far from optimal. Currently, cancer research is focused on improving cancer diagnosis and treatment methods (oral cavity and oropharynx) nanotechnology, which involves the design, characterization, production, and application of nanoscale drug delivery systems. In medicine, nanotechnologies, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, gold nanoparticles, hydrogels, cyclodextrin complexes, and liquid crystals, are promising tools for diagnostic probes and therapeutic devices. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for oral cancers.
Collapse
Affiliation(s)
- Giovana Calixto
- School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP), São Paulo, Brazil
| | - Jéssica Bernegossi
- School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP), São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
45
|
Viet CT, Dang D, Ye Y, Ono K, Campbell RR, Schmidt BL. Demethylating drugs as novel analgesics for cancer pain. Clin Cancer Res 2014; 20:4882-4893. [PMID: 24963050 DOI: 10.1158/1078-0432.ccr-14-0901] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE In this study, we evaluated the analgesic potential of demethylating drugs on oral cancer pain. Although demethylating drugs could affect expression of many genes, we focused on the mu-opioid receptor (OPRM1) gene pathway, because of its role in pain processing. We determined the antinociceptive effect of OPRM1 re-expression in a mouse oral cancer model. EXPERIMENTAL DESIGN Using a mouse oral cancer model, we determined whether demethylating drugs produced antinociception through re-expression of OPRM1. We then re-expressed OPRM1 with adenoviral transduction and determined if, and by what mechanism, OPRM1 re-expression produced antinociception. To determine the clinical significance of OPRM1 on cancer pain, we quantified OPRM1 methylation in painful cancer tissues and nonpainful contralateral normal tissues of patients with oral cancer, and nonpainful dysplastic tissues of patients with oral dysplasia. RESULTS We demonstrated that OPRM1 was methylated in cancer tissue, but not normal tissue, of patients with oral cancer, and not in dysplastic tissues from patients with oral dysplasia. Treatment with demethylating drugs resulted in mechanical and thermal antinociception in the mouse cancer model. This behavioral change correlated with OPRM1 re-expression in the cancer and associated neurons. Similarly, adenoviral-mediated OPRM1 re-expression on cancer cells resulted in naloxone-reversible antinociception. OPRM1 re-expression on oral cancer cells in vitro increased β-endorphin secretion from the cancer, and decreased activation of neurons that were treated with cancer supernatant. CONCLUSION Our study establishes the regulatory role of methylation in cancer pain. OPRM1 re-expression in cancer cells produces antinociception through cancer-mediated endogenous opioid secretion. Demethylating drugs have an analgesic effect that involves OPRM1.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| | - Dongmin Dang
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| | - Yi Ye
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| | - Kentaro Ono
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| | - Ronald R Campbell
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| | - Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University, New York, NY, United States.,Bluestone Center for Clinical Research, New York University, NY, United States
| |
Collapse
|
46
|
Ye Y, Bae SS, Viet CT, Troob S, Bernabé D, Schmidt BL. IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma. Behav Brain Funct 2014; 10:5. [PMID: 24524628 PMCID: PMC3942073 DOI: 10.1186/1744-9081-10-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/30/2014] [Indexed: 11/20/2022] Open
Abstract
Background Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear. Methods We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ. Results We showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation. Conclusions We show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University, New York, USA.
| |
Collapse
|
47
|
Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain 2013; 155:28-36. [PMID: 23999057 DOI: 10.1016/j.pain.2013.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
Cancer in bone is frequently a result of metastases from distant sites, particularly from the breast, lung, and prostate. Pain is a common and often severe pathological feature of cancers in bone, and is a significant impediment to the maintenance of quality of life of patients living with bone metastases. Cancer cell lines have been demonstrated to release significant amounts of the neurotransmitter and cell-signalling molecule l-glutamate via the system xC(-) cystine/glutamate antiporter. We have developed a novel mouse model of breast cancer bone metastases to investigate the impact of inhibiting cancer cell glutamate transporters on nociceptive behaviour. Immunodeficient mice were inoculated intrafemorally with the human breast adenocarcinoma cell line MDA-MB-231, then treated 14days later via mini-osmotic pumps inserted intraperitoneally with sulfasalazine, (S)-4-carboxyphenylglycine, or vehicle. Both sulfasalazine and (S)-4-carboxyphenylglycine attenuated in vitro cancer cell glutamate release in a dose-dependent manner via the system xC(-) transporter. Animals treated with sulfasalazine displayed reduced nociceptive behaviours and an extended time until the onset of behavioural evidence of pain. Animals treated with a lower dose of (S)-4-carboxyphenylglycine did not display this reduction in nociceptive behaviour. These results suggest that a reduction in glutamate secretion from cancers in bone with the system xC(-) inhibitor sulfasalazine may provide some benefit for treating the often severe and intractable pain associated with bone metastases.
Collapse
|
48
|
Sago T, Ono K, Harano N, Furuta-Hidaka K, Hitomi S, Nunomaki M, Yoshida M, Shiiba S, Nakanishi O, Matsuo K, Inenaga K. Distinct time courses of microglial and astrocytic hyperactivation and the glial contribution to pain hypersensitivity in a facial cancer model. Brain Res 2012; 1457:70-80. [PMID: 22537829 DOI: 10.1016/j.brainres.2012.03.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 02/09/2023]
Abstract
Although recent evidence suggests that central glial hyperactivation is involved in cancer-induced persistent pain, the time course of this hyperactivation and the glial contribution to pain hypersensitivity remain unclear. The present study investigated the time-dependent spatial changes of microglial and astrocytic hyperactivation in the trigeminocervical complex, which consists of the medullary (MDH) and upper cervical (UCDH) dorsal horns, and pain-related behaviors in a rat facial cancer model in which Walker 256B-cells are inoculated into the vibrissal pad. In this model, the tumors grew within the vibrissal pad, from which sensory nerve fibers project into the MDH, but did not expand into the infraorbital region, from which fibers project into the UCDH. Nevertheless, mechanical allodynia and thermal hyperalgesia were observed not only in the vibrissal pad but also in the infraorbital region. Western blotting and immunofluorescence studies indicated that microglia were widely activated in the trigeminocervical complex on day 4 and gradually inactivated by day 11. In contrast, astrocytes were only activated in the MDH on day 4; the hyperactivation later expanded into the UCDH. Daily administration of the glial hyperactivation inhibitor propentofylline beginning on day 4 suppressed the glial hyperactivation on later days. Propentofylline treatment largely prevented allodynia/hyperalgesia in the infraorbital region beginning on day 5, although established allodynia/hyperalgesia in the vibrissal pad was less sensitive to the treatment. These results suggest that central glial hyperactivation, transient microglial hyperactivation and persistent astrocytic hyperactivation, contributes to the development of pain hypersensitivity but not to the maintenance of pain in this model.
Collapse
Affiliation(s)
- Teppei Sago
- Department of Biosciences, Kyushu Dental College, 2-6-1 Manazuru, Kitakyushu, 803-8580, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Viet CT, Schmidt BL. Biologic mechanisms of oral cancer pain and implications for clinical therapy. J Dent Res 2011; 91:447-53. [PMID: 21972258 DOI: 10.1177/0022034511424156] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer pain is an ever-present public health concern. With innovations in treatment, cancer patients are surviving longer, but uncontrollable pain creates a poor quality of life for these patients. Oral cancer is unique in that it causes intense pain at the primary site and significantly impairs speech, swallowing, and masticatory functions. We propose that oral cancer pain has underlying biologic mechanisms that are generated within the cancer microenvironment. A comprehensive understanding of key mediators that control cross-talk between the cancer and peripheral nervous system, and possible interventions, underlies effective cancer pain management. The purpose of this review is to explore the current studies on oral cancer pain and their implications in clinical management for cancer pain in general. Furthermore, we will explore the endogenous opioid systems and novel cancer pain therapeutics that target these systems, which could solve the issue of opiate tolerance and improve quality of life in oral cancer patients.
Collapse
Affiliation(s)
- C T Viet
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY 10010, USA
| | | |
Collapse
|
50
|
Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J, Schmidt BL. Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain 2011; 152:2323-2332. [PMID: 21782343 DOI: 10.1016/j.pain.2011.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/09/2023]
Abstract
Endothelin-1 is a vasoactive peptide that activates both the endothelin A (ET(A)) and endothelin B (ET(B)) receptors, and is secreted in high concentrations in many different cancer environments. Although ET(A) receptor activation has an established nociceptive effect in cancer models, the role of ET(B) receptors on cancer pain is controversial. EDNRB, the gene encoding the ET(B) receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ET(B) mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ET(B) receptor re-expression attenuates cancer-induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer-induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain-producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA Oral and Craniofacial Graduate Program, University of California, San Francisco, San Francisco, CA, USA Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA Bluestone Center for Clinic Research, New York University, NY, USA
| | | | | | | | | | | | | |
Collapse
|