1
|
Lee JO, Moon H, Zoh SM, Jo E, Hur JW. Neural correlates of reward valuation in individuals with nonsuicidal self-injury under uncertainty. Psychol Med 2024; 54:1-10. [PMID: 39238080 PMCID: PMC11496225 DOI: 10.1017/s0033291724001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Attitudes toward risk and ambiguity significantly influence how individuals assess and value rewards. This fMRI study examines the reward valuation process under conditions of uncertainty and investigates the associated neural mechanisms in individuals who engage in nonsuicidal self-injury (NSSI) as a coping mechanism for psychological pain. METHODS The study involved 44 unmedicated individuals who reported five or more NSSI episodes in the past year, along with 42 age-, sex-, handedness-, IQ-, and socioeconomic status-matched controls. During the fMRI scans, all participants were presented with decision-making scenarios involving uncertainty, both in terms of risk (known probabilities) and ambiguity (unknown probabilities). RESULTS In the NSSI group, aversive attitudes toward ambiguity were correlated with increased emotion reactivity and greater method versatility. Whole-brain analysis revealed notable group-by-condition interactions in the right middle cingulate cortex and left hippocampus. Specifically, the NSSI group showed decreased neural activation under ambiguity v. risk compared to the control group. Moreover, reduced hippocampal activation under ambiguity in the NSSI group was associated with increased emotion regulation problems. CONCLUSIONS This study presents the first evidence of reduced brain activity in specific regions during value-based decision-making under conditions of ambiguity in individuals with NSSI. These findings have important clinical implications, particularly concerning emotion dysregulation in this population. This study indicates the need for interventions that support and guide individuals with NSSI to promote adaptive decision-making in the face of ambiguous uncertainty.
Collapse
Affiliation(s)
- Jae Oh Lee
- School of Psychology, Korea University, Seoul, Korea
| | - Hyeri Moon
- School of Psychology, Korea University, Seoul, Korea
| | - Soo-Min Zoh
- School of Psychology, Korea University, Seoul, Korea
| | - Eunjin Jo
- School of Psychology, Korea University, Seoul, Korea
| | - Ji-Won Hur
- School of Psychology, Korea University, Seoul, Korea
| |
Collapse
|
2
|
Gao XX, Zheng QX, Chen XQ, Jiang XM, Liao YP, Pan YQ, Zou JJ, Liu G. Intuitive eating was associated with anxiety, depression, pregnancy weight and blood glucose in women with gestational diabetes mellitus: a prospective longitudinal study. Front Nutr 2024; 11:1409025. [PMID: 39135553 PMCID: PMC11318279 DOI: 10.3389/fnut.2024.1409025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Background Outside of pregnancy, intuitive eating (IE) is associated with lower body weight, blood glucose, and higher positive mood. However, little was known about the relationship between IE and anxiety-depression in the GDM population. Thus, this study aimed to investigate the association of IE with anxiety and depression, pregnancy weight and pregnancy blood glucose in the first and second GDM visit. Methods Data from 310 pregnant women with GDM from the Fujian Maternal and Child Health Hospital Trial (Approval Number: 2020Y9133) were analyzed. IE was assessed using the Intuitive Eating Scale-2 subscales of Eating for Physiological Reasons rather than Emotional Reasons (EPR), Relying on Hunger and Satiety Cues (RHSC) and Body-Food Choice Consistency (B-FCC). Observations included weight, body mass index (BMI), fasting plasma glucose (FPG) and 2-h postprandial blood glucose; the Hospital Anxiety and Depression Scale (HADS) was used to assess the level of anxiety and depression in pregnant women with GDM. Linear regression analysis was used to assess the correlation between IE and anxiety, depression, pregnancy blood glucose and weight. Results The cross-sectional analysis showed that the EPR eating behavior was negatively correlated with anxiety and depression, and the B-FCC eating behavior was negatively correlated with depression at both the first and second GDM visit; in addition, the B-FCC eating behavior was associated with lower BMI in the third trimester (all p < 0.05). In longitudinal analyses, the EPR eating behavior in the first visit for GDM predicted lower levels of anxiety and depression in the second GDM visit, whereas the RHSC eating behavior in the first visit for GDM was associated with lower FPG in the second GDM visit (all p < 0.01). Conclusion These results suggest that practicing intuitive eating may be beneficial and that higher intuitive eating adherence can lead to lower levels of anxiety and depression and more ideal gestational weight and blood glucose values.
Collapse
Affiliation(s)
- Xiao xia Gao
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qing xiang Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiao qian Chen
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiu min Jiang
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yan ping Liao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yu qing Pan
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jing jing Zou
- Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Gaoqian Liu
- Lishi District Changzhi Road Primary School, Lüliang, China
| |
Collapse
|
3
|
Liu X, Jiao G, Zhou F, Kendrick KM, Yao D, Gong Q, Xiang S, Jia T, Zhang XY, Zhang J, Feng J, Becker B. A neural signature for the subjective experience of threat anticipation under uncertainty. Nat Commun 2024; 15:1544. [PMID: 38378947 PMCID: PMC10879105 DOI: 10.1038/s41467-024-45433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Uncertainty about potential future threats and the associated anxious anticipation represents a key feature of anxiety. However, the neural systems that underlie the subjective experience of threat anticipation under uncertainty remain unclear. Combining an uncertainty-variation threat anticipation paradigm that allows precise modulation of the level of momentary anxious arousal during functional magnetic resonance imaging (fMRI) with multivariate predictive modeling, we train a brain model that accurately predicts subjective anxious arousal intensity during anticipation and test it across 9 samples (total n = 572, both gender). Using publicly available datasets, we demonstrate that the whole-brain signature specifically predicts anxious anticipation and is not sensitive in predicting pain, general anticipation or unspecific emotional and autonomic arousal. The signature is also functionally and spatially distinguishable from representations of subjective fear or negative affect. We develop a sensitive, generalizable, and specific neuroimaging marker for the subjective experience of uncertain threat anticipation that can facilitate model development.
Collapse
Affiliation(s)
- Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guojuan Jiao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
- MOE Key Laboratory of Cognition and Personality, Chongqing, China
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Mao Y, Zhang P, Sun R, Zhang X, He Y, Li S, Yin T, Zeng F. Altered resting-state brain activity in functional dyspepsia patients: a coordinate-based meta-analysis. Front Neurosci 2023; 17:1174287. [PMID: 37250423 PMCID: PMC10213416 DOI: 10.3389/fnins.2023.1174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Background Neuroimaging studies have identified aberrant activity patterns in multiple brain regions in functional dyspepsia (FD) patients. However, due to the differences in study design, these previous findings are inconsistent, and the underlying neuropathological characteristics of FD remain unclear. Methods Eight databases were systematically searched for literature from inception to October 2022 with the keywords "Functional dyspepsia" and "Neuroimaging." Thereafter, the anisotropic effect size signed the differential mapping (AES-SDM) approach that was applied to meta-analyze the aberrant brain activity pattern of FD patients. Results A total of 11 articles with 260 FD patients and 202 healthy controls (HCs) were included. The AES-SDM meta-analysis demonstrated that FD patients manifested increased activity in the bilateral insula, left anterior cingulate gyrus, bilateral thalamus, right precentral gyrus, left supplementary motor area, right putamen, and left rectus gyrus and decreased functional activity in the right cerebellum compared to the HCs. Sensitivity analysis showed that all these above regions were highly reproducible, and no significant publication bias was detected. Conclusion The current study demonstrated that FD patients had significantly abnormal activity patterns in several brain regions involved in visceral sensation perception, pain modulation, and emotion regulation, which provided an integrated insight into the neuropathological characteristics of FD.
Collapse
Affiliation(s)
- Yangke Mao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruirui Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqi He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyang Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| |
Collapse
|
5
|
Soulier H, Mauguière F, Catenoix H, Montavont A, Isnard J, Hermier M, Guenot M, Rheims S, Mazzola L. Visceral and emotional responses to direct electrical stimulations of the cortex. Ann Clin Transl Neurol 2022; 10:5-17. [PMID: 36424874 PMCID: PMC9852394 DOI: 10.1002/acn3.51694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Visceral sensations are bodily symptoms which are component manifestations of emotions frequently reported during epileptic seizures. Nowadays, the underlying mechanism and location of brain areas involved in the processing of these sensations remain unclear. Our objectives were to characterize the type and frequency of visceral and emotional responses evoked by electrical stimulations, to produce a mapping of brain structures involved in their processing, and to assess the link between visceral sensations and emotional feelings. METHODS We reviewed 12,088 bipolar stimulations performed in 203 patients during the presurgical evaluation of drug refractory epilepsy. Responses to stimulation were divided into viscero-sensitive, viscero-vegetative, and emotional sensations. Univariate analysis and conditional logistic regression were used to assess the association between visceral and emotional sensations and localization of the stimulated contacts. RESULTS In total, 543 stimulations evoked visceral and emotional sensations. Stimulations of operculo-insulolimbic structures (amygdala, anterior and posterior insula, anterior and mid-cingulate cortex, hippocampus, parahippocampus, temporal pole, frontal and parietal operculum) were significantly more associated with visceral and emotional sensations than all other cortical regions. Preferential implication of certain brain structures, depending on the type of visceral responses was evidenced: temporo-mesial structures, insula, and frontoparietal operculum for viscero-sensitive sensations; amygdala, insula, anterior and mid-cingulate cortex, and temporal pole for viscero-vegetative sensations; temporo-mesial structures, anterior cingulate cortex, and frontal operculum for emotional sensations. INTERPRETATION Our data can help to guide SEEG explorations when visceral or emotional symptoms are part of the ictal semiology. They also bring some insights into the mechanisms of visceroception and the functional significance of the co-localization of visceral and emotional representations in the human brain.
Collapse
Affiliation(s)
- Hugo Soulier
- Department of NeurologyUniversity HospitalSt EtienneFrance
| | - François Mauguière
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional Neurology and EpileptogyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Hélène Catenoix
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional Neurology and EpileptogyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Alexandra Montavont
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional Neurology and EpileptogyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Jean Isnard
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional Neurology and EpileptogyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Marc Hermier
- Department of Neuroradiology, East Group Hospital, Hospices Civils de LyonLyonFrance
| | - Marc Guenot
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional NeurosurgeryHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Sylvain Rheims
- Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance,Department of Functional Neurology and EpileptogyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
| | - Laure Mazzola
- Department of NeurologyUniversity HospitalSt EtienneFrance,Lyon Neurosciences Research Center (CRNL)INSERM U1028, CNRS UMR5292 and Lyon 1 UniversityLyonFrance
| |
Collapse
|
6
|
Tajerian M, Amrami M, Betancourt JM. Is there hemispheric specialization in the chronic pain brain? Exp Neurol 2022; 355:114137. [PMID: 35671801 PMCID: PMC10723052 DOI: 10.1016/j.expneurol.2022.114137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Organismal bilateral symmetry is associated with near-identical halves of the central nervous system, with certain functions displaying specialization through one brain hemisphere. The processing of pain in the brain as well as brain plasticity in the context of painful injuries have garnered much attention in recent decades. Noninvasive brain imaging studies in pain-free human subjects have identified multiple brain regions that are linked to the sensory and affective components of pain. Longlasting adaptations in brains of chronic pain sufferers have likewise been described, suggesting a mechanism for pain chronification. Invasive molecular and biochemical studies in animal models have expanded on these findings, with added emphasis on the role of specific genes and molecules involved. To date, the extent of hemispheric asymmetry in the context of pain is not well-understood. This topical review evaluates the evidence of hemispheric specialization observed in humans and rodent models of pain and compares it to findings where such asymmetry is absent. Our review shows conflicting information regarding the existence of pain-related asymmetry, and if so, the side to which it can be localized. This could be due to the heterogeneity of pain processing pathways, heterogeneity in study parameters, as well as differences in data reporting. With the advent of progressively sophisticated non-invasive tools that can be used in human subjects, in addition to more precise methods to visualize and control specific brain regions or neuronal ensembles in animal models, we predict that the next few decades will witness a better understanding of the supraspinal control and processing of chronic pain, including the role of each of its hemispheres.
Collapse
Affiliation(s)
- Maral Tajerian
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Michael Amrami
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA
| | - John Michael Betancourt
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
7
|
Ha G, Tian Z, Chen J, Wang S, Luo A, Liu Y, Tang J, Lai N, Zeng F, Lan L. Coordinate-based (ALE) meta-analysis of acupuncture for musculoskeletal pain. Front Neurosci 2022; 16:906875. [PMID: 35937886 PMCID: PMC9354890 DOI: 10.3389/fnins.2022.906875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Neuroimaging studies have been widely used to investigate brain regions' alterations in musculoskeletal pain patients. However, inconsistent results have hindered our understanding of the central modulatory effects of acupuncture for musculoskeletal pain. The main objective of our investigation has been to obtain comprehensive evidence of acupuncture for musculoskeletal pain diseases. Methods The PubMed, Web of Science, Google Scholar, Embase, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine disc Database, Clinical Trial Registration Platform, and Wanfang Database were searched for neuroimaging studies on musculoskeletal pain diseases published from inception up to November 2021. Then, the relevant literature was screened to extract the coordinates that meet the criteria. Finally, the coordinate-based meta-analysis was performed using the activation likelihood estimation algorithm. Results A total of 15 neuroimaging studies with 183 foci of activation were included in this study. The ALE meta-analysis revealed activated clusters in multiple cortical and sub-cortical brain structures in response to acupuncture across studies, including the thalamus, insula, caudate, claustrum, and lentiform nucleus. Conclusions The studies showed that acupuncture could modulate different brain regions, including the thalamus, insula, caudate, claustrum, and lentiform nucleus. The findings offer several insights into the potential mechanisms of acupuncture for musculoskeletal pain and provide a possible explanation for the observed clinical benefit of this therapy. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=227850, identifier: CRD42021227850.
Collapse
Affiliation(s)
- Guodong Ha
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilei Tian
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo Wang
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aga Luo
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunyu Liu
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Tang
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningyuan Lai
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Jarret J, Boré A, Bedetti C, Descoteaux M, Brambati SM. A methodological scoping review of the integration of fMRI to guide dMRI tractography. What has been done and what can be improved: A 20-year perspective. J Neurosci Methods 2022; 367:109435. [PMID: 34915047 DOI: 10.1016/j.jneumeth.2021.109435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
Combining MRI modalities is a growing trend in neurosciences. It provides opportunities to investigate the brain architecture supporting cognitive functions. Integrating fMRI activation to guide dMRI tractography offers potential advantages over standard tractography methods. A quick glimpse of the literature on this topic reveals that this technique is challenging, and no consensus or "best practices" currently exist, at least not within a single document. We present the first attempt to systematically analyze and summarize the literature of 80 studies that integrated task-based fMRI results to guide tractography, over the last two decades. We report 19 findings that cover challenges related to sample size, microstructure modelling, seeding methods, multimodal space registration, false negatives/positives, specificity/validity, gray/white matter interface and more. These findings will help the scientific community (1) understand the strengths and limitations of the approaches, (2) design studies using this integrative framework, and (3) motivate researchers to fill the gaps identified. We provide references toward best practices, in order to improve the overall result's replicability, sensitivity, specificity, and validity.
Collapse
Affiliation(s)
- Julien Jarret
- Département de psychologie, Université de Montréal, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Arnaud Boré
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Christophe Bedetti
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Département d'informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simona Maria Brambati
- Département de psychologie, Université de Montréal, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Centre de Recherche du Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
9
|
Zhang Z, Hu Y, Lv G, Wang J, He Y, Zhang L, Li H, von Deneen KM, Wang H, Duan S, Zhang J, Hou Q, Pan Y, Zhao Y, Mao K, Wang F, Zhang Y, Cui G, Nie Y. Functional constipation is associated with alterations in thalamo-limbic/parietal structural connectivity. Neurogastroenterol Motil 2021; 33:e13992. [PMID: 33073892 DOI: 10.1111/nmo.13992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Functional constipation (FCon) is a common functional gastrointestinal disorder (FGID) with a high prevalence in clinical practice. Previous studies have identified that FCon is associated with functional and structural alterations in the primary brain regions involved in emotional arousal processing, sensory processing, somatic/motor-control, and self-referential processing. However, whether FCon is associated with abnormal structural connectivity (SC) among these brain regions remains unclear. METHODS We selected the brain regions with functional and structural abnormalities as seed regions and employed diffusion tensor imaging (DTI) with probabilistic tractography to investigate SC changes in 29 patients with FCon and 31 healthy controls (HC). KEY RESULTS Results showed lower fractional anisotropy (FA) in the fibers connecting the thalamus, a region involved in sensory processing, with the amygdala (AMY), hippocampal gyrus (HIPP), precentral (PreCen) and postcentral gyrus (PostCen), supplementary motor area (SMA) and precuneus in patients with FCon compared with HC. FCon had higher mean diffusivity (MD) and radial diffusivity (RD) in the thalamus connected to the AMY and HIPP. In addition, FCon had significantly increased RD of the thalamus-SMA tract. Sensation of incomplete evacuation was negatively correlated with FA of the thalamus-PostCen and thalamus-HIPP tracts, and there was a negative correlation between difficulty of defecation and FA of the thalamus-SMA tract. CONCLUSIONS AND INFERENCES These findings reflected that FCon is associated with alterations in SC between the thalamus and limbic/parietal cortex, highlighting the integrative role of the thalamus in brain structural network.
Collapse
Affiliation(s)
- Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lei Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shijun Duan
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junwang Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiuqiu Hou
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yanan Pan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yu Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Kuanrong Mao
- Xi'an Mayinglong Anorectal Hospital, Xi'an, Shaanxi, China
| | - Fan Wang
- Xi'an Mayinglong Anorectal Hospital, Xi'an, Shaanxi, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Si R, Rowe JB, Zhang J. Functional localization and categorization of intentional decisions in humans: A meta-analysis of brain imaging studies. Neuroimage 2021; 242:118468. [PMID: 34390878 PMCID: PMC8463837 DOI: 10.1016/j.neuroimage.2021.118468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Brain-imaging research on intentional decision-making often employs a "free-choice" paradigm, in which participants choose among options with identical values or outcomes. Although the medial prefrontal cortex has commonly been associated with choices, there is no consensus on the wider network that underlies diverse intentional decisions and behaviours. Our systematic literature search identified 35 fMRI/PET experiments using various free-choice paradigms, with appropriate control conditions using external instructions. An Activation Likelihood Estimate (ALE) meta-analysis showed that, compared with external instructions, intentional decisions consistently activate the medial and dorsolateral prefrontal cortex, the left insula and the inferior parietal lobule. We then categorized the studies into four different types according to their experimental designs: reactive motor intention, perceptual intention, inhibitory intention, and cognitive intention. We conducted conjunction and contrast meta-analyses to identify consistent and selective spatial convergence of brain activation within each specific category of intentional decision. Finally, we used meta-analytic decoding to probe cognitive processes underlying free choices. Our findings suggest that the neurocognitive process underlying intentional decision incorporates anatomically separated components subserving distinct cognitive and computational roles.
Collapse
Affiliation(s)
- Ruoguang Si
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom.
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge CB2 7EF, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
11
|
Brewer R, Murphy J, Bird G. Atypical interoception as a common risk factor for psychopathology: A review. Neurosci Biobehav Rev 2021; 130:470-508. [PMID: 34358578 PMCID: PMC8522807 DOI: 10.1016/j.neubiorev.2021.07.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The inadequacy of a categorial approach to mental health diagnosis is now well-recognised, with many authors, diagnostic manuals and funding bodies advocating a dimensional, trans-diagnostic approach to mental health research. Variance in interoception, the ability to perceive one's internal bodily state, is reported across diagnostic boundaries, and is associated with atypical functioning across symptom categories. Drawing on behavioural and neuroscientific evidence, we outline current research on the contribution of interoception to numerous cognitive and affective abilities (in both typical and clinical populations), and describe the interoceptive atypicalities seen in a range of psychiatric conditions. We discuss the role that interoception may play in the development and maintenance of psychopathology, as well as the ways in which interoception may differ across clinical presentations. A number of important areas for further research on the role of interoception in psychopathology are highlighted.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, United Kingdom.
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
12
|
Understanding the physiology of human defaecation and disorders of continence and evacuation. Nat Rev Gastroenterol Hepatol 2021; 18:751-769. [PMID: 34373626 DOI: 10.1038/s41575-021-00487-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
The act of defaecation, although a ubiquitous human experience, requires the coordinated actions of the anorectum and colon, pelvic floor musculature, and the enteric, peripheral and central nervous systems. Defaecation is best appreciated through the description of four phases, which are, temporally and physiologically, reasonably discrete. However, given the complexity of this process, it is unsurprising that disorders of defaecation are both common and problematic; almost everyone will experience constipation at some time in their life and many will develop faecal incontinence. A detailed understanding of the normal physiology of defaecation and continence is critical to inform management of disorders of defaecation. During the past decade, there have been major advances in the investigative tools used to assess colonic and anorectal function. This Review details the current understanding of defaecation and continence. This includes an overview of the relevant anatomy and physiology, a description of the four phases of defaecation, and factors influencing defaecation (demographics, stool frequency/consistency, psychobehavioural factors, posture, circadian rhythm, dietary intake and medications). A summary of the known pathophysiology of defaecation disorders including constipation, faecal incontinence and irritable bowel syndrome is also included, as well as considerations for further research in this field.
Collapse
|
13
|
Porter BS, Li K, Hillman KL. Regional Activity in the Rat Anterior Cingulate Cortex and Insula during Persistence and Quitting in a Physical-Effort Task. eNeuro 2020; 7:ENEURO.0243-20.2020. [PMID: 32859724 PMCID: PMC7545432 DOI: 10.1523/eneuro.0243-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
As animals carry out behaviors, particularly costly ones, they must constantly assess whether or not to persist in the behavior or quit. The anterior cingulate cortex (ACC) has been shown to assess the value of behaviors and to be especially sensitive to physical effort costs. Complimentary to these functions, the insula is thought to represent the internal state of the animal including factors such as hunger, thirst, and fatigue. Using a novel weight-lifting task for rats, we characterized the local field potential (LFP) activity of the ACC and anterior insula (AI) during effort expenditure. In the task, male rats are challenged to work for sucrose reward, which costs progressively more effort over time to obtain. Rats are able to quit the task at any point. We found modest shifts in LFP theta (7-9 Hz) activity as the task got progressively more difficult in terms of absolute effort expenditure. However, when the LFP data were analyzed based on the relative progress of the rat toward quitting the task, substantial shifts in LFP power in the theta and gamma (55-100 Hz) frequency bands were observed in ACC and AI. Both ACC and AI theta power decreased as the rats got closer to quitting, while ACC and AI gamma power increased. Furthermore, coherency between ACC and AI in the delta (2-4 Hz) range shifted alongside the performance state of the rat. Overall, we show that ACC and AI LFP activity changes correlate to the relative performance state of rats in an effort-based task.
Collapse
Affiliation(s)
- Blake S Porter
- Department of Psychology, Brain Health Research Centre, University of Otago, 9016, Dunedin, New Zealand
| | - Kunling Li
- Department of Psychology, Brain Health Research Centre, University of Otago, 9016, Dunedin, New Zealand
| | - Kristin L Hillman
- Department of Psychology, Brain Health Research Centre, University of Otago, 9016, Dunedin, New Zealand
| |
Collapse
|
14
|
Hu C, Liu L, Liu L, Zhang J, Hu Y, Zhang W, Ding Y, Wang Y, Zhang Z, von Deneen KM, Qian L, Wang H, Duan S, Wang F, Cui G, Nie Y, Zhang Y. Cortical morphometry alterations in brain regions involved in emotional, motor-control and self-referential processing in patients with functional constipation. Brain Imaging Behav 2020; 14:1899-1907. [PMID: 31218532 DOI: 10.1007/s11682-019-00133-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional constipation (FC) is a common functional gastrointestinal disorder (FGID). Neuroimaging studies on patients with FC showed brain functional abnormalities in regions involved in emotional process modulation, somatic and sensory processing and motor control. Brain structural imaging studies in patients with FGID have also shown disease-related alterations in cortical morphometry, but whether and how FC affects brain structure remains unclear. Structural Magnetic Resonance Imaging and surface-based morphometry analysis were used to investigate the impact of FC on cortical morphometry in 29 patients with FC and 29 healthy controls (HC). Results showed that patients with FC compared to HC had significantly decreased cortical thickness in the left middle frontal gyrus (MFG), dorsomedial (DMPFC) and ventromedial prefrontal gyrus (VMPFC), right dorsal anterior cingulate cortex (dACC), left orbitofrontal cortex (OFC), posterior cingulate cortex (PCC)/precuneus, middle temporal gyrus (MTG), and supplementary motor area (SMA) (P < 0.01). Correlation analysis showed that sensation of incomplete evacuation was negatively correlated with cortical thickness in the SMA (P < 0.0001). In addition, patients with FC also had decreased cortical volume than HC in the MTG, precentral gyrus (PreCen) and precuneus/cuneus (P < 0.01), as well as decreased cortical surface area in the PreCen (P < 0.01). No correlation was found between cortical volume/surface area and behavioral measures. These findings suggest that patients with FC are associated with cortical morphometric abnormalities in brain regions implicated in somatic/motor-control, emotional processing and self-referential processing.
Collapse
Affiliation(s)
- Chunxin Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Li Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Lei Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Junwang Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Yueyan Ding
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Yuanyuan Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Long Qian
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shijun Duan
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, No.4 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Fan Wang
- Xi'an Mayinglong Anorectal Hospital, Xi'an, 710032, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, No.4 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
15
|
Huang T, Okauchi T, Hu D, Shigeta M, Wu Y, Wada Y, Hayashinaka E, Wang S, Kogure Y, Noguchi K, Watanabe Y, Dai Y, Cui Y. Pain matrix shift in the rat brain following persistent colonic inflammation revealed by voxel-based statistical analysis. Mol Pain 2020; 15:1744806919891327. [PMID: 31709891 PMCID: PMC6886279 DOI: 10.1177/1744806919891327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly comprising Crohn’s disease and ulcerative colitis, is characterized by chronic inflammation in the digestive tract. Approximately 60% of the patients experience abdominal pain during acute IBD episodes, which severely impairs their quality of life. Both peripheral and central mechanisms are thought to be involved in such abdominal pain in IBD. Although much attention has been paid to peripheral mechanisms of abdominal pain in IBD pathophysiology, the involvement of supraspinal mechanisms remains poorly understood. To address this issue, we investigated regional brain activity in response to colorectal distension in normal and IBD model rats using voxel-based statistical analysis of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. The rat IBD model was generated by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid, a chemical compound widely used to generate colitis. Tissue damage and inflammation were induced and dynamically changed with time after 2,4,6-trinitrobenzene sulfonic acid injection, while colorectal distension-induced visceromotor response showed corresponding temporal changes. We found that characteristic brain activations were observed in response to visceral innocuous and noxious colorectal distension and supraspinal nociception shared some physiological sensory pathway. Moreover, widespread brain regions were activated, and the functional coupling between the central medial thalamic nucleus and anterior cingulate cortex was enhanced after noxious colorectal distension in IBD model of rats. Increased brain activity in the anterior insular cortex and anterior cingulate cortex was positively correlated with noxious colorectal distension-induced pain severity in normal and IBD rats, respectively. These findings suggest that the pain matrix was shifted following persistent colonic inflammation, and thalamocortical sensitization in the pathway from the central medial thalamic nucleus to anterior cingulate cortex might be a central mechanism of the visceral hyperalgesia in IBD pathophysiology.
Collapse
Affiliation(s)
- Tianliang Huang
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Takashi Okauchi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
16
|
Halani PK, Andy UU, Rao H, Arya LA. Regions of the brain activated in bladder filling vs rectal distention in healthy adults: A meta-analysis of neuroimaging studies. Neurourol Urodyn 2019; 39:58-65. [PMID: 31816125 DOI: 10.1002/nau.24221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/20/2019] [Indexed: 01/23/2023]
Abstract
AIMS Adults with pelvic floor disorders commonly present with overlapping bladder and bowel symptoms; however, the relationship between urinary and defecatory dysfunction is not well understood. Our aim was to compare and determine if overlapping brain regions are activated during bladder filling and rectal distention in healthy adults. METHODS We conducted separate Pubmed searches for neuroimaging studies investigating the effects of rectal distention and bladder filling on brain activation in healthy subjects. Coordinates of activated regions were extracted with cluster-level threshold P < .05 and compared using the activation likelihood estimate approach. Results from the various studies were pooled and a contrast analysis was performed to identify any common areas of activation between bladder filling and rectal distension. RESULTS We identified 96 foci of activation from 14 neuroimaging studies on bladder filling and 182 foci from 17 studies on rectal distension in healthy adults. Regions activated during bladder filling included right insula, right and left thalamus, and right periaqueductal grey. Regions activated during rectal distention included right and left insula, right and left thalamus, left postcentral gyrus, and right inferior parietal lobule. Contrast analysis revealed common activation of the right insula with both rectal distention and bladder filling. CONCLUSION Bladder filling and rectal distention activate several separate areas of the brain involved in sensory processing in healthy adults. The common activation of the insula, the region responsible for interoception, in these two conditions may offer an explanation for the coexistence of bladder and defecatory symptoms in pelvic floor disorders.
Collapse
Affiliation(s)
- Priyanka Kadam Halani
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Uduak U Andy
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lily A Arya
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Necka EA, Lee IS, Kucyi A, Cheng JC, Yu Q, Atlas LY. Applications of dynamic functional connectivity to pain and its modulation. Pain Rep 2019; 4:e752. [PMID: 31579848 PMCID: PMC6728009 DOI: 10.1097/pr9.0000000000000752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022] Open
Abstract
Since early work attempting to characterize the brain's role in pain, it has been clear that pain is not generated by a specific brain region, but rather by coordinated activity across a network of brain regions, the "neuromatrix." The advent of noninvasive whole-brain neuroimaging, including functional magnetic resonance imaging, has provided insight on coordinated activity in the pain neuromatrix and how correlations in activity between regions, referred to as "functional connectivity," contribute to pain and its modulation. Initial functional connectivity investigations assumed interregion connectivity remained stable over time, and measured variability across individuals. However, new dynamic functional connectivity (dFC) methods allow researchers to measure how connectivity changes over time within individuals, permitting insights on the dynamic reorganization of the pain neuromatrix in humans. We review how dFC methods have been applied to pain, and insights afforded on how brain connectivity varies across time, either spontaneously or as a function of psychological states, cognitive demands, or the external environment. Specifically, we review psychophysiological interaction, dynamic causal modeling, state-based dynamic community structure, and sliding-window analyses and their use in human functional neuroimaging of acute pain, chronic pain, and pain modulation. We also discuss promising uses of dFC analyses for the investigation of chronic pain conditions and predicting pain treatment efficacy and the relationship between state- and trait-based pain measures. Throughout this review, we provide information regarding the advantages and shortcomings of each approach, and highlight potential future applications of these methodologies for better understanding the brain processes associated with pain.
Collapse
Affiliation(s)
- Elizabeth A. Necka
- Division of Intramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - In-Seon Lee
- Division of Intramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Joshua C. Cheng
- School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Qingbao Yu
- Division of Intramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y. Atlas
- Division of Intramural Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
- Division of Intramural Research, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
- Division of Intramural Research, National Insitute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Central and Peripheral Mechanism of Acupuncture Analgesia on Visceral Pain: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1304152. [PMID: 31186654 PMCID: PMC6521529 DOI: 10.1155/2019/1304152] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Background/Aims Despite the wide use of acupuncture for the management of visceral pain and the growing interest in the pathophysiology of visceral pain, there is no conclusive elucidation of the mechanisms behind the effects of acupuncture on visceral pain. This systematic review aims to provide an integrative understanding of the treatment mechanism of acupuncture for visceral pain. Methods Electronic and hand searches were conducted to identify studies that involved visceral pain and acupuncture. Results We retrieved 192 articles, out of which 46 studies were included in our review. The results of our review demonstrated that visceral pain behaviors were significantly alleviated in response to acupuncture treatment in groups treated with this intervention compared to in sham acupuncture or no-treatment groups. Changes in the concentrations of β-endorphin, epinephrine, cortisol, and prostaglandin E2 in plasma, the levels of c-Fos, substance P, corticotropin-releasing hormone, P2X3, acetylcholinesterase (AchE), N-methyl-D-aspartate (NMDA) receptors, and serotonin in the gut/spinal cord, and the neuronal activity of the thalamus were associated with acupuncture treatment in visceral pain. Conclusions Acupuncture reduced visceral pain behavior and induced significant changes in neuronal activity as well as in the levels of pain/inflammation-related cytokines and neurotransmitters in the brain-gut axis. Further researches on the thalamus and on a standard animal model are warranted to improve our knowledge on the mechanism of acupuncture that facilitates visceral pain modulation.
Collapse
|
19
|
Abstract
The midcingulate cortex (MCC) is viewed as a central node within a large-scale system devoted to adjusting behavior in the face of changing environments. Whereas the role of the MCC in interfacing action and cognition is well established, its role in regulating the autonomic nervous system is poorly understood. Yet, adaptive reactions to novel or threatening situations induce coordinated changes in the sympathetic and the parasympathetic systems. The somatomotor maps in the MCC are organized dorsoventrally. A meta-analysis of the literature reveals that the dorsoventral organization might also concern connections with the autonomic nervous system. Activation of the dorsal and ventral parts of the MCC correlate with recruitments of the sympathetic and the parasympathetic systems, respectively. Data also suggest that, in the MCC, projections toward the sympathetic system are mapped along the sensory-motor system following the same cervico-sacral organization as projections on the spinal cord for skeletal motor control.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
20
|
Yang Z, He P, Zhou J, Ding Z, Wu X. Functional Informed Fiber Tracking Using Combination of Diffusion and Functional MRI. IEEE Trans Biomed Eng 2018; 66:794-801. [PMID: 30028686 DOI: 10.1109/tbme.2018.2856829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fiber tractography using diffusion weighted MRI (DWI) is a primary tool for mapping structural connectivity in the human brain in vivo. However, this method suffers from a number of inherent limitations that have a significant impact on its capability in faithfully constructing fiber bundles for specific function. In this paper, a novel tractography algorithm combining DWI and functional MRI (fMRI) was proposed. Specifically, a spatio-temporal correlation tensor that characterizes the anisotropy of fMRI signals in white matter was introduced to complement the estimation of fiber orientation density function from DWI. The proposed method has been demonstrated to identify functional pathways implicated in fMRI task. It can effectively follow tracts in the genu of the corpus callosum that connects to the frontal lobe cortex, obtain connections between the thalamus and the anterior insula under sensory simulation, and reconstruct optic radiations in the visual circuit under visual stimulation. Taken together, the method we proposed in this work may benefit our understanding of structure-function relations in the human brain.
Collapse
|
21
|
Pitiot A, Smith JK, Humes DJ, Garratt J, Francis ST, Gowland PA, Spiller RC, Marciani L. Cortical differences in diverticular disease and correlation with symptom reports. Neurogastroenterol Motil 2018; 30:e13303. [PMID: 29392838 DOI: 10.1111/nmo.13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/07/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies have shown that the brain of patients with gastrointestinal disease differ both structurally and functionally from that of controls. Highly somatizing diverticular disease (HSDD) patients were also shown to differ from low somatizing (LSDD) patients functionally. This study aimed to investigate how they differed structurally. METHODS Four diseases subgroups were studied in a cross-sectional design: 20 patients with asymptomatic diverticular disease (ADD), 18 LSDD, 16 HSDD, and 18 with irritable bowel syndrome. We divided DD patients into LSDD and HSDD using a cutoff of 6 on the Patient Health Questionnaire 12 Somatic Symptom (PHQ12-SS) scale. All patients underwent a 1-mm isotropic structural brain MRI scan and were assessed for somatization, hospital anxiety, depression, and pain catastrophizing. Whole brain volumetry, cortical thickness analysis and voxel-based morphometry were carried out using Freesurfer and SPM. KEY RESULTS We observed decreases in gray matter density in the left and right dorsolateral prefrontal cortex (dlPFC), and in the mid-cingulate and motor cortex, and increases in the left (19, 20) and right (19, 38) Brodmann Areas. The average cortical thickness differed overall across groups (P = .002) and regionally: HSDD > ADD in the posterior cingulate cortex (P = .03), HSDD > LSDD in the dlPFC (P = .03) and in the ventrolateral PFC (P < .001). The thickness of the anterior cingulate cortex and of the mid-prefrontal cortex were also found to correlate with Pain Catastrophizing (Spearman's ρ = 0.24, P = .043 uncorrected and Spearman's ρ = 0.25, P = .03 uncorrected). CONCLUSION & INFERENCES This is the first study of structural gray matter abnormalities in diverticular disease patients. The data show brain differences in the pain network.
Collapse
Affiliation(s)
- A Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., Nottingham, UK
| | - J K Smith
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - D J Humes
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - J Garratt
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - P A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - R C Spiller
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - L Marciani
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
22
|
Mugie SM, Koppen IJN, van den Berg MM, Groot PFC, Reneman L, de Ruiter MB, Benninga MA. Brain processing of rectal sensation in adolescents with functional defecation disorders and healthy controls. Neurogastroenterol Motil 2018; 30. [PMID: 28975729 DOI: 10.1111/nmo.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Decreased sensation of urge to defecate is often reported by children with functional constipation (FC) and functional nonretentive fecal incontinence (FNRFI). The aim of this cross-sectional study was to evaluate cerebral activity in response to rectal distension in adolescents with FC and FNRFI compared with healthy controls (HCs). METHODS We included 15 adolescents with FC, 10 adolescents with FNRFI, and 15 young adult HCs. Rectal barostat was performed prior to functional magnetic resonance imaging (fMRI) to determine individual pressure thresholds for urge sensation. Subjects received 2 sessions of 5 × 30 seconds of barostat stimulation during the acquisition of blood oxygenation level-dependent fMRI. Functional magnetic resonance imaging signal differences were analyzed using SPM8 in Matlab. KEY RESULTS Functional constipation and FNRFI patients had higher thresholds for urgency than HCs (P < .001). During rectal distension, FC patients showed activation in the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior parietal lobule, and putamen. No activations were observed in controls and FNRFI patients. Functional nonretentive fecal incontinence patients showed deactivation in the hippocampus, parahippocampal gyrus, fusiform gyrus (FFG), lingual gyrus, posterior parietal cortex, and precentral gyrus. In HCs, deactivated areas were detected in the hippocampus, amygdala, FFG, insula, thalamus, precuneus, and primary somatosensory cortex. In contrast, no regions with significant deactivation were detected in FC patients. CONCLUSIONS & INFERENCES Children with FC differ from children with FNRFI and HCs with respect to patterns of cerebral activation and deactivation during rectal distension. Functional nonretentive fecal incontinence patients seem to resemble HCs when it comes to brain processing of rectal distension.
Collapse
Affiliation(s)
- S M Mugie
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - I J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - M M van den Berg
- Department of Pediatrics, Haaglanden Medical Centre, The Hague, The Netherlands
| | - P F C Groot
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - L Reneman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - M B de Ruiter
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Mirbagheri N, Hatton S, Ng KS, Lagopoulos J, Gladman MA. Brain responses to mechanical rectal stimulation in patients with faecal incontinence: an fMRI study. Colorectal Dis 2017; 19:917-926. [PMID: 28436201 DOI: 10.1111/codi.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
AIM Continence is dependent on anorectal-brain interactions. Consequently, aberrations of the brain-gut axis may be important in the pathophysiology of faecal incontinence (FI) in certain patients. The aim of this study was to assess the feasibility of recording brain responses to rectal mechanical stimulation in patients with FI using functional magnetic resonance imaging (fMRI). METHOD A prospective, cohort pilot study was performed to assess brain responses during rectal stimulation in 14 patients [four men, mean (SD) age 62 (15) years]. Blood oxygen level dependent (BOLD) signals were measured by fMRI during rest and mechanical distension, involving random repetitions of isobaric phasic rectal distensions at fixed (15 and 45 mmHg) and variable (10% above sensory perception threshold) pressures. RESULTS Increases in BOLD signals in response to high pressure rectal distension (45 mmHg) and maximum toleration were observed in the cingulate gyrus, thalamus, insular cortex, inferior frontal gyrus, cerebellum, caudate nucleus, supramarginal gyrus, putamen and amygdala. Additionally, activation of the supplementary motor cortex and caudate nucleus with inconsistent activity in the frontal lobe was observed. CONCLUSIONS This study has demonstrated the feasibility of recording brain responses to rectal mechanical stimulation using fMRI in patients with FI, revealing activity in widespread areas of the brain involved in visceral sensory processing. The observed activity in the supplementary motor cortex and caudate nucleus, with relative paucity of activity in the frontal lobes, warrants investigation in future studies to determine whether aberrations in cerebral processing of rectal stimuli play a role in the pathogenesis of FI.
Collapse
Affiliation(s)
- N Mirbagheri
- Specialist Colorectal and Pelvic Floor Centre, Sydney, New South Wales, Australia
- Academic Colorectal Unit, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - S Hatton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - K-S Ng
- Academic Colorectal Unit, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - J Lagopoulos
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - M A Gladman
- Specialist Colorectal and Pelvic Floor Centre, Sydney, New South Wales, Australia
- Academic Colorectal Unit, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Guleria A, Karyampudi A, Singh R, Khetrapal CL, Verma A, Ghoshal UC, Kumar D. Mapping of Brain Activations to Rectal Balloon Distension Stimuli in Male Patients with Irritable Bowel Syndrome Using Functional Magnetic Resonance Imaging. J Neurogastroenterol Motil 2017; 23:415-427. [PMID: 28192648 PMCID: PMC5503292 DOI: 10.5056/jnm16148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Irritable bowel syndrome (IBS) is associated with exaggerated cerebral response including emotional processing following visceral stimulation; though data on this issue is available in female IBS patients, it is scanty among males. Hence, we aimed to study brain response of male IBS patients following rectal balloon distension as compared to healthy controls using functional magnetic resonance imaging (fMRI). Data between diarrhea and constipation predominant IBS (IBS-D and IBS-C) were also compared. Methods Rectal balloon distension threshold was assessed in 20 male IBS patients (10 IBS-C and 10 IBS-D) and 10 age-matched male healthy controls. Subsequently, fMRI on all the participants was performed at their respective rectal pain threshold. The fMRI data were analysed using the Statistical Parametric Mapping software. Results IBS patients showed greater cerebral activations in insula, middle temporal gyrus, and cerebellum in the left hemisphere compared to healthy controls. Neural activation was found in bilateral precuneus/superior parietal lobules in controls but not in patients with IBS. The brain activation differed among IBS-C and IBS-D patients; while the right mid-cingulate cortex was activated in IBS-C, the left inferior orbito-frontal cortex, left calcarine, and bilateral fusiform gyri were activated among patients with IBS-D following rectal balloon distension. Conclusions Brain response to rectal balloon distension differed among male patients with IBS and controls and among patients with IBS-C and IBS-D. Differential activation among patients with IBS-C and IBS-D was seen in the brain regions controlling affective motivation, homeostatic emotions, and autonomic responses to pain.
Collapse
Affiliation(s)
- Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Arun Karyampudi
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajan Singh
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chunni L Khetrapal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Abhai Verma
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Basilakos A, Fridriksson J, Rorden C, Behroozmand R, Hanayik T, Naselaris T, Del Gaizo J, Breedlove J, Vandergrift WA, Bonilha L. Activity associated with speech articulation measured through direct cortical recordings. BRAIN AND LANGUAGE 2017; 169:1-7. [PMID: 28236761 PMCID: PMC5417075 DOI: 10.1016/j.bandl.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The insula has been credited with a role in a number of functions, including speech production. Here, we recorded electrocorticography (ECoG) signals from the left insula during pseudoword articulation in two patients undergoing pre-surgical monitoring for the management of medically-intractable epilepsy. Event-related band power (ERBP) activity from electrodes implanted in the superior precentral gyrus of the insula (SPGI) was compared to that of other left hemisphere regions implicated in speech production. Results showed that SPGI contacts demonstrated significantly greater ERBP within the high-gamma frequency range (75-150Hz) during articulation compared to a listening condition. However, frontal and post-central regions demonstrated significantly greater responses to the articulation task compared to the SPGI. Results suggest the SPGI is active during articulation, but frontal and post-central regions demonstrate significantly more robust responses. Given the small sample size, and number of electrodes implanted in the SPGI, further study is warranted to confirm these findings.
Collapse
Affiliation(s)
- Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, United States
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Taylor Hanayik
- Department of Psychology, University of South Carolina, Columbia, SC 29208, United States
| | - Thomas Naselaris
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John Del Gaizo
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Jesse Breedlove
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - W A Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
26
|
Redon S, Mareau C, Guedj E, Donnet A. Cyclic Vomiting Syndrome in Adults and Children: A Hypothesis. Headache 2017; 57:943-951. [DOI: 10.1111/head.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sylvain Redon
- Department of Evaluation and Treatment of Pain; La Timone Hospital; Marseille France
| | - Cécile Mareau
- Department of Evaluation and Treatment of Pain; La Timone Hospital; Marseille France
| | - Eric Guedj
- Service Central de Biophysique et de Médecine Nucléaire, Assistance Publique des Hôpitaux de Marseille; Centre Hospitalo-Universitaire de la Timone; Marseille France
| | - Anne Donnet
- Department of Evaluation and Treatment of Pain; La Timone Hospital; Marseille France
| |
Collapse
|
27
|
Oswald A, Chapman J, Wilson C. Do interoceptive awareness and interoceptive responsiveness mediate the relationship between body appreciation and intuitive eating in young women? Appetite 2017; 109:66-72. [DOI: 10.1016/j.appet.2016.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
28
|
Park JH, Kim JW, Park JK, Shin CM, Jung KW. [Current Status of Translational Research on Functional Dyspepsia]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 68:132-7. [PMID: 27646581 DOI: 10.4166/kjg.2016.68.3.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Functional dyspepsia (FD) has a diverse pathophysiology and treatment is difficult. Translational research to understand its pathophysiology is underway. Hormonal factors, including ghrelin, seem promising, offering an understanding of appetite and eating. Functional MRI brain study can expand our knowledge of the brain-gut axis. Finally, immune systems research, including mast cells, can help with comprehensive understanding of FD. The clinical approaches based on these translational research projects are necessary to improve understanding of FD, leading to more effective treatment.
Collapse
Affiliation(s)
- Jae Ho Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan, Korea.,Department of Gastroenterology, Ulsan University Hospital, Ulsan, Korea
| | - Jong Wook Kim
- Division of Gastroenterology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Jong Kyu Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan, Korea.,Department of Gastroenterology, Gangneung Asan Hospital, Gangneung, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kee Wook Jung
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan, Korea.,Department of Gastroenterology, Asan Medical Center, Seoul, Korea
| |
Collapse
|
29
|
Lee IS, Wang H, Chae Y, Preissl H, Enck P. Functional neuroimaging studies in functional dyspepsia patients: a systematic review. Neurogastroenterol Motil 2016; 28:793-805. [PMID: 26940430 DOI: 10.1111/nmo.12793] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is increasing evidence in support of the presence of abnormal central changes (compared to healthy controls) in functional dyspepsia (FD) in addition to the peripheral changes in gastrointestinal tract. PURPOSE This systematic review aims to provide an integrative understanding of the abnormal functional brain activity, visceral sensation, dyspeptic symptoms, and psychological changes of FD. Electronic and hand searches were conducted to identify functional neuroimaging studies involving FD patients. Sixteen studies were selected and divided into three categories: 10 resting state studies, three visceral distention studies, and three acupuncture studies. Changes were reported in several brain areas in FD patients including the frontal cortex, somatosensory cortex, insula, anterior cingulate cortex, thalamus, hippocampus, and amygdala. These brain activity changes were associated with visceral hypersensitivity, dyspeptic symptoms, poorer quality of life, anxiety, and depression. The results show that FD is associated with functional abnormalities in sensory and pain modulation, emotion, saliency, and homeostatic processing regions. The diversity of conditions, heterogeneous results, poorly standardized diagnoses of FD, and various comorbidities may be responsible for the variability in the results.
Collapse
Affiliation(s)
- I-S Lee
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - H Wang
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Y Chae
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - H Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Tübingen, Germany.,Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany.,Department Pharmacy and Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - P Enck
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Warbrick T, Fegers-Stollenwerk V, Maximov II, Grinberg F, Shah NJ. Using Structural and Functional Brain Imaging to Investigate Responses to Acute Thermal Pain. THE JOURNAL OF PAIN 2016; 17:836-44. [PMID: 27102895 DOI: 10.1016/j.jpain.2016.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/21/2016] [Accepted: 03/05/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Despite a fundamental interest in the relationship between structure and function, the relationships between measures of white matter microstructural coherence and functional brain responses to pain are poorly understood. We investigated whether fractional anisotropy (FA) in 2 white matter regions in pathways associated with pain is related to the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to thermal stimulation. BOLD fMRI was measured from 16 healthy male subjects during painful thermal stimulation of the right arm. Diffusion-weighted images were acquired for each subject and FA estimates were extracted from the posterior internal capsule and the cingulum (cingulate gyrus). These values were then included as covariates in the fMRI data analysis. We found BOLD response in the midcingulate cortex (MCC) to be positively related to FA in the posterior internal capsule and negatively related to FA in the cingulum. Our results suggest that the MCC's involvement in processing pain can be further delineated by considering how the magnitude of the BOLD response is related to white matter microstructural coherence and to subjective perception of pain. Considering relationships to white matter microstructural coherence in tracts involved in transmitting information to different parts of the pain network can help interpretation of MCC BOLD activation. PERSPECTIVE Relationships between functional brain responses, white matter microstructural coherence, and subjective ratings are crucial for understanding the role of the MCC in pain. These findings provide a basis for investigating the effect of the reduced white matter microstructural coherence observed in some pain disorders on the functional responses to pain.
Collapse
Affiliation(s)
- Tracy Warbrick
- Institute of Neuroscience and Medicine, Jülich, Germany.
| | | | | | - Farida Grinberg
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Jülich, Germany; Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| |
Collapse
|
31
|
From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm. Neuroimage 2016; 130:104-114. [DOI: 10.1016/j.neuroimage.2016.01.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 01/16/2016] [Indexed: 01/19/2023] Open
|
32
|
Wiebking C, Northoff G. Neural activity during interoceptive awareness and its associations with alexithymia-An fMRI study in major depressive disorder and non-psychiatric controls. Front Psychol 2015; 6:589. [PMID: 26074827 PMCID: PMC4444750 DOI: 10.3389/fpsyg.2015.00589] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Alexithymia relates to difficulties recognizing and describing emotions. It has been linked to subjectively increased interoceptive awareness (IA) and to psychiatric illnesses such as major depressive disorder (MDD) and somatization. MDD in turn is characterized by aberrant emotion processing and IA on the subjective as well as on the neural level. However, a link between neural activity in response to IA and alexithymic traits in health and depression remains unclear. METHODS A well-established fMRI task was used to investigate neural activity during IA (heartbeat counting) and exteroceptive awareness (tone counting) in non-psychiatric controls (NC) and MDD. Firstly, comparing MDD and NC, a linear relationship between IA-related activity and scores of the Toronto Alexithymia Scale (TAS) was investigated through whole-brain regression. Secondly, NC were divided by median-split of TAS scores into groups showing low (NC-low) or high (NC-high) alexithymia. MDD and NC-high showed equally high TAS scores. Subsequently, IA-related neural activity was compared on a whole-brain level between the three independent samples (MDD, NC-low, NC-high). RESULTS Whole-brain regressions between MDD and NC revealed neural differences during IA as a function of TAS-DD (subscale difficulty describing feelings) in the supragenual anterior cingulate cortex (sACC; BA 24/32), which were due to negative associations between TAS-DD and IA-related activity in NC. Contrasting NC subgroups after median-split on a whole-brain level, high TAS scores were associated with decreased neural activity during IA in the sACC and increased insula activity. Though having equally high alexithymia scores, NC-high showed increased insula activity during IA compared to MDD, whilst both groups showed decreased activity in the sACC. CONCLUSIONS Within the context of decreased sACC activity during IA in alexithymia (NC-high and MDD), increased insula activity might mirror a compensatory mechanism in NC-high, which is disrupted in MDD.
Collapse
Affiliation(s)
- Christine Wiebking
- Cluster of Excellence in Cognitive Sciences, Department of Sociology of Physical Activity and Health, University of PotsdamPotsdam, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of OttawaOttawa, ON, Canada
- Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipei, Taiwan
- Taipei Medical University-Shuang Ho Hospital, Brain and Consciousness Research CenterNew Taipei City, Taiwan
- Department of Psychology, National Chengchi UniversityTaipei, Taiwan
- Center for Cognition and Brain Disorders, Normal University HangzhouHangzhou, China
| |
Collapse
|
33
|
Ishikawa T, Yasuda S, Minoda S, Ibuki T, Fukuhara K, Iwanaga Y, Ariyoshi T, Sasaki H. Neurotropin(®) ameliorates chronic pain via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol 2015; 35:231-41. [PMID: 25283187 PMCID: PMC11486250 DOI: 10.1007/s10571-014-0118-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
Neurotropin (NTP)(®), a non-protein extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus, is used clinically for the treatment of neuropathic pain. Moreover, NTP may activate the descending pain inhibitory system. Depression-like behavior is often complicated by chronic pain. However, little is known about NTP-mediated prevention of mood disorders in chronic pain and its molecular mechanisms. We aimed to investigate the effects of NTP on brain-derived neurotrophic factor (BDNF)-mediated signaling and gene expression in chronic pain. In addition, these effects of NTP were compared with pregabalin which is an anticonvulsant, anxiolytic analgesic used to treat neuropathic pain and fibromyalgia. A chronic constriction injury model was established in Sprague-Dawley rats. The pain response was assessed using a paw withdrawal latency (PWL) test and depression was assessed by the immobility time in a forced swim test (FST). NTP was orally administered in two doses of 50 NU (Neurotropin Unit) and 100 NU/kg for 7 days from day 7 after injury. To measure the analgesic and anti-depressant effects of NTP, either K252a (a tyrosine kinase inhibitor), or 5,7-dihydroxy tryptamine (5,7-DHT, a selective toxin for 5-HTergic neurons) was administered by intracerebroventricular injection. Changes in pERK1/2 and pCREB (immunohistochemistry), 5-HT, and BDNF protein level (ELISA) and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC) and in the rostral ventromedial medulla (RVM) 14 days after injury. After injury, the rats showed a decrease in PWL associated with the increase in time of immobility in FST. In this injury model, NTP blocked both the decrease in PWL and the increase in the FST, while pregabalin (10 mg/kg, po.) did not affect the increase in the FST. These effects of NTP were reversed by K252a, and 5,7-DHT. The analgesic effects of pregabalin were not reversed by K252a. NTP normalized the injury-induced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA in the ACC and in the RVM, and these changes were reversed by 5,7-DHT. In contrast, pregabalin did not affect either pCREB or BDNF levels in the chronic pain model. NTP ameliorated chronic pain and pain-related depression by normalizing the induction of BDNF associated with the 5-HTergic system. Pregabalin showed the analgesic effects but had no effects on either depression or the BDNF pathway. These results suggest that NTP may represent an additional drug strategy for chronic pain associated with depression.
Collapse
Affiliation(s)
- Toshizo Ishikawa
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bouwense SAW, de Vries M, Schreuder LTW, Olesen SS, Frøkjær JB, Drewes AM, van Goor H, Wilder-Smith OHG. Systematic mechanism-orientated approach to chronic pancreatitis pain. World J Gastroenterol 2015; 21:47-59. [PMID: 25574079 PMCID: PMC4284360 DOI: 10.3748/wjg.v21.i1.47] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/23/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Pain in chronic pancreatitis (CP) shows similarities with other visceral pain syndromes (i.e., inflammatory bowel disease and esophagitis), which should thus be managed in a similar fashion. Typical causes of CP pain include increased intrapancreatic pressure, pancreatic inflammation and pancreatic/extrapancreatic complications. Unfortunately, CP pain continues to be a major clinical challenge. It is recognized that ongoing pain may induce altered central pain processing, e.g., central sensitization or pro-nociceptive pain modulation. When this is present conventional pain treatment targeting the nociceptive focus, e.g., opioid analgesia or surgical/endoscopic intervention, often fails even if technically successful. If central nervous system pain processing is altered, specific treatment targeting these changes should be instituted (e.g., gabapentinoids, ketamine or tricyclic antidepressants). Suitable tools are now available to make altered central processing visible, including quantitative sensory testing, electroencephalograpy and (functional) magnetic resonance imaging. These techniques are potentially clinically useful diagnostic tools to analyze central pain processing and thus define optimum management approaches for pain in CP and other visceral pain syndromes. The present review proposes a systematic mechanism-orientated approach to pain management in CP based on a holistic view of the mechanisms involved. Future research should address the circumstances under which central nervous system pain processing changes in CP, and how this is influenced by ongoing nociceptive input and therapies. Thus we hope to predict which patients are at risk for developing chronic pain or not responding to therapy, leading to improved treatment of chronic pain in CP and other visceral pain disorders.
Collapse
|
35
|
Nan J, Liu J, Mu J, Dun W, Zhang M, Gong Q, Qin W, Tian J, Liang F, Zeng F. Brain-based Correlations Between Psychological Factors and Functional Dyspepsia. J Neurogastroenterol Motil 2015; 21:103-10. [PMID: 25540947 PMCID: PMC4288085 DOI: 10.5056/jnm14096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Background/Aims Increasing evidence shows involvement of psychological disorders in functional dyspepsia (FD), but how psychological factors exert their influences upon FD remains largely unclear. The purpose of the present study was to explore the brain-based correlations of psychological factors and FD. Methods Based on Fluorine-18-deoxyglucose positron emission tomography-computed tomography, the altered cerebral glycometabolism was investigated in 40 FD patients compared with 20 healthy controls during resting state using statistical parametric mapping software. Results FD patients exhibited increased glucose metabolism in multiple regions relative to controls (P < 0.001, family-wise error corrected). After controlling for the dyspeptic symptoms, increased aberrations persisted within the insula, anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and middle frontal cortex (midFC), which was related to anxiety and depression score. Interestingly, FD patients without anxiety/depression symptoms also showed increased glycometabolism within the insula, ACC, MCC and midFC. Moreover, FD patients with anxiety/depression symptoms exhibited more significant hypermetabolism within the above 4 sites compared with patients without anxiety/depression symptoms. Conclusions Our results suggested that the altered cerebral glycometabolism may be in a vicious cycle of psychological vulnerabilities and increased gastrointestinal symptoms.
Collapse
Affiliation(s)
- Jiaofen Nan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Junya Mu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiyong Gong
- Department of Radiology, The Center for Medical Imaging, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Qin
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Fanrong Liang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Yasuda S, Yoshida M, Yamagata H, Iwanaga Y, Suenaga H, Ishikawa K, Nakano M, Okuyama S, Furukawa Y, Furukawa S, Ishikawa T. Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol 2014; 34:1199-208. [PMID: 25156823 PMCID: PMC11488886 DOI: 10.1007/s10571-014-0097-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/04/2014] [Indexed: 01/09/2023]
Abstract
Depression-like behavior is often complicated by chronic pain. Antidepressants including imipramine (IMI) are widely used to treat chronic pain, but the mechanisms are not fully understood. Brain-derived neurotrophic factor (BDNF) is a neuromodulator that reduces depression by regulating synaptic transmission. We aimed to characterize the antidepressant effects of IMI without analgesia based on BDNF (trkB)-mediated signaling and gene expression in chronic pain. A chronic constriction injury (CCI) model was constructed in Sprague-Dawley (SD) rats. IMI (5 mg/kg, i.p.) was administered from day 10 after CCI. The pain response was assessed using the paw withdrawal latency (PWL) and depression was judged from the immobility time in a forced swim test. Anti-BDNF antibody, K252a, or 5,7-dihydroxytryptamine (5,7-DHT) were used to examine the antidepressant effects of imipramine. Changes in pERK1/2 (immunohistochemistry), 5-HT and BDNF (ELISA), and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC), rostral ventromedial medulla (RVM), and spinal cord. After CCI, rats showed decreased PWL and increased immobility time. A low dose of IMI reduced the immobility time without having analgesic effects. This antidepressant effect was reversed by anti-BDNF antibody, K252a, and 5,7-DHT. IMI reduced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA, and these changes were reversed by 5,7-DHT. These results show that IMI reduces pain-related negative emotion without influencing pain and that this effect is diminished by denervation of 5-HT neurons and by anti-BDNF treatment. IMI also normalizes derangement of ERK/CREB coupling, which leads to induction of BDNF. This suggests a possible interaction between 5-HT and BDNF.
Collapse
Affiliation(s)
- Seiko Yasuda
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| | - Mitsuhiro Yoshida
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
- Division of Dental Anesthesiology, Department of Control of Physical Functions, Kyushu Dental University, 2-1-6, Manazuru, Kokurakita, Kitakyushu, 803-8580 Japan
| | - Hirotaka Yamagata
- Department of Psychiatry, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| | - Yasutake Iwanaga
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| | - Hiromi Suenaga
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| | - Kozo Ishikawa
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
- Department of 2nd Anatomy, Sapporo Medical University, 17-Minami 1 Jou-Nishi, Chuou-ku, Sapporo, 060-8556 Japan
| | - Masako Nakano
- Department of 2nd Anatomy, Sapporo Medical University, 17-Minami 1 Jou-Nishi, Chuou-ku, Sapporo, 060-8556 Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehim 790-8578 Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehim 790-8578 Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigaku-nishi 1-25-4, Gifu, 501-1196 Japan
| | - Toshizo Ishikawa
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
37
|
|
38
|
Herbert BM, Blechert J, Hautzinger M, Matthias E, Herbert C. Intuitive eating is associated with interoceptive sensitivity. Effects on body mass index. Appetite 2013; 70:22-30. [DOI: 10.1016/j.appet.2013.06.082] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|
39
|
Rosenberger C, Thürling M, Forsting M, Elsenbruch S, Timmann D, Gizewski ER. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome. THE CEREBELLUM 2013; 12:194-8. [PMID: 22910984 DOI: 10.1007/s12311-012-0413-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N = 15 female IBS patients and N = 12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.
Collapse
Affiliation(s)
- Christina Rosenberger
- Institute of Medical Psychology and Behavioral Immunobiology, University Clinic of Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 2013; 14:488-501. [PMID: 23783199 DOI: 10.1038/nrn3524] [Citation(s) in RCA: 1080] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uncertainty about a possible future threat disrupts our ability to avoid it or to mitigate its negative impact and thus results in anxiety. Here, we focus the broad literature on the neurobiology of anxiety through the lens of uncertainty. We identify five processes that are essential for adaptive anticipatory responses to future threat uncertainty and propose that alterations in the neural instantiation of these processes result in maladaptive responses to uncertainty in pathological anxiety. This framework has the potential to advance the classification, diagnosis and treatment of clinical anxiety.
Collapse
|
41
|
Nissen TD, Brock C, Graversen C, Coen SJ, Hultin L, Aziz Q, Lykkesfeldt J, Drewes AM. Translational aspects of rectal evoked potentials: a comparative study in rats and humans. Am J Physiol Gastrointest Liver Physiol 2013; 305:G119-28. [PMID: 23703652 PMCID: PMC3725684 DOI: 10.1152/ajpgi.00403.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inconsistencies between species has stunted the progress of developing new analgesics. To increase the success of translating results between species, improved comparable models are required. Twelve rats received rectal balloon distensions on 2 different days separated by 24.3 (SD 24.6) days. Rectal balloon distensions were also performed in 18 humans (mean age: 34 yr; range: 21-56 yr; 12 men) on two separate occasions, separated by 9.3 (SD 5.5) days. In rats, cerebral evoked potentials (CEPs) were recorded by use of implanted skull-electrodes to distension pressure of 80 mmHg. In humans surface electrodes and individualized pressure, corresponding to pain detection threshold, were used. Comparison of morphology was assessed by wavelet analysis. Within- and between-day reproducibility was assessed in terms of latencies, amplitudes, and frequency content. In rats CEPs showed triphasic morphology. No differences in latencies, amplitudes, and power distribution were seen within or between days (all P ≥ 0.5). Peak-to-peak amplitude between the first positive and negative potential were the most reproducible characteristic within and between days (evaluated by intraclass correlation coefficients, ICC) (ICC = 0.99 and ICC = 9.98, respectively). In humans CEPs showed a triphasic morphology. No differences in latencies, amplitudes, or power distribution were seen within or between days (all P ≥ 0.2). Latency to the second negative potential (ICC = 0.98) and the second positive potential (ICC = 0.95) was the most reproducible characteristic within and between days. A unique and reliable translational platform was established assessing visceral sensitivity in rats and humans, which may improve the translational process of developing new drugs targeting visceral pain.
Collapse
Affiliation(s)
- Thomas Dahl Nissen
- 1Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; ,2Biomedical Research Laboratory, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark; ,3Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark;
| | - Christina Brock
- 3Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark;
| | - Carina Graversen
- 4Mech-Sense, Department of Radiology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark;
| | - Steven J. Coen
- 5Kings College London, Institute of Psychiatry, Department of Neuroimaging, London, United Kingdom;
| | - Leif Hultin
- 6Bioscience, AstraZeneca R&D, Mölndal, Sweden;
| | - Qasim Aziz
- 7Centre for Digestive Diseases, Blizard Institute, The Wingate Neurogastroenterology Group, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; and
| | - Jens Lykkesfeldt
- 1Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Asbjørn Mohr Drewes
- 8Center for Sensory-Motor Interactions, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
42
|
Bouhassira D, Moisset X, Jouet P, Duboc H, Coffin B, Sabate JM. Changes in the modulation of spinal pain processing are related to severity in irritable bowel syndrome. Neurogastroenterol Motil 2013; 25:623-e468. [PMID: 23551988 DOI: 10.1111/nmo.12123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND In irritable bowel syndrome (IBS) patients can be divided in two groups according to inhibition or facilitation of the RIII nociceptive spinal reflex induced by rectal distension. We further investigated the differences in pain processes in these two groups and their relationship to clinical symptoms. METHODS This study included 10 female IBS-C patients with facilitation (Group F) and 10 patients with inhibition (Group I) of the RIII reflex recorded on the left lower limb during slow-ramp rectal distension, and 11 healthy female volunteers. Diffuse noxious inhibitory control (DNIC)-induced inhibition was assessed by measuring the effects of noxious cold stimulation of the right hand on the RIII reflex and the concomitant sensation of pain. Functional magnetic resonance imaging (fMRI) was performed to compare the changes in brain activity induced by painful and non painful rectal distension. Irritable bowel syndrome symptom severity, mood, anxiety, and catastrophizing were also systematically assessed. KEY RESULTS Unlike the patients of Group I and healthy volunteers, Group F patients displayed no inhibition of the RIII reflex or of concomitant pain sensation during immersion of the hand in ice-cold water. The reduction of the inhibition induced by heterotopic noxious stimuli was directly correlated with the severity of IBS symptoms, but not with psychological symptoms. The fMRI study showed that non-painful and painful rectal distension induced similar changes in brain activity in the two groups of patients. CONCLUSION & INFERENCES Alterations of the modulation of spinal pain processing in IBS correlates with symptom severity but not with psychological factors or brain activity.
Collapse
Affiliation(s)
- D Bouhassira
- U-987, INSERM, AP-HP, Hôpital Ambroise Paré, Boulogne-Billancourt, France; Versailles-Saint-Quentin University, Versailles, France.
| | | | | | | | | | | |
Collapse
|
43
|
Mochizuki H, Baumgärtner U, Kamping S, Ruttorf M, Schad LR, Flor H, Kakigi R, Treede RD. Cortico-subcortical activation patterns for itch and pain imagery. Pain 2013; 154:1989-1998. [PMID: 23769719 DOI: 10.1016/j.pain.2013.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022]
Abstract
The imagery of itch and pain evokes emotional responses and covert motor responses (scratching to itch and withdrawal to pain). This suggests some similarity in cerebral mechanisms. However, itch is more socially contagious than pain, as evidenced by the fact that scratching behaviors can be easily initiated by watching itch-inducing situations, whereas withdrawal is less easily initiated by watching painful situations. Thus, we assumed that the cerebral mechanisms of itch imagery partly differ from those of pain imagery in particular with respect to motor regions. We addressed this issue in 18 healthy subjects using functional magnetic resonance imaging. The subjects were instructed to imagine itch and pain sensations in their own bodies while viewing pictures depicting stimuli associated with these sensations. Itch and pain imagery activated the anterior insular cortex (aIC) and motor-related regions such as supplementary motor area, basal ganglia, thalamus, and cerebellum. Activity in these regions was not significantly different between itch and pain imagery. However, functional connectivity between motor-related regions and the aIC showed marked differences between itch and pain imagery. Connectivity with the aIC was stronger in the primary motor and premotor cortices during pain imagery and stronger in the globus pallidus during itch imagery. These findings indicate that brain regions associated with imagery of itch are the same as those involved in imagery of pain, but their functional networks differ. These differences in brain networks may explain why motor responses to itch are more socially contagious than those related to pain.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bennett IJ, Rypma B. Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults. Neurosci Biobehav Rev 2013; 37:1201-10. [PMID: 23628742 DOI: 10.1016/j.neubiorev.2013.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Abstract
Structural connections between brain regions are thought to influence neural processing within those regions. It follows that alterations to the quality of structural connections should influence the magnitude of neural activity. The quality of structural connections may also be expected to differentially influence activity in directly versus indirectly connected brain regions. To test these predictions, we reviewed studies that combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) in younger and older adults. By surveying studies that examined relationships between DTI measures of white matter integrity and fMRI measures of neural activity, we identified variables that accounted for variability in these relationships. Results revealed that relationships between white matter integrity and neural activity varied with (1) aging (i.e., positive and negative DTI-fMRI relationships in younger and older adults, respectively) and (2) spatial proximity of the neural measures (i.e., positive and negative DTI-fMRI relationships when neural measures were extracted from adjacent and non-adjacent brain regions, respectively). Together, the studies reviewed here provided support for both of our predictions.
Collapse
Affiliation(s)
- Ilana J Bennett
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA.
| | | |
Collapse
|
45
|
Ernst J, Böker H, Hättenschwiler J, Schüpbach D, Northoff G, Seifritz E, Grimm S. The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc Cogn Affect Neurosci 2013; 9:857-63. [PMID: 23596189 DOI: 10.1093/scan/nst058] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alexithymia and increased interoceptive awareness have been associated with affective disorders as well as with altered insula and anterior cingulate cortex (ACC) function. Brain imaging studies have demonstrated an association between neurotransmitter function and affective disorders as well as personality traits. Here, we first examined the relationship between alexithymic facets as assessed with the Toronto Alexithymia Scale (TAS-20) and interoceptive awareness (assessed with the Body Perception Questionnaire) in 18 healthy subjects. Second, we investigated their association with glutamate and gamma-aminobutyric acid (GABA) concentrations in the left insula and the ACC using 3-Tesla proton magnetic resonance spectroscopy. Behaviorally, we found a close association between alexithymia and interoceptive awareness. Furthermore, glutamate levels in the left insula were positively associated with both alexithymia and awareness of autonomic nervous system reactivity, while GABA concentrations in ACC were selectively associated with alexithymia. Although preliminary, our results suggest that increased glutamate-mediated excitatory transmission-related to enhanced insula activity-reflects increased interoceptive awareness in alexithymia. Suppression of the unspecific emotional arousal evoked by increased awareness of bodily responses in alexithymics might thus be reflected in decreased neuronal activity mediated by increased GABA concentration in ACC.
Collapse
Affiliation(s)
- Jutta Ernst
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heinz Böker
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joe Hättenschwiler
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Daniel Schüpbach
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Georg Northoff
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Erich Seifritz
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simone Grimm
- Clinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, GermanyClinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, GermanyClinic for Affective Disorders and General Psychiatry, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, 8029 Zurich, Switzerland, Center for Anxiety and Depression, 8008 Zurich, Switzerland, University of Ottawa, Institute of Mental Health Research, Ottawa K1Z 7K4, Canada, Department of Psychiatry, Campus Benjamin Franklin, Charité, 14050 Berlin, and Languages of Emotion Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
46
|
Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, Tillisch K. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 2013; 154:1528-1541. [PMID: 23721972 DOI: 10.1016/j.pain.2013.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/22/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by recurring abdominal pain associated with alterations in bowel habits. We hypothesized that patients with chronic visceral pain associated with IBS may have microstructural differences in the brain compared with healthy control subjects (HCs), indicative of long-term neural reorganization of chronic pain pathways and regions associated with sensory integration. In the current study we performed population-based voxel-wise diffusion tensor imaging (DTI) comparisons and probabilistic tractography in a large sample of phenotyped patients with IBS (n=33) and in HCs (n=93). Patients had lower fractional anisotropy (FA) in thalamic regions, the basal ganglia (BG) and sensory/motor association/integration regions as well as higher FA in frontal lobe regions and the corpus callosum. In addition, patients had reduced mean diffusivity (MD) within the globus pallidus (GP) and higher MD in the thalamus, internal capsule, and coronal radiata projecting to sensory/motor regions, suggestive of differential changes in axon/dendritic density in these regions. Sex differences in FA and MD were also observed in the patients but not in HCs. Probabilistic tractography in patients confirmed a higher degree of connectivity between the thalamus and prefrontal cortex, as well as between the medial dorsal thalamic nuclei and anterior cingulate cortex, and a lower degree of connectivity between the GP and thalamus. Together, these results support the hypothesis that patients with chronically recurring visceral pain from IBS have long-term microstructural changes within the brain, particularly in regions associated with integration of sensory information and corticothalamic modulation.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Radiological Science, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA Department of Biomedical Physics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA Department of Bioengineering, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA Department of Digestive Diseases and Gastroenterology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kuan YC, Shih YH, Chen C, Yu HY, Yiu CH, Lin YY, Kwan SY, Yen DJ. Abdominal auras in patients with mesial temporal sclerosis. Epilepsy Behav 2012; 25:386-90. [PMID: 23103315 DOI: 10.1016/j.yebeh.2012.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/26/2012] [Accepted: 07/28/2012] [Indexed: 10/27/2022]
Abstract
To better clarify abdominal auras and their clinical correlates, we enrolled 331 temporal lobe epilepsy patients who received surgical treatment. Detailed descriptions of their auras were obtained before surgery and reconfirmed during postoperative outpatient follow-ups. Pathology revealed mesial temporal sclerosis (MTS) in 256 patients (77.3%) and 75 non-MTS. Of 214 MTS patients with auras, 78 (36.4%) reported abdominal auras (vs. 30.4% in non-MTS, p=0.439): 42 with left-sided seizure onset, and 36 with right-sided seizure onset. Moreover, 49 of the 78 MTS patients had abdominal auras accompanied by rising sensations (vs. 2 of 14 in non-MTS group, p=0.004). The "rising air" was initially described to locate to the epigastric (47.8%) or periumbilical area (45.7%) and mostly reached the chest (40.4%) or remained in the abdominal region (27.1%). An epigastric location of "rising air" favored a left-sided seizure onset, and non-epigastric areas favored right-sided seizure onset (p=0.018). Finally, we found that abdominal auras with or without rising sensations did not predict postoperative seizure outcomes.
Collapse
Affiliation(s)
- Yi-Chun Kuan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Herbert BM, Muth ER, Pollatos O, Herbert C. Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One 2012; 7:e36646. [PMID: 22606278 PMCID: PMC3350494 DOI: 10.1371/journal.pone.0036646] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 04/10/2012] [Indexed: 12/24/2022] Open
Abstract
The individual sensitivity for ones internal bodily signals ("interoceptive awareness") has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals ("cardiac awareness") which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG) and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality.
Collapse
Affiliation(s)
- Beate M Herbert
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany.
| | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Visceral pain represents a major clinical problem, yet far less is known about its mechanisms compared with somatic pains, for example, from cutaneous and muscular structures. RECENT FINDINGS In this review, we describe the neuroanatomical bases of visceral pain signalling in the peripheral and central nervous system, comparing to somatic pains and also the channels and receptors involved in these events. We include an overview of potential new targets in the context of mechanisms of visceral pain and hypersensitivity. SUMMARY This review should inform on the recognition of what occurs in patients with visceral pain, why comorbidities are common and how analgesic treatments work.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Department of Neuroscience, Physiology and Pharmacology University College London, London UK.
| | | |
Collapse
|
50
|
Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci 2012; 37:17-27. [PMID: 21693094 PMCID: PMC3244495 DOI: 10.1503/jpn.100176] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The insular cortex is one of the brain regions that show consistent abnormalities in both structural and functional neuroimaging studies of schizophrenia. In healthy individuals, the insula has been implicated in a myriad of physiologic functions. The anterior cingulate cortex (ACC) and insula together constitute the salience network, an intrinsic large-scale network showing strong functional connectivity. Considering the insula as a functional unit along with the ACC provides an integrated understanding of the role of the insula in information processing. In this review, we bring together evidence from imaging studies to understand the role of the salience network in schizophrenia and propose a model of insular dysfunction in psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Division of Psychiatry, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | | |
Collapse
|