1
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
2
|
Tătaru I, Dragostin OM, Fulga I, Boros F, Carp A, Maftei A, Zamfir CL, Nechita A. The modern pharmacological approach to diabetes: innovative methods of monitoring and insulin treatment. Expert Rev Med Devices 2022; 19:581-589. [PMID: 35962571 DOI: 10.1080/17434440.2022.2113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus, commonly known as just diabetes, is a group of metabolic disorders characterised by a high blood sugar level over a prolonged period of time. In order to maintain this blood glucose value in normal parameters, a careful monitoring of it and insulin administration are necessary. AREAS COVERED Thus, to facilitate this procedure, new blood glucose monitoring systems have been studied. The smart lens, the nano tattoo, non-invasive sensors based on reverse ionthophoresis and glucose oxidase - based continuous blood glucose monitoring systems, are the methods described in this study. Of course, not only is blood glucose monitoring important, but also the lifestyle of a drug or the way a drug is administered, especially in the cae of insulin. How insulin is administered is also a topic that we address in this article. In an attempt to promote compliance with the administration, we have discussed about new forms of administering insulin such as: oral, intranasal, administration on the oral mucosa and last but not least, transdermal administration. EXPERT OPINION Further, the attention of specialists should be directed to devices based on sensors, with a role in the interruption of insulin administration, in case of detection of hypoglycemia or the additional dose of insulin, if hyperglycemia is detected.
Collapse
Affiliation(s)
- Iulian Tătaru
- Faculty of Medicine, Department of Histology, University of Medicine and Pharmacy Grigore T. Popa, , 16 Universitatii Str 700115, Iasi, Romania
| | - Oana M Dragostin
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Iuliu Fulga
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Florentina Boros
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Adelina Carp
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Ariadna Maftei
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Carmen L Zamfir
- Faculty of Medicine, Department of Histology, University of Medicine and Pharmacy Grigore T. Popa, , 16 Universitatii Str 700115, Iasi, Romania
| | - Aurel Nechita
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| |
Collapse
|
3
|
Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 2021; 608:121068. [PMID: 34481011 DOI: 10.1016/j.ijpharm.2021.121068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder defined by higher blood glucose levels in the body generally controlled by antidiabetic agents (oral) and insulin (subcutaneous). To avoid the limitations of the conventional routes such as lower bioavailability and pain at the site of injection in case of parenteral route modified delivery systems are proposed like transdermal, pulmonary and inhalation delivery and among the other delivery systems nasal drug delivery system that shows the advantages such as reduced frequency of dose, higher patient compliance, safety, ease of administration, prolonged residence time, improved absorption of drug in the body, higher bioavailability and stability. This review article discusses the strategies adopted for the delivery of antidiabetic drugs by the intranasal delivery system. The insulin and glucagon-like peptides on experimentation show results of improved therapeutic levels and patient compliance. The drugs are transported by the paracellular route and absorbed through the epithelial tight junctions successfully by utilising different strategies. The limitations of the nasal delivery such as irritation or burning on administration, degradation by the enzymes, mucociliary clearance, lesser volume of the nasal cavity and permeation through the nasal mucosa. To overcome the challenges different strategies for the nasal administration are studied such as polymers, particulate delivery systems, complexation with peptides and smart delivery using glucose-responsive systems. A vast scope of intranasal preparations exists for antidiabetic drugs in the future for the management of diabetes and more clinical studies are the requirement for the societal impact to battle against diabetes.
Collapse
Affiliation(s)
- Jheel Dholakia
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Sharda N, Khandelwal P, Zhang L, Caceres-Cortes J, Marathe P, Chimalakonda A. Pharmacokinetics of 40 kDa Polyethylene glycol (PEG) in mice, rats, cynomolgus monkeys and predicted pharmacokinetics in humans. Eur J Pharm Sci 2021; 165:105928. [PMID: 34265405 DOI: 10.1016/j.ejps.2021.105928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022]
Abstract
Conjugation with polyethylene glycol (PEG), PEGylation, has been considered a useful tool to improve drug-like properties of novel small molecules and biologics in drug discovery. PEG40 or 40 kDa PEG is a double-branched PEG, routinely employed to improve the pharmacokinetics (PK) of therapeutics, including successful marketed products such as Pegasys® and Omontys®. However, less is known about the extent of contribution of PEG40 to the overall PK of the PEGylated product. Considering the half-life of PEG40 conjugated PEGylated products ranges from 1 to 14 days in human, this information is immensely valuable. After successfully developing a high sensitivity NMR based analytical method to quantitate PEG40 in mice serum after intravenous (IV) administration (Khandelwal et al., 2019), here, we extend its application to measure PEG40 in serum after IV administration and subcutaneous (SC) absorption in routinely employed non-clinical species in drug discovery, namely, mice, rats and cynomolgus monkeys. We utilized non-compartmental analysis and compartmental modeling to characterize the PK of PEG40 in these non-clinical species. Finally, we employed allometric scaling and Wajima (MRT-Css) method to predict the PK of PEG40 in human after IV administration and SC absorption. In general, our data shows that intrinsic PK parameters of PEG40 in mice, rats and cynomolgus monkeys are in the range of published literature values for PEG40-conjugated products, unless saturable clearance mechanisms are involved. We observed a bioavailability (F) of ~68% in CD-1 mice after SC administration of PEG40. In rats, the clearance (CL) and volume of distribution at steady state (Vss) after IV infusion of PEG40 were 0.079 mL/min/kg and 0.19 L/kg, respectively; and SC bioavailability was ~20%. In cynomolgus monkeys, after IV infusion, CL and Vss of PEG40 were 0.037 mL/min/kg and 0.20 L/kg, respectively; and SC bioavailability was ~69%. In addition, our findings indicate flip-flop kinetics of PEG40 in rodents, but not in cynomolgus monkeys. Finally, in human, intrinsic CL and Vss of PEG40 were projected to be 0.02 mL/min/kg (0.084 L/h) and 0.22 L/kg, respectively. This comprehensive report of PK of PEG40 in non-clinical species and its subsequent prediction in humans is expected to be useful to drug discovery and development scientists for efficient decision-making and optimal resource utilization.
Collapse
Affiliation(s)
- Nidhi Sharda
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA; Clinical Pharmacology and Pharmacometrics, 3401 Princeton Pike, Lawrenceville NJ, 08648, USA
| | - Purnima Khandelwal
- Department of Discovery Synthesis, Small Molecule Drug Discovery, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Lisa Zhang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Janet Caceres-Cortes
- Department of Discovery Synthesis, Small Molecule Drug Discovery, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Punit Marathe
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Route 206 & Province Line Rd., Princeton NJ, 08543, USA
| | - Anjaneya Chimalakonda
- Clinical Pharmacology and Pharmacometrics, 3401 Princeton Pike, Lawrenceville NJ, 08648, USA.
| |
Collapse
|
5
|
Wang J, Deng T, Liu Y, Chen K, Yang Z, Jiang ZX. Monodisperse and Polydisperse PEGylation of Peptides and Proteins: A Comparative Study. Biomacromolecules 2020; 21:3134-3139. [PMID: 32628833 DOI: 10.1021/acs.biomac.0c00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although PEGylation is widely used in biomedicine with great success, it suffers from many drawbacks, such as polydispersity, nonbiodegradability, and loss of precursor potency. Recently, the search for polyethylene glycol (PEG) substitutes has attracted considerable attention. Some of the substitutes partially address the drawbacks of PEGs, but sacrifice the "stealth" effect of PEGs and bring in new issues. Herein, we developed monodisperse oligoethylene glycol (M-OEG) polyamides over 5000 Da as biodegradable and monodisperse PEGylation (M-PEGylation) agents, which provided M-PEGylated peptides and proteins with high monodispersity and a biodegradable PEG moiety. Compared to regular PEGylated proteins with a complex "stealth" cloud of PEG, the hydrogen bond interactions between the M-OEG polyamides and proteins provided the M-PEGylated protein with a biodegradable "stealth" cloak. The monodisperse and biodegradable M-PEGylation strategy as well as the peculiar protein-M-OEG polyamide interactions may shed light on many long-lasting issues during the development of PEGylated biologic drugs, such as monodispersity, biodegradability, and tunable conformation.
Collapse
Affiliation(s)
- Jie Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Tao Deng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Yuntai Liu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Kexin Chen
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
6
|
Baghban Taraghdari Z, Imani R, Mohabatpour F. A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective. Macromol Biosci 2019; 19:e1800458. [DOI: 10.1002/mabi.201800458] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zahra Baghban Taraghdari
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Rana Imani
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Fatemeh Mohabatpour
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
- Division of Biomedical EngineeringUniversity of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
7
|
Bioresponsive release of insulin-like growth factor-I from its PEGylated conjugate. J Control Release 2018; 279:17-28. [DOI: 10.1016/j.jconrel.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
|
8
|
Asayama S, Nagashima K, Negishi Y, Kawakami H. Byproduct-Free Intact Modification of Insulin by Cholesterol End-Modified Poly(ethylene glycol) for in Vivo Protein Delivery. Bioconjug Chem 2017; 29:67-73. [DOI: 10.1021/acs.bioconjchem.7b00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shoichiro Asayama
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kana Nagashima
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yoichi Negishi
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroyoshi Kawakami
- Department
of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
9
|
Hirotsu T, Higashi T, Abu Hashim II, Misumi S, Wada K, Motoyama K, Arima H. Self-Assembly PEGylation Retaining Activity (SPRA) Technology via a Host-Guest Interaction Surpassing Conventional PEGylation Methods of Proteins. Mol Pharm 2017; 14:368-376. [PMID: 28032772 DOI: 10.1021/acs.molpharmaceut.6b00678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyethylene glycol (PEG) modification (PEGylation) is one of the best approaches to improve the stabilities and blood half-lives of protein drugs; however, PEGylation dramatically reduces the bioactivities of protein drugs. Here, we present "self-assembly PEGylation retaining activity" (SPRA) technology via a host-guest interaction between PEGylated β-cyclodextrin (PEG-β-CyD) and adamantane-appended (Ad) proteins. PEG-β-CyD formed stable complexes with Ad-insulin and Ad-lysozyme to yield SPRA-insulin and SPRA-lysozyme, respectively. Both SPRA-proteins showed high stability against heat and trypsin digest, comparable with that of covalently PEGylated protein equivalents. Importantly, the SPRA-lysozyme possessed ca. 100% lytic activity, whereas the activity of the covalently PEGylated lysozyme was ca. 23%. Additionally, SPRA-insulin provided a prolonged and peakless blood glucose profile when compared with insulin glargine. It also showed no loss of activity. In contrast, the covalently PEGylated insulin showed a negligible hypoglycemic effect. These findings indicate that SPRA technology has potential as a generic method, surpassing conventional PEGylation methods for proteins.
Collapse
Affiliation(s)
- Tatsunori Hirotsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Irhan Ibrahim Abu Hashim
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koki Wada
- Nihon Shokuhin Kako Co., Ltd. , 30 Tajima, Fuji, Shizuoka 417-8539, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
10
|
Gong Y, Leroux JC, Gauthier MA. Releasable Conjugation of Polymers to Proteins. Bioconjug Chem 2015; 26:1172-81. [DOI: 10.1021/bc500611k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuhui Gong
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Centre, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
11
|
Guerreiro LH, Guterres MFAN, Melo-Ferreira B, Erthal LCS, da Silva Rosa M, Lourenço D, Tinoco P, Lima LMTR. Preparation and characterization of PEGylated amylin. AAPS PharmSciTech 2013; 14:1083-97. [PMID: 23818080 DOI: 10.1208/s12249-013-9987-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/28/2013] [Indexed: 01/26/2023] Open
Abstract
Amylin is a pancreatic hormone that plays important roles in overall metabolism and in glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable for patients with diabetes who need to avoid glucose excursions. Protein conjugation with polyethylene glycol (PEG) has long been known to be a convenient approach for extending the biological effects of biopharmaceuticals. We have investigated the reactivity of amylin with methoxy polyethylene glycol succinimidyl carbonate and methoxy polyethylene glycol succinimidyl propionate, which have an average molecular weight of 5 kDa. The reaction, which was conducted in both aqueous and organic (dimethyl sulfoxide) solvents, occurred within a few minutes and resulted in at least four detectable products with distinct kinetic phases. These results suggest a kinetic selectivity for PEGylation by succinimidyl derivatives; these derivatives exhibit enhanced reactivity with primary amine groups, as indicated by an evaluation of the remaining amino groups using fluorescamine. The analysis of tryptic fragments from mono- and diPEGylated amylin revealed that conjugation occurred within the 1-11 amino acid region, most likely at the two amine groups of Lys(1). The reaction products were efficiently separated by C-18 reversed phase chromatography. Binding assays confirmed the ability of mono- and diPEGylated amylin to interact with the amylin co-receptor receptor activity-modifying protein 2. Subcutaneous administration in mice revealed the effectiveness of monoPEG-amylin and diPEG-amylin in reducing glycemia; both compounds exhibited prolonged action compared to unmodified amylin. These features suggest the potential use of PEGylated amylin to restore basal amylin levels.
Collapse
|
12
|
Peng Q, Sun X, Gong T, Wu CY, Zhang T, Tan J, Zhang ZR. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater 2013; 9:5063-9. [PMID: 23036950 DOI: 10.1016/j.actbio.2012.09.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023]
Abstract
Biodegradable PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles containing insulin phospholipid complex were loaded in chitosan-based thermosensitive hydrogels for long-term sustained and controlled delivery of insulin. The injectable hydrogels, prepared by adding β-glycerophosphate disodium salt (GP) solution to chitosan (CS) solution under stirring, showed a rapid solution-to-gel transition at 37 °C, a porous structure and a comparative degradation and swelling rate in vitro. In the in vitro release studies, only 19.11% of total insulin was released from the nanoparticle-loaded hydrogel (NP-CS/GP) within 31 days. However, 96.41% of total insulin was released from the free insulin-loaded hydrogel (INS-CS/GP) within 16 days. Most importantly, the hypoglycemic effect of NP-CS/GP following subcutaneous injection in diabetic rats lasted for >5 days, much longer than the effect caused by INS-CS/GP or other long-acting insulin formulations. The pharmacological availability of NP-CS/GP relative to INS-CS/GP was 379.85%, indicating that the bioavailability of insulin was significantly enhanced by NP-CS/GP gels. Therefore, biodegradable and thermosensitive NP-CS/GP gels have great potential for use in novel ultralong-acting insulin injections. In addition, the NP-loaded hydrogel system also paves the way for long-term delivery of other proteins and peptides.
Collapse
Affiliation(s)
- Q Peng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Insulin complexes with PEGylated basic oligopeptides. J Colloid Interface Sci 2012; 384:61-72. [DOI: 10.1016/j.jcis.2012.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/23/2022]
|
14
|
Establishing the principle of reversibility in peptide/protein and small-molecule therapy. Ther Deliv 2012; 3:17-23. [PMID: 22833930 DOI: 10.4155/tde.11.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several important pharmacological features can be integrated into injected drugs to enhance their therapeutic efficacy following administration. Short-lived peptide/protein drugs should be converted into long-lived species in vivo to avoid multiple injections. Circulating levels of anticancer agents need to be maintained within a narrow therapeutic range for prolonged period. Water-insoluble drugs must be turned into soluble species and blood-brain barrier-impermeable agents need to be modified to cross it following peripheral administrations. The derivatization requiring for achieving those desirable pharmacological features typically result in biologically/pharmacologically inactive products, unless those derivatizations can be carried out in a reversible fashion.
Collapse
|
15
|
Gao M, Jin Y, Tong Y, Tian H, Gao X, Yao W. A site-specific PEGylated analog of exendin-4 with improved pharmacokinetics and pharmacodynamics in vivo. J Pharm Pharmacol 2012; 64:1646-53. [DOI: 10.1111/j.2042-7158.2012.01545.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Our aim was to improve the in vivo pharmacokinetics and pharmacodynamics of exendin-4 by using site-specific PEGylation.
Methods
We designed the PEGylated peptide based on its structure and activity relationship and prepared the conjugate by two steps of chromatographic purification. After obtained the conjugate we confirmed its glucose-lowering activity in normal mice and determined its half-life in SD rats. Then we evaluated its anti-diabetic activity in a multiple low-dose Streptozocin (STZ)-induced diabetic mice model.
Key findings
With the process established in this study the product conjugate was obtained with a yield of over 60% and purity of above 99%. The conjugate maintained its original conformation after modification. In SD rats its half-life was prolonged to 27.12 ± 5.75 h which was 17.61-fold longer than that of the natural exendin-4 for which the half-life was only 1.54 ± 0.47 h. Its anti-diabetic activity was significantly improved in the diabetic mice.
Conclusions
Compare with native exendin-4, the C-terminal site-specific PEGylated analog of exendin-4 obtained in this study has an improved pharmacokinetics and pharmacodynamics in vivo and could be regarded as a potential candidate for the future development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Mingming Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuhao Jin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Tong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Abstract
The concept of mucoadhesion and the molecular design requirements for the synthesis of mucoadhesive agents are both well understood and, as a result, hydrogel formulations that may be applied to mucosal surfaces are readily accessible. Nanosized hydrogel systems that make use of biological recognition or targeting motifs, by reacting to disease-specific environmental triggers and/or chemical signals to affect drug release, are now emerging as components of a new generation of therapeutics that promise improved residence time, faster response to stimuli and triggered release.
Collapse
|
17
|
Zhao HL, Xue C, Du JL, Ren M, Xia S, Liu ZM. Balancing the Pharmacokinetics and Pharmacodynamics of Interferon-α2b and Human Serum Albumin Fusion Protein by Proteolytic or Reductive Cleavage Increases Its in Vivo Therapeutic Efficacy. Mol Pharm 2012; 9:664-70. [DOI: 10.1021/mp200347q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Liang Zhao
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| | - Chong Xue
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| | - Ji Liang Du
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| | - Min Ren
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| | - Shan Xia
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| | - Zhi Min Liu
- Department
of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street,
Fengtai District, Beijing 100071, People’s Republic of China
| |
Collapse
|
18
|
Lim SI, Jang MH, Kim DJ, Bae SM, Kwon SC. Cobalt(III)-induced hexamerization of PEGylated insulin. Int J Biol Macromol 2011; 49:832-7. [DOI: 10.1016/j.ijbiomac.2011.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
19
|
Yang C, Lu D, Liu Z. How PEGylation Enhances the Stability and Potency of Insulin: A Molecular Dynamics Simulation. Biochemistry 2011; 50:2585-93. [DOI: 10.1021/bi101926u] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Arginine end-functionalized poly(l-lysine) dendrigrafts for the stabilization and controlled release of insulin. J Colloid Interface Sci 2010; 351:433-41. [DOI: 10.1016/j.jcis.2010.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/22/2022]
|
21
|
|
22
|
A validated stability-indicating HPLC method for the determination of PEGylated puerarin in aqueous solutions. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2061-6. [DOI: 10.1016/j.jchromb.2010.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/23/2022]
|
23
|
Sasson K, Marcus Y, Lev-Goldman V, Rubinraut S, Fridkin M, Shechter Y. Engineering prolonged-acting prodrugs employing an albumin-binding probe that undergoes slow hydrolysis at physiological conditions. J Control Release 2010; 142:214-20. [DOI: 10.1016/j.jconrel.2009.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022]
|