1
|
Zafeiriadis S, Adamaki-Sotiraki C, Rumbos CI, Athanassiou CG. Beyond carrots: Evaluation of gelling agents as wet feeds for Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae. CHEMOSPHERE 2024; 363:142783. [PMID: 38972459 DOI: 10.1016/j.chemosphere.2024.142783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Previous studies have shown that larvae of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae), need a source of moisture to grow and perform well. Currently, much research has been oriented towards the effect of dry feed on larval growth and performance. The effect of different wet feeds as moisture source on the performance traits of T. molitor larvae has not been thoroughly investigated yet. This study aims to investigate in laboratory trials the effect of various gelling agents (agar, carrageenans, guar gum, xanthan gum, sodium alginate, modified starch, and pectin) on the growth and performance of T. molitor larvae. A number of 50 newly emerged larvae obtained from the rearings of the LEAZ were inserted in plastic vials together with 4 g of wheat bran as dry feed. Additionally, 1 g of gelling agents was provided 3 times per week as moisture sources. Carrot slices served as control. Larval survival and weight were recorded weekly until the appearance of the first pupa. Dry feed was replenished when depleted. Our data showed that gelling agents efficiently supported the growth of T. molitor larvae, in terms of larval survival and weight, as well as feed utilization expressed as FCR. Interestingly, carrageenans seem to be the most appropriate gelling agent for T. molitor larvae rearing as it can enhance their weight and is also able to reduce their development time and their specific growth rate.
Collapse
Affiliation(s)
- S Zafeiriadis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446, Volos, Greece.
| | - C Adamaki-Sotiraki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446, Volos, Greece
| | - C I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446, Volos, Greece
| | - C G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Phytokou Str., 38446, Volos, Greece
| |
Collapse
|
2
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
3
|
Tan KX, Ng LLE, Loo SCJ. Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2783. [PMID: 34073859 PMCID: PMC8197192 DOI: 10.3390/ma14112783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Esco Aster, Block 71, Ayer Rajah Crescent, Singapore 139951, Singapore
| | - Ling-Ling Evelyn Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
4
|
Johnson A, He JL, Kong F, Huang YC, Thomas S, Lin HTV, Kong ZL. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens. Int J Nanomedicine 2020; 15:4021-4047. [PMID: 32606662 PMCID: PMC7293418 DOI: 10.2147/ijn.s238476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease associated with microbial accumulation. The purpose of this study was to reuse the agricultural waste to produce cellulose nanofibers (CNF) and further modification of the CNF with κ-carrageenan oligosaccharides (CO) for drug delivery. In addition, this study is focused on the antimicrobial activity of surfactin-loaded CO-CNF towards periodontal pathogens. MATERIALS AND METHODS A chemo-mechanical method was used to extract the CNF and the modification was done by using CO. The studies were further proceeded by adding different quantities of surfactin [50 mg (50 SNPs), 100 mg (100 SNPs), 200 mg (200 SNPs)] into the carrier (CO-CNF). The obtained materials were characterized, and the antimicrobial activity of surfactin-loaded CO-CNF was evaluated. RESULTS The obtained average size of CNF and CO-CNF after ultrasonication was 263 nm and 330 nm, respectively. Microscopic studies suggested that the CNF has a short diameter with long length and CO became cross-linked to form as beads within the CNF network. The addition of CO improved the degradation temperature, crystallinity, and swelling property of CNF. The material has a controlled drug release, and the entrapment efficiency and loading capacity of the drug were 53.15 ± 2.36% and 36.72 ± 1.24%, respectively. It has antioxidant activity and inhibited the growth of periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis by preventing the biofilm formation, reducing the metabolic activity, and promoting the oxidative stress. CONCLUSION The study showed the successful extraction of CNF and modification with CO improved the physical parameters of the CNF. In addition, surfactin-loaded CO-CNF has potential antimicrobial activity against periodontal pathogens. The obtained biomaterial is economically valuable and has great potential for biomedical applications.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Jia-Ling He
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, GA30602, U.S.A
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala686560, India
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| |
Collapse
|
5
|
Desai J, Thakkar H. Enhanced oral bioavailability and brain uptake of Darunavir using lipid nanoemulsion formulation. Colloids Surf B Biointerfaces 2019; 175:143-149. [DOI: 10.1016/j.colsurfb.2018.11.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
6
|
Oral Modified Release Multiple-Unit Particulate Systems: Compressed Pellets, Microparticles and Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040176. [PMID: 30287798 PMCID: PMC6321440 DOI: 10.3390/pharmaceutics10040176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 01/06/2023] Open
Abstract
Oral modified-release multiparticulate dosage forms, which are also referred to as oral multiple-unit particulate systems, are becoming increasingly popular for oral drug delivery applications. The compaction of polymer-coated multiparticulates into tablets to produce a sustained-release dosage form is preferred over hard gelatin capsules. Moreover, multiparticulate tablets are a promising solution to chronic conditions, patients’ adherence, and swallowing difficulties if incorporated into orodispersible matrices. Nonetheless, the compaction of multiparticulates often damages the functional polymer coat, which results in a rapid release of the drug substance and the subsequent loss of sustained-release properties. This review brings to the forefront key formulation variables that are likely to influence the compaction of coated multiparticulates into sustained-release tablets. It focusses on the tabletting of coated drug-loaded pellets, microparticles, and nanoparticles with a designated section on each. Furthermore, it explores the various approaches that are used to evaluate the compaction behaviour of particulate systems.
Collapse
|
7
|
Desai J, Thakkar H. Darunavir-Loaded Lipid Nanoparticles for Targeting to HIV Reservoirs. AAPS PharmSciTech 2018; 19:648-660. [PMID: 28948564 DOI: 10.1208/s12249-017-0876-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/06/2017] [Indexed: 01/20/2023] Open
Abstract
Darunavir has a low oral bioavailability (37%) due to its lipophilic nature, metabolism by cytochrome P450 enzymes and P-gp efflux. Lipid nanoparticles were prepared in order to overcome its low bioavailability and to increase the binding efficacy of delivery system to the lymphoid system. Darunavir-loaded lipid nanoparticles were prepared using high-pressure homogenization technique. Hydrogenated castor oil was used as lipid. Peptide, having affinity for CD4 receptors, was grafted onto the surface of nanoparticles. The nanoparticles were evaluated for various parameters. The nanoparticles showed size of less than 200 nm, zeta potential of - 35.45 mV, and a high drug entrapment efficiency (90%). 73.12% peptide was found conjugated to nanoparticles as studied using standard BSA calibration plot. Permeability of nanoparticles in Caco-2 cells was increased by 4-fold in comparison to plain drug suspension. Confocal microscopic study revealed that the nanoparticles showed higher uptake in HIV host cells (Molt-4 cells were taken as model containing CD4 receptors) as compared to non-CD4 receptor bearing Caco-2 cells. In vivo pharmacokinetic in rats showed 569% relative increase in bioavailability of darunavir as compared to plain drug suspension. The biodistribution study revealed that peptide-grafted nanoparticles showed higher uptake in various organs (also in HIV reservoir organs namely the spleen and brain) except the liver compared to non-peptide-grafted nanoparticles. The prepared nanoparticles resulted in increased binding with the HIV host cells and thus could be promising carrier in active targeting of the drugs to the HIV reservoir.
Collapse
|
8
|
Role of P-Glycoprotein Inhibitors in the Bioavailability Enhancement of Solid Dispersion of Darunavir. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8274927. [PMID: 29226149 PMCID: PMC5684613 DOI: 10.1155/2017/8274927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Objective The aim of the present study was to improve bioavailability of an important antiretroviral drug, Darunavir (DRV), which has low water solubility and poor intestinal absorption through solid dispersion (SD) approach incorporating polymer with P-glycoprotein inhibitory potential. Methods A statistical approach where design of experiment (DoE) was used to prepare SD of DRV with incorporation of P-glycoprotein inhibitors. Using DoE, different methods of preparation, like melt, solvent evaporation, and spray drying method, utilizing carriers like Kolliphor TPGS and Soluplus were evaluated. The optimized SD was characterized by DSC, FTIR, XRD, and SEM and further evaluated for enhancement in absorption using everted gut sac model, effect of food on absorption of DRV, and in vivo prospect. Results and Discussion DSC, FTIR, XRD, and SEM confirmed the amorphicity of drug in SD. Oral bioavailability studies revealed better absorption of DRV when given with food. Absorption studies and in vivo study findings demonstrated great potential of Kolliphor TPGS as P-glycoprotein inhibitor for increasing intestinal absorption and thus bioavailability of DRV. Conclusion It is concluded that SD of DRV with the incorporation of Kolliphor TPGS was potential and promising approach in increasing bioavailability of DRV as well as minimizing its extrusion via P-glycoprotein efflux transporters.
Collapse
|
9
|
Garg B, Beg S, Kaur R, Kumar R, Katare OP, Singh B. Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential. J Drug Target 2017; 26:252-266. [PMID: 28805469 DOI: 10.1080/1061186x.2017.1365875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current studies entail systematic development of SNEOFs containing long-chain triglycerides for improving lymphatic targeting of darunavir for complete inhibition of HIV progression. As per QbD-oriented approach for formulation development, the QTPP was defined and CQAs were earmarked. Preformulation equilibrium solubility and phase diagram studies, and risk assessment through FMEA studies identified Lauroglycol 90, Tween 80 and Transcutol HP as the lipid, emulgent and cosolvent, respectively, for formulating SNEOFs of darunavir. Systematic optimisation of SNEOFs was conducted using IV-optimal mixture design, and the optimised formulation was chosen through numerical desirability function. Characterisation of optimised SNEOFs exhibited globule size of 50 nm, >85% drug release within 15 min and >75% permeation within 45 min. In vivo lymph cannulation and in situ intestinal perfusion studies indicated significant improvement in the drug absorption parameters from SNEOFs via intestinal lymphatic pathways, owing primarily to the presence of long-chain triglycerides. Also, in vivo pharmacokinetic studies in rat corroborated significant improvement in rate and extent of drug absorption into plasma vis-à-vis pure drug. In a nutshell, these studies indicate significant improvement in the biopharmaceutical attributes of a robust and stable SNEOFs formulation of darunavir for holistic management of viral loads in lymph and blood.
Collapse
Affiliation(s)
- Babita Garg
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Sarwar Beg
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Ranjot Kaur
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Rajendra Kumar
- b UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites in Biomedical Sciences , Panjab University , Chandigarh , India
| | - Om Prakash Katare
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India
| | - Bhupinder Singh
- a University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies , Panjab University , Chandigarh , India.,b UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites in Biomedical Sciences , Panjab University , Chandigarh , India
| |
Collapse
|
10
|
Chen T, Li J, Chen T, Sun CC, Zheng Y. Tablets of multi-unit pellet system for controlled drug delivery. J Control Release 2017; 262:222-231. [PMID: 28774838 DOI: 10.1016/j.jconrel.2017.07.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
The tablet of multi-unit pellet system (TMUPS), using coated pellets, for controlled release of drugs is an effective therapeutic alternative to conventional immediate-release dosage forms. The main advantages of TMUPS include a) ease of swallowing and b) divisible without compromising the drug release characteristics of the individual units. TMUPS can be prepared more economically than pellet-filled capsules because of the much higher production rate of tableting process. In spite of the superiorities of TMUPS, its adoption has been challenged by manufacturing problems, such as compromised integrity of coated pellets and poor content uniformity. Herein, we provide an updated review on research, from both scientific literatures and patents, related to the compaction of TMUPS. Factors important for the successful production of TMUPS are summarized, including model drug property, potential cushioning agents, and novel techniques to protect pellets from damage. This review is intended to facilitate the future development of manufacturable TMUPS with drug release behavior similar to that of the original coated pellets.
Collapse
Affiliation(s)
- Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ting Chen
- Zhitong Laboratories Co., Ltd, Shanghai, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
11
|
Jade PB, Sonawane RO, Patil SD, Ige PP, Pardeshi CV. Co-processed κ-carrageenan-pectin as pelletizing aid for immediate-release pellets. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2016.1146811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Muley S, Nandgude T, Poddar S. Extrusion–spheronization a promising pelletization technique: In-depth review. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Zhang S, Xia Y, Yan H, Zhang Y, Zhang W, Liu J. The water holding ability of powder masses: Characterization and influence on the preparation of pellets via extrusion/spheronization. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Desai J, Thakkar H. Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J Microencapsul 2016; 33:669-678. [DOI: 10.1080/02652048.2016.1245363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jagruti Desai
- Faculty of Pharmacy, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Hetal Thakkar
- Faculty of Pharmacy, The M.S. University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
15
|
Corrêa JCR, D'Arcy DM, Serra CHDR, Salgado HRN. A critical review of properties of darunavir and analytical methods for its determination. Crit Rev Anal Chem 2015; 44:16-22. [PMID: 25391211 DOI: 10.1080/10408347.2013.826573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Darunavir is a synthetic non-peptidic protease inhibitor that has been shown to be extremely potent against wild-type HIV, and it is an important component of highly active antiretroviral treatment (HAART), which is considered as one of the most significant advances in the field of HIV therapy. However, there are some concerns about darunavir quality control. Darunavir shows pseudo-polymorphism: in different ambient conditions one pseudo-polymorphic form can change to another. This behavior of darunavir is problematic because the dosage form is exposed to different ambient conditions around the world, since HIV/AIDS is prevalent globally. Issues around differences in the solubility and effects that different forms of darunavir can cause are of concern, and a more stable form is preferable. Important investigations of darunavir such as dissolution behavior, polymorphism, stability and degradation studies, and the impact of that on the quality of the product are being conducted by our working group. A cure for HIV/AIDS remains a long-term commitment, and there is much yet to achieve. This article discusses, by a critical review of the literature, the impact of the use of darunavir in the treatment of HIV-infected patients, its physical-chemical properties, the analytical methods to determine it, and challenges that remain in order to ensure the quality and stability of darunavir.
Collapse
Affiliation(s)
- Josilene Chaves Ruela Corrêa
- a Drugs and Medicines Quality Control Laboratory , School of Pharmaceutical Sciences University Estadual Paulista , Araraquara , Brazil
| | | | | | | |
Collapse
|
16
|
Ronowicz J, Thommes M, Kleinebudde P, Krysiński J. A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm. Eur J Pharm Sci 2015; 73:44-8. [DOI: 10.1016/j.ejps.2015.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 03/21/2015] [Indexed: 11/12/2022]
|
17
|
Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym 2014; 103:1-11. [DOI: 10.1016/j.carbpol.2013.12.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
|
18
|
Kleinebudde P. Pharmazeutisches Produktdesign: Gezielte Freisetzung von Wirkstoffen durch unterschiedliche Extrusionstechniken. CHEM-ING-TECH 2011. [DOI: 10.1002/cite.201000162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Thommes M, Baert L, Rosier J. 800 mg Darunavir tablets prepared by hot melt extrusion. Pharm Dev Technol 2010; 16:645-50. [DOI: 10.3109/10837450.2010.508077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Otero-Espinar F, Luzardo-Alvarez A, Blanco-Méndez J. Non-MCC materials as extrusion-spheronization aids in pellets production. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50047-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|