1
|
Wu Q, Choi V, Bau L, Carugo D, Evans ND, Stride E. Investigation of Ultrasound Mediated Extravasation of a Model Drug by Perfluorobutane Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1573-1584. [PMID: 39060156 DOI: 10.1016/j.ultrasmedbio.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Perfluorocarbon nanodroplets (NDs) have been widely investigated as both diagnostic and therapeutic agents. There remains, however, a challenge in generating NDs that do not vaporize spontaneously but can be activated at ultrasound pressures that do not produce unwanted bioeffects. In previous work, it has been shown that phospholipid-coated perfluorobutane (PFB) NDs can potentially overcome this challenge. The aim of this study was to investigate whether these NDs can promote drug delivery. METHODS A combination of high-speed optical imaging and passive cavitation detection was used to study the acoustic properties of the PFB-NDs in a tissue mimicking phantom. PFB-NDs were exposed to ultrasound at frequencies from 0.5 to 1.5 MHz and peak negative pressures from 0.5 to 3.5 MPa. In addition, the penetration depth of two model drugs (Nile Red and 200 nm diameter fluorescent polymer spheres) into the phantom was measured. RESULTS PFB NDs were found to be stable in aqueous suspension at both 4°C and 37°C; their size remaining unchanged at 215 ± 11 nm over 24 h. Penetration of both model drugs in the phantom was found to increase with increasing ultrasound peak negative pressure and decreasing frequency and was found to be positively correlated with the energy of acoustic emissions. Extravasation depths >1 mm were observed at 0.5 MHz with pressures <1 MPa. CONCLUSION The results of the study thus suggest that PFB NDs can be used both as drug carriers and as nuclei for cavitation to enhance drug delivery without the need for high intensity ultrasound.
Collapse
Affiliation(s)
- Qiang Wu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Victor Choi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Dario Carugo
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, University of Southampton, Southampton, UK; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Periyasamy K, Maloverjan M, Biswas A, Remm A, Pook M, Rebane A, Pooga M. PepFect14 mediates the delivery of mRNA into human primary keratinocytes and in vivo. Front Pharmacol 2023; 14:1219761. [PMID: 37521463 PMCID: PMC10374019 DOI: 10.3389/fphar.2023.1219761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
mRNA-based vaccines and candidate therapeutics have great potential in various medical fields. For the delivery of mRNA into target cells and tissues, lipid formulations are often employed. However, this approach could cause the activation of immune responses, making it unsuitable for the treatment of inflammatory conditions. Therefore, alternative delivery systems are highly demanded. In this study, we evaluated the transport efficiency and characteristics of cell-penetrating peptide PepFect14 (PF14) and mRNA nanoparticles in the presence of different additives. Our results show that all PF14-mRNA formulations entered cultured cells, while calcium chloride enhanced the transport and production of the encoded protein in HeLa and HaCaT cell lines, and polysorbate 80 did so in primary human keratinocytes. All formulations had similar physical properties and did not remarkably affect cell viability. By selectively blocking endocytosis pathways, we show that PF14-mRNA nanoparticles primarily entered HeLa cells via macropinocytosis and HaCaT cells via both macropinocytosis and clathrin-mediated endocytosis, while none of the blockers significantly affected the delivery into primary keratinocytes. Finally, subcutaneous injection of PF14-mRNA nanoparticles before inducing mouse irritant contact dermatitis resulted in the expression of a reporter protein without provoking harmful immune responses in the skin. Together, our findings suggest that PF14-mRNA nanoparticles have the potential for developing mRNA-based therapeutics for treating inflammatory skin conditions.
Collapse
Affiliation(s)
- Kapilraj Periyasamy
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Abhijit Biswas
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Margus Pooga
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Sarvepalli S, Parvathaneni V, Chauhan G, Shukla SK, Gupta V. Inhaled Indomethacin-Loaded Liposomes as Potential Therapeutics against Non-Small Cell Lung Cancer (NSCLC). Pharm Res 2022; 39:2801-2815. [DOI: 10.1007/s11095-022-03392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
|
4
|
Seko I, Tonbul H, Tavukçuoğlu E, Şahin A, Akbas S, Yanık H, Öztürk SC, Esendagli G, Khan M, Capan Y. Development of curcumin and docetaxel co-loaded actively targeted PLGA nanoparticles to overcome blood brain barrier. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
6
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
7
|
Laddha UD, Kshirsagar SJ. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Ibrahim WN, Muizzuddin Bin Mohd Rosli L, Doolaanea AA. Formulation, Cellular Uptake and Cytotoxicity of Thymoquinone-Loaded PLGA Nanoparticles in Malignant Melanoma Cancer Cells. Int J Nanomedicine 2020; 15:8059-8074. [PMID: 33116518 PMCID: PMC7586023 DOI: 10.2147/ijn.s269340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Thymoquinone (TQ) is the main active compound extracted from Nigella sativa a traditional herb with wide therapeutic applications and recognizable anticancer properties. This study aimed to formulate and characterize TQ-nanoparticles using PLGA as a biocompatible coating material (TQ-PLGA NPs) with the evaluation of its therapeutic properties in human melanoma cancer cells. Methods The TQ-PLGA NPs were prepared and characterized for size, zeta potential, encapsulation efficiency, and release profile. Results The particle size was 147.2 nm, with 22.1 positive zeta potential and 96.8% encapsulation efficiency. The NPs released 45.6% of the encapsulated TQ within 3 h followed by characteristic sustained release over 7 days with a total of 69.7% cumulative release. TQ-PLGA NPs were taken up effectively by the cells in a time-dependent manner up to 24 h. Higher cell toxicity was determined within the first 24 h in melanoma cells due to the rapid release of TQ from the NPs and its low stability in the cell culture media. Conclusion TQ-PLGA NPs is a potential anticancer agent taking advantage of the sustained release and tailored size that allows accumulation in the cancer tissue by the enhanced permeability and retention effect. However, stability problems of the active ingredient were address in this study and requires further investigation.
Collapse
Affiliation(s)
- Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Luqman Muizzuddin Bin Mohd Rosli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
9
|
Laddha UD, Kshirsagar SJ. Formulation of PPAR-gamma agonist as surface modified PLGA nanoparticles for non-invasive treatment of diabetic retinopathy: in vitro and in vivo evidences. Heliyon 2020; 6:e04589. [PMID: 32832706 PMCID: PMC7432955 DOI: 10.1016/j.heliyon.2020.e04589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetic retinopathy is one of the worst complications of diabetes and it is treated by invasive method. We prepared a surface modified poly (D, L-lactide-co-glycolide) i.e. PLGA nanoparticles for delivery of pioglitazone-a peroxisome proliferator-activated receptor-gamma agonist to posterior segment of the eye by topical administration. The present study investigated two grades of PLGA viz. 75:25 and 50:50. Surface modification was performed using polysorbate 80. Nanoparticles were prepared by single emulsion solvent evaporation method and optimized by using 3-factor 3-level Box-Behnken statistical design. Mean particle size, PDI and entrapment efficiency for optimized batch of PLGA 75:25 was found to be 163.23 nm, 0.286 and 91%, whereas; for PLGA 50:50 it was 171.7 nm, 0.280 and 93% respectively. DSC confirms the molecular dispersion of drug in polymer. In vitro release study showed biphasic drug release pattern with 58.48 ± 1.38% and 74.17 ± 1.38% cumulative drug release by PLGA 75:25 and 50:50 nanoparticles at the end of 10h. The release profile of pioglitazone from nanoparticles appeared to fit best with Higuchi model. In vivo study on rat showed dose dependent reduction in vascular endothelial growth factor concentration in vitreous fluid. The study reveals significance of peroxisome proliferator-activated receptor-gamma in management of diabetic retinopathy.
Collapse
Affiliation(s)
- Umesh D Laddha
- MET's Institute of Pharmacy, Bhujbal Knowledge City, Affiliated to Savitribai Phule Pune University, Nashik, 422003, MS, India
| | - Sanjay J Kshirsagar
- MET's Institute of Pharmacy, Bhujbal Knowledge City, Affiliated to Savitribai Phule Pune University, Nashik, 422003, MS, India
| |
Collapse
|
10
|
Promoting effect of type 17 collagen production by chlorogenic acid using PLGA nanoparticles in the human epidermal keratinocyte cell. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Pharmaceutical formulation and manufacturing using particle/powder technology for personalized medicines. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Leitner S, Solans C, García-Celma M, Calderó G. Low-energy nano-emulsification approach as a simple strategy to prepare positively charged ethylcellulose nanoparticles. Carbohydr Polym 2019; 205:117-124. [DOI: 10.1016/j.carbpol.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
13
|
Topal GR, Devrim B, Eryilmaz M, Bozkir A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul 2018; 35:533-547. [PMID: 30213209 DOI: 10.1080/02652048.2018.1523970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, ciprofloxacin hydrochloride (CIP)-loaded poly-ε-caprolactone (PCL) nanoparticles were prepared for pulmonary administration. CIP-loaded PCL nanoparticles were prepared using solid-in-oil-in-water (s/o/w) emulsion solvent evaporation method, and the effects of various formulation parameters on the physicochemical properties of the nanoparticles were investigated. PCL nanoparticles showed spherical shapes with particle sizes around 143-489 nm. Encapsulation efficiency was found to be very low because of water-solubility properties of CIP. However, the surface modification of nanoparticles with chitosan caused an increase in the encapsulation efficiency of nanoparticles. At drug release study, CIP-loaded PCL nanoparticles showed initial burst effect for 4 h and then continuously released for 72 h. Nanocomposite microparticles containing CIP-loaded PCL nanoparticles were prepared freeze-drying method and mannitol was used as carrier material. Tapped density and MMADt results show that nanocomposite microparticles have suitable aerodynamic properties for pulmonary administration. Antimicrobial efficacy investigations showed that CIP-encapsulated PCL nanoparticles and nanocomposite microparticles inhibited the growth of bacteria. Also, when the antimicrobial activity of the nanoparticles at the beginning and at the sixth month was examined, it was found that the structure of the particulate system was still preserved. These results indicated that nanocomposite microparticles containing CIP-loaded PCL nanoparticles can be used for pulmonary delivery.
Collapse
Affiliation(s)
- Gizem Rüya Topal
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| | - Burcu Devrim
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| | - Müjde Eryilmaz
- b Faculty of Pharmacy, Department of Pharmaceutical Microbiology , Ankara University , Ankara , Turkey
| | - Asuman Bozkir
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| |
Collapse
|
14
|
Schultze E, Coradini K, dos Santos Chaves P, da Silva LP, Buss J, Guterres SS, Collares T, Beck RCR, Pohlmann AR, Seixas FK. Drug-loaded nanoemulsion as positive control is an alternative to DMSO solutions for in vitro evaluation of curcumin delivery to MCF-7 cells. Pharmacol Rep 2017; 69:1408-1412. [DOI: 10.1016/j.pharep.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
15
|
The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells. Toxins (Basel) 2017; 9:toxins9080237. [PMID: 28788072 PMCID: PMC5577571 DOI: 10.3390/toxins9080237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 01/14/2023] Open
Abstract
Cytotoxin-associated gene product A (CagA) is a major virulence factor secreted by Helicobacter pylori. CagA activity in the gastric epithelium is associated with higher risk of gastric cancer development. Bacterial type IV secretion system (T4SS)-mediated translocation of CagA into the cytosol of human epithelial cells occurs via a poorly understood mechanism that requires CagA interaction with the host membrane lipid phosphatidylserine (PS) and host cell receptor integrin α5β1. Here we have characterized the isolated recombinant middle fragment of CagA (CagA-M) that contains the positively-charged PS-binding region (aa 613–636) and a putative β1 integrin binding site, but lacks the EPIYA region, secretion signal peptide and the CagA multimerization motif. We show that CagA-M, when immobilized on latex beads, is capable of binding to, and triggering its own uptake into, gastric epithelial cells in the absence of infection with cagA-positive H. pylori. Using site-directed mutagenesis, fluorescent and electron microscopy, and highly-specific inhibitors, we demonstrate that the cell-binding and endocytosis-like internalization of CagA-M are dependent on (1) binding to PS; (2) β1 integrin activity; and (3) actin dynamics. Interaction of CagA-M with the host cells is accompanied by the development of long filopodia-like protrusions (macrospikes). This novel morphology is different from the hummingbird phenotype induced by the translocation of full-length CagA. The determinants within CagA-M and within the host that are important for endocytosis-like internalization into host cells are very similar to those observed for T4SS-mediated internalization of full-length CagA, suggesting that the latter may involve an endocytic pathway.
Collapse
|
16
|
Sinani G, Sessevmez M, Koray Gök M, Özgümüş S, Okyar A, Oya Alpar H, Cevher E. Nasal vaccination with poly(β-amino ester)-poly(d,l-lactide-co-glycolide) hybrid nanoparticles. Int J Pharm 2017. [PMID: 28629979 DOI: 10.1016/j.ijpharm.2017.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucosal vaccination stimulates both mucosal and systemic immunity. However, mucosal applications of vaccine antigens in their free form generally result in poor systemic immune responses and need adjuvantation. In this study, bovine serum albumin loaded, new hybridised poly(β-amino ester)-poly(d,l-lactide-co-glycolide) nanoparticles were prepared by double emulsion-solvent evaporation method, characterised and evaluated in vivo as nasal vaccine carriers. Cationic spherical particles with a mean size of 240nm, good physical stability and high encapsulation efficiency were obtained. Protein structure was not affected throughout preparation and minimal toxicity was shown in Calu-3 and A549 cells. Nasal vaccination with these nanoparticles revealed markedly higher humoral immune responses compared with free antigen following intranasal and subcutaneous immunisation. Mucosal immune response was also stimulated and cytokine titres indicated that Th1 and Th2 pathways were successfully activated. This study shows that the formulated hybrid nanoparticles can be a promising carrier for nasal immunisation of poor antigenic proteins.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - M Koray Gök
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - H Oya Alpar
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey; School of Pharmacy, University of London, WC1N 1AX London, UK
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
17
|
Tahara K, Karasawa K, Onodera R, Takeuchi H. Feasibility of drug delivery to the eye's posterior segment by topical instillation of PLGA nanoparticles. Asian J Pharm Sci 2017; 12:394-399. [PMID: 32104351 PMCID: PMC7032217 DOI: 10.1016/j.ajps.2017.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
We investigated the delivery of drugs to the posterior segment of the eye by non-invasive topical instillation using submicron-sized poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). Surface-modified PLGA NPs were developed to improve the drug delivery efficiency to the retina and were administered as topical eye drops to mice. Chitosan (CS) and glycol chitosan (GCS), which are mucoadhesive polymers, and polysorbate 80 (P80) were used as surface modifiers, and have been reported to increase the association of NPs with cells. Coumarin-6 was used as a model drug and fluorescent marker, and after ocular administration of PLGA NP eye drops, the fluorescence intensity of coumarin-6 was observed in the retina. The fluorescence image analysis indicated that there are several possible routes to the retina and fates of PLGA NPs in ocular tissue, and that these pathways involved the corneal, non-corneal, or uveal routes. Delivery to the mouse retina segments after topical administration was increased by surface modification with CS, GCS, or P80. Surface-modified PLGA NPs are a promising method for retinal drug delivery via topical instillation.
Collapse
Affiliation(s)
| | | | | | - Hirofumi Takeuchi
- Corresponding author. Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan. Fax: +81 58 230 1022.
| |
Collapse
|
18
|
da Luz CM, Boyles MSP, Falagan-Lotsch P, Pereira MR, Tutumi HR, de Oliveira Santos E, Martins NB, Himly M, Sommer A, Foissner I, Duschl A, Granjeiro JM, Leite PEC. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J Nanobiotechnology 2017; 15:11. [PMID: 28143572 PMCID: PMC5282631 DOI: 10.1186/s12951-016-0238-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Background Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. Methods We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells’ proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Results Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells’ proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. Conclusions These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Macedo da Luz
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Matthew Samuel Powys Boyles
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Heriot-Watt University, Edinburg, UK
| | - Priscila Falagan-Lotsch
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Laboratory of Chemical Signaling in Nervous System, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Henrique Rudolf Tutumi
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Eidy de Oliveira Santos
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Laboratory of Biochemistry, State University Center of West Zone (UEZO), Rio de Janeiro, RJ, Brazil
| | - Nathalia Balthazar Martins
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Ilse Foissner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - José Mauro Granjeiro
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Dental School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil. .,, Av. Nossa Senhora das Gracas 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| |
Collapse
|
19
|
Wang F, Liu X, Yuan J, Yang S, Li Y, Gao Q. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers. J Biomater Appl 2016; 31:544-552. [DOI: 10.1177/0885328216657548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins.
Collapse
Affiliation(s)
- Fang Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
- Department of Mechanical Engineering, University of Delaware, Newark, United States
| | - Xiuxiu Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Jian Yuan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Siqian Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yueqin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Qinwei Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
20
|
Doolaanea AA, Mansor N'I, Mohd Nor NH, Mohamed F. Co-encapsulation ofNigella sativaoil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J Microencapsul 2016; 33:114-26. [DOI: 10.3109/02652048.2015.1134689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Ji J, Zuo P, Wang YL. Enhanced Antiproliferative Effect of Carboplatin in Cervical Cancer Cells Utilizing Folate-Grafted Polymeric Nanoparticles. NANOSCALE RESEARCH LETTERS 2015; 10:453. [PMID: 26608536 PMCID: PMC4659799 DOI: 10.1186/s11671-015-1162-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/15/2015] [Indexed: 05/30/2023]
Abstract
Carboplatin (CRB) possesses superior anticancer effect in cervical cancer cells with lower incidence of side effects compared to that of cisplatin. However, CRB suffers from severe side effects due to undesirable tissue distributions which contribute to the low therapeutic efficacy. Here, we report a unique folic acid-conjugated chitosan-coated poly(D-L-lactideco-glycolide) (PLGA) nanoparticles (FPCC) prepared for the selective delivery of carboplatin to the cervical cancer cells. The particles were nanosized and spherical shaped with size less than <200 nm. The presence of protective chitosan layer controlled the overall release rate of CRB from chitosan-coated PLGA nanoparticles (PCC) and FPCC. FPCC displayed a higher cellular uptake capacity in HeLa cells than compared to non-targeted nanoparticles. Selective uptake of FPCC was due to an interaction of folic acid (FA) with the folate receptors alpha (FRs-α) which is overexpressed on the HeLa and promoted active targeting. These results indicated that FPCC had a specific affinity for the cancerous, HeLa cells owing to ligand-receptor (FA-FR-α) recognition. Consistently, FPCC showed superior cytotoxic effect than any other formulations. The IC50 (concentration of the drug required to kill 50 % of the cells) value of FPCC was 0.65 μg/ml while it was 1.08, 1.56, and 2.35 μg/ml for PCC, PLGA NP, and free CRB, respectively. Consistent with the cytotoxicity assay, FPCC induced higher fraction of early as well as late apoptosis cells. Especially, FPCC induced nearly 45 % of early apoptosis cells and more than 35 % in late apoptosis. Therefore, we propose that folate-conjugated nanoparticles might have potential applications in cervical cancer therapy.
Collapse
Affiliation(s)
- Jing Ji
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Xi'An, Jiaotong University, No. 277, Yanta Xi Road, Xian, Shanxi, 710061, China
| | - Ping Zuo
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Xi'An, Jiaotong University, No. 277, Yanta Xi Road, Xian, Shanxi, 710061, China
| | - Yue-Ling Wang
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Xi'An, Jiaotong University, No. 277, Yanta Xi Road, Xian, Shanxi, 710061, China.
| |
Collapse
|
22
|
Piña MJ, Alex SM, Arias FJ, Santos M, Rodriguez-Cabello JC, Ramesan RM, Sharma CP. Elastin-like recombinamers with acquired functionalities for gene-delivery applications. J Biomed Mater Res A 2015; 103:3166-78. [DOI: 10.1002/jbm.a.35455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Maria J. Piña
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Susan M. Alex
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Francisco J. Arias
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Mercedes Santos
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | | | - Rekha M. Ramesan
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Chandra P. Sharma
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| |
Collapse
|
23
|
Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, Jin Z, Cui S. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine 2014; 9:4609-19. [PMID: 25356070 PMCID: PMC4207079 DOI: 10.2147/ijn.s70633] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We determined the efficacy and safety of chitosan (CS)-coated poly(lactic-co-glycolic) acid
(PLGA) nanoparticles (NPs) as a delivery system for a vaccine to protect chickens against Newcastle
disease virus (NDV). The newly constructed vaccine contained DNA (the F gene) of NDV. The Newcastle
disease virus (NDV) F gene deoxyribonucleic acid (DNA) plasmid (pFDNA)-CS/PLGA-NPs were spherical
(diameter =699.1±5.21 nm [mean ± standard deviation]) and smooth,
with an encapsulation efficiency of 98.1% and a Zeta potential of +6.35 mV. An in vitro release
assay indicated that CS controlled the burst release of plasmid DNA, such that up to 67.4% of the
entire quantity of plasmid DNA was steadily released from the pFDNA-CS/PLGA-NPs. An in vitro
expression assay indicated that the expression of nanoparticles (NPs) was maintained in the NPs. In
an immunization test with specific pathogen-free chickens, the pFDNA-CS/PLGA-NPs induced stronger
cellular, humoral, and mucosal immune responses than the plasmid DNA vaccine alone. The
pFDNA-CS/PLGA-NPs did not harm 293T cells in an in vitro assay and did not harm chickens in an in
vivo assay. Overall, the results indicated that CS-coated PLGA NPs can serve as an efficient and
safe mucosal immune delivery system for NDV DNA vaccine.
Collapse
Affiliation(s)
- Kai Zhao
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Yang Zhang
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China ; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Xiaoyan Zhang
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Ci Shi
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China ; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Xin Wang
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Xiaohua Wang
- Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People's Republic of China
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| |
Collapse
|
24
|
Liang R, Dong L, Deng R, Wang J, Wang K, Sullivan M, Liu S, Wang J, Zhu J, Tao J. Surfactant-free biodegradable polymeric nanoparticles generated from self-organized precipitation route: Cellular uptake and cytotoxicity. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Cosco D, Federico C, Maiuolo J, Bulotta S, Molinaro R, Paolino D, Tassone P, Fresta M. Physicochemical features and transfection properties of chitosan/poloxamer 188/poly(D,L-lactide-co-glycolide) nanoplexes. Int J Nanomedicine 2014; 9:2359-72. [PMID: 24876772 PMCID: PMC4035313 DOI: 10.2147/ijn.s58362] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was the evaluation of the effects of two emulsifiers on the physicochemical and technological properties of low molecular weight chitosan/poly (D,L-lactide-co-glycolide) (PLGA) nanoplexes and their transfection efficiency. Nanospheres were prepared using the nanoprecipitation method of the preformed polymer. The mean diameter and surface charge of the nanospheres were investigated by photocorrelation spectroscopy. The degree of binding of the plasmid with the nanoplexes was qualitatively and quantitatively determined. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) testing was performed using HeLa, RPMI8226, and SKMM1 cell lines. Flow cytometry and confocal laser scanning microscopy were used to determine the degree of cellular transfection and internalization of the nanoplexes into cells, respectively. The nanoplexes had a positive zeta potential, and low amounts of PLGA and poloxamer 188 showed a mean colloidal size of ~200 nm with a polydispersity index of ~0.14. The nanoplexes had suitable entrapment efficiency (80%). In vitro experiments showed that the colloidal nanodevices did not induce significant cytotoxicity. The nanoplexes investigated in this study could represent efficient and useful nonviral devices for gene delivery. Use of low amounts of PLGA and poloxamer 188 enabled development of a nanosphere able to transfect cells efficiently. These nanosystems are a helpful platform for delivery of genetic material while preserving therapeutic efficacy.
Collapse
Affiliation(s)
- Donato Cosco
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Interregional Research Center for Food Safety and Health, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Cinzia Federico
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Roberto Molinaro
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Department of NanoMedicine, The Methodist Research Institute, Houston, TX, USA
| | - Donatella Paolino
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Interregional Research Center for Food Safety and Health, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Medical Oncology, Tommaso Campanella Cancer Center, Viale S Venuta, Germaneto, Italy
| | - Massimo Fresta
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy ; Interregional Research Center for Food Safety and Health, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| |
Collapse
|
26
|
Doolaanea AA, Mansor N‘I, Mohd Nor NH, Mohamed F. Cellular uptake ofNigella sativaoil-PLGA microparticle by PC-12 cell line. J Microencapsul 2014; 31:600-8. [DOI: 10.3109/02652048.2014.898709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Yu J, Xie X, Xu X, Zhang L, Zhou X, Yu H, Wu P, Wang T, Che X, Hu Z. Development of dual ligand-targeted polymeric micelles as drug carriers for cancer therapy in vitro and in vivo. J Mater Chem B 2014; 2:2114-2126. [DOI: 10.1039/c3tb21539c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Lee C, Choi JS, Kim I, Oh KT, Lee ES, Park ES, Lee KC, Youn YS. Long-acting inhalable chitosan-coated poly(lactic-co-glycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes. Int J Nanomedicine 2013; 8:2975-83. [PMID: 23976850 PMCID: PMC3746731 DOI: 10.2147/ijn.s48197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhalable glycol chitosan-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing palmitic acid-modified exendin-4 (Pal-Ex4) (chitosan Pal-Ex4 PLGA NPs) were prepared and characterized. The surface morphology, particle size, and zeta potential of chitosan Pal-Ex4 PLGA NPs were investigated, and the adsorption and cytotoxicity of chitosan Pal-Ex4 PLGA NPs were evaluated in human lung epithelial cells (A549). Finally, the lung deposition characteristics and hypoglycemia caused by chitosan Pal-Ex4 PLGA NPs were evaluated after pulmonary administration in imprinting control region (ICR) and type 2 diabetic db/db mice. Results showed that chitosan Pal-Ex4 PLGA NPs were spherical, compact and had a diameter of ~700 nm and a positive surface charge of +28.5 mV Chitosan-coated PLGA NPs were adsorbed onto A549 cells much more so than non-coated PLGA NPs. Pal-Ex4 release from chitosan-coated PLGA NPs was delayed by as much as 1.5 days as compared with chitosan-coated Ex4 PLGA NPs. In addition, chitosan-coated PLGA NPs remained in the lungs for ~72 hours after pulmonary administration, whereas most non-coated PLGA NPs were lost at 8 hours after administration. Furthermore, the hypoglycemic efficacy of inhaled chitosan Pal-Ex4 PLGA NPs was 3.1-fold greater than that of chitosan Ex4 PLGA NPs in db/db mice. The authors believe chitosan Pal-Ex4 PLGA NPs have considerable potential as a long-acting inhalation delivery system for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen X, Peng LH, Shan YH, Li N, Wei W, Yu L, Li QM, Liang WQ, Gao JQ. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int J Pharm 2013; 447:171-81. [PMID: 23500766 DOI: 10.1016/j.ijpharm.2013.02.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
This study aims to investigate the novel preparation of solid lipid nanoparticle-enriched hydrogel (SLN-gel) for the topical delivery of astragaloside IV and to determine the effects of astragaloside IV-based SLN-gel on wound healing and anti-scar formation. Solid lipid nanoparticles (SLNs) were prepared through the solvent evaporation method. The particle size, polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), drug release, and morphological properties of the SLNs were characterized. The optimized SLNs were incorporated in carbomer hydrogel to form an SLN-enriched gel (SLN-gel) carrier. The effects of astragaloside IV-enriched SLNs on wound healing were determined using the wound scratch test, and their uptake by skin cells was tested in vitro. With the rat full-skin excision model, the in vivo regulation of astragaloside IV-based SLN-gel in the wound stages of re-epithelization, angiogenesis, and extracellular matrix remodeling was investigated. The best formulation of astragaloside IV-based SLNs had high EE (93% ± 5%) and ZP (-23.6 mV ± 1.5 mV), with a PDI of 0.18 ± 0.03 and a drug loading percentage of 9%. Astragaloside IV-based SLNs and SLN-gel could release drug sustainably. Astragaloside IV-based SLNs enhanced the migration and proliferation of keratinocytes and increased drug uptake on fibroblasts in vitro (P<0.01) through the caveolae endocytosis pathway, which was inhibited by methyl-β-cyclodextrin. Astragaloside IV-based SLN-gel strengthened wound healing and inhibited scar formation in vivo by increasing wound closure rate (P<0.05) and by contributing to angiogenesis and collagen regular organization. SLN-enriched gel is a promising topical drug delivery system. Astragaloside IV-loaded SLN-enriched gel was proven as an excellent topical preparation with wound healing and anti-scar effects.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chitosan-coated PLGA nanoparticles: A sustained drug release strategy for cell cultures. Colloids Surf B Biointerfaces 2013; 103:310-7. [DOI: 10.1016/j.colsurfb.2012.10.063] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/18/2012] [Accepted: 10/20/2012] [Indexed: 01/19/2023]
|
31
|
|
32
|
|
33
|
Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int J Pharm 2012; 430:216-27. [DOI: 10.1016/j.ijpharm.2012.03.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/24/2022]
|
34
|
Tahara K, Tadokoro S, Kawashima Y, Hirashima N. Endocytosis-like uptake of surface-modified drug nanocarriers into giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7114-7118. [PMID: 22515197 DOI: 10.1021/la300902z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We had previously developed surface-modified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for use as a cellular drug delivery system. The cellular uptake of PLGA-NPs was mediated predominantly by endocytosis, and this uptake was increased by surface modifications with polymers, such as chitosan (CS) and polysorbate 80 (P80). In the present study, we prepared a cell-sized giant unilamellar vesicle (GUV) that mimics a cell membrane to investigate the interaction between cell membranes and NPs. Endocytosis-like uptake of NPs into a GUV was observed when the NPs were modified with nonionic surfactant P80 probably due to change in viscoelasticity and enhanced fusion activity of the membrane induced by P80. In contrast, unmodified NPs and those modified with CS were not internalized into a GUV. These results suggest that surface properties of PLGA-NPs are an important formulation parameter for their interaction with lipid membranes.
Collapse
Affiliation(s)
- Kohei Tahara
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | |
Collapse
|
35
|
Dong M, Mürdter TE, Philippi C, Loretz B, Schaefer UF, Lehr CM, Schwab M, Ammon-Treiber S. Pulmonary delivery and tissue distribution of aerosolized antisense 2'-O-Methyl RNA containing nanoplexes in the isolated perfused and ventilated rat lung. Eur J Pharm Biopharm 2012; 81:478-85. [PMID: 22565122 DOI: 10.1016/j.ejpb.2012.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/31/2022]
Abstract
Pulmonary delivery of drugs, particularly in the treatment of lung cancer, is an attractive strategy for future targeted therapy. In this context, inhalation of nanoplexes might offer a new mode for drug delivery in gene therapy. However, limited data are currently available demonstrating pulmonary delivery, cellular uptake as well as local tolerability in lung tissue. The aim of this study was to elucidate the pulmonary delivery, tissue distribution and local tolerability of aerosolized chitosan-coated poly(lactide-co-glycolide) based nanoplexes containing antisense 2'-O-Methyl RNA (OMR). Therefore, an aerosol of OMR-nanoplexes or OMR alone was administered intra-tracheally using the model of the isolated perfused and ventilated rat lung. Localization of OMR in rat lung tissue was examined by immunohistochemistry. Administration of the OMR-nanoplex formulation resulted in significantly higher cellular OMR uptake of the respiratory epithelium in contrast to the administration of OMR alone, indicating that drug administration via aerosolized nanoplexes is able to target lung tissue. No prominent changes in lung physiology parameters were observed following inhalation, suggesting good local tolerability of OMR-nanoplex formulation.
Collapse
Affiliation(s)
- M Dong
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tahara K, Tadokoro S, Yamamoto H, Kawashima Y, Hirashima N. The suppression of IgE-mediated histamine release from mast cells following exocytic exclusion of biodegradable polymeric nanoparticles. Biomaterials 2012; 33:343-51. [DOI: 10.1016/j.biomaterials.2011.09.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
|
37
|
Yamamoto H, Tahara K, Kawashima Y. Nanomedical system for nucleic acid drugs created with the biodegradable nanoparticle platform. J Microencapsul 2011; 29:54-62. [PMID: 22034956 DOI: 10.3109/02652048.2011.629745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanomedical applications of biodegradable poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) developed are discussed in this review. A surface-functionalized PLGA NP platform for drug delivery was established to encapsulate a number of macromolecular drugs such as peptides and nucleic acids as well as low-molecular-weight drugs by the emulsion solvent diffusion method. The interaction of PLGA NPs with cells and tissues could be controlled by changing the surface properties of NPs, suggesting their potential utility for the intracellular drug delivery of nucleic acid-based drugs. Furthermore, orally administered NF-κB decoy oligonucleotide-loaded CS-PLGA NPs are also useful in treating experimental colitis. These approaches using surface-modified PLGA NPs could be able to open new possibilities for nucleic acid-based drug delivery via noninvasive administration method.
Collapse
Affiliation(s)
- Hiromitsu Yamamoto
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya, Japan
| | | | | |
Collapse
|
38
|
Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine 2011; 6:2591-605. [PMID: 22114491 PMCID: PMC3218574 DOI: 10.2147/ijn.s24552] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines.
Collapse
Affiliation(s)
- Simona Mura
- Univ Paris-Sud, UMR 8612, Châtenay Malabry, F-92296, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y. Improvements in transfection efficiency with chitosan modified poly(DL-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method, for gene delivery. Chem Pharm Bull (Tokyo) 2011; 59:298-301. [PMID: 21372409 DOI: 10.1248/cpb.59.298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.
Collapse
Affiliation(s)
- Kohei Tahara
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Chikusa, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Tahara K, Yamamoto H, Kawashima Y. Interaction of Biodegradable Polymeric Nanospheres with Cells : the Effect of Surface Properties. ACTA ACUST UNITED AC 2011. [DOI: 10.4164/sptj.48.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Abstract
The delivery of drugs to the CNS is hampered by the existence of the blood–brain barrier (BBB). Nowadays, medicinal chemists follow defined rules for the development of drugs able to cross the BBB. At the same time, the parameters needed in order to gain valuable estimates of brain drug delivery are well defined. Despite the limits in molecular weight that allow drugs to cross the BBB, it was shown that nanotech products, in particular properly functionalized nanoparticles, spherical particles of approximately 200 nm in diameter, are able to cross the BBB after intravenous administration and act as drug carriers for CNS. Moreover, peptides as ligands for receptors present on the brain endothelium, or able to cross the BBB and to act as carriers for CNS drug delivery in the form of conjugates with drugs, have been discovered and started to be studied as targeting moieties for nanoparticulate systems. This article will discuss the results obtained so far in the field of nanoparticle drug carriers for CNS and highlight the parameters needed in order to fully characterize these hitherto largely unknown delivery systems. Even if promising results have been obtained, more studies are needed in order to fully evaluate the clinical potential of this drug-delivery system.
Collapse
|