1
|
Eskandari N, Goli R. Designing a multifunctional vaginal syringe; a vaginal syringe that acts as a cleaner, injector, and vaginal size measurer: A letter to the editor. Int J Surg Case Rep 2024; 117:109554. [PMID: 38503165 PMCID: PMC10963215 DOI: 10.1016/j.ijscr.2024.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
•Vaginal syringes play a crucial role in women's health and hygiene •This syringe can effectively clean the vaginal canal by washing away microbial secretions and menstrual fluids •Its graduated design also enables the measurement of vaginal length
Collapse
Affiliation(s)
- Nima Eskandari
- Department of Nursing, School of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Rasoul Goli
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Palanee-Phillips T, Baum MM, Moss JA, Clark MR, Nuttall J, Romano JW. Drug-releasing vaginal rings for HIV/STI and pregnancy prevention: A review of recent advances and clinical applications. Expert Opin Drug Deliv 2021; 19:47-58. [PMID: 34958283 DOI: 10.1080/17425247.2022.2020242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Adolescent girls and young women (AGYW), as well as pre- and post-menopausal women globally would benefit from expanded choice to address their sexual and reproductive health (SRH) needs related to Human Immunodeficiency Virus (HIV), sexually transmitted infections (STIs) and pregnancy prevention. Lack of adequate preventative vaccines for HIV/STIs reinforces public health prioritization for options women may use independently to mitigate risk for infectious disease and unplanned pregnancy. Drug releasing intravaginal rings (IVR) represent one such technology that has garnered attention based on the modality's success recently as a pre-exposure prophylaxis (PrEP) delivery option and its impact on reduction in HIV risk. AREAS COVERED : This article provides a synopsis of three IVR technologies in active clinical development for prevention of HIV, STI, and unintended pregnancy demonstrating advancements in terms of compatibility with a wide range of drug types with a focus on dapivirine-based silicone rings (International Partnership for Microbicides (IPM), tenofovir-based polyurethane rings (CONRAD), and pod-based rings (Oak Crest Institute of Science). EXPERT OPINION The goals of IVR research are to reduce burdens of HIV/STIs and unplanned pregnancies. Through the evolution of IVR technologies, the potential exists to trigger integration of healthcare services through formulation of products with multiple indications.
Collapse
Affiliation(s)
- Thesla Palanee-Phillips
- Faculty of Health Sciences, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Marc M Baum
- Oak Crest Institute of Science, Monrovia, CA, USA
| | - John A Moss
- Oak Crest Institute of Science, Monrovia, CA, USA
| | | | - Jeremy Nuttall
- International Partnership for Microbicides, Silver Spring, MD, USA
| | | |
Collapse
|
3
|
VanBenschoten HM, Woodrow KA. Vaginal delivery of vaccines. Adv Drug Deliv Rev 2021; 178:113956. [PMID: 34481031 PMCID: PMC8722700 DOI: 10.1016/j.addr.2021.113956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Recent estimates suggest that one in two sexually active individuals will acquire a sexually transmitted infection by age 25, an alarming statistic that amounts to over 1 million new infections per day worldwide. Vaccination against STIs is highly desirable for alleviating this global burden of disease. Vaginal immunization is a promising strategy to combat transmission via the vaginal mucosa. The vagina is typically considered a poor inductive site for common correlates of adaptive immunity. However, emerging evidence suggests that immune tolerance may be overcome by precisely engineered vaccination schemes that orchestrate cell-mediated immunity and establish tissue resident memory immune cells. In this review, we will discuss the unique immunological milieu of the vaginal mucosa and our current understanding of correlates of pathogenesis and protection for several common STIs. We then present a summary of recent vaginal vaccine studies and explore the role that mucosal adjuvants and delivery systems play in enhancing protection according to requisite features of immunity. Finally, we offer perspectives on the challenges and future directions of vaginal vaccine delivery, discussing remaining physiological barriers and innovative vaccine formulations that may overcome them.
Collapse
Affiliation(s)
- Hannah M VanBenschoten
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
4
|
Krovi SA, Johnson LM, Luecke E, Achilles SL, van der Straten A. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev 2021; 176:113849. [PMID: 34186143 DOI: 10.1016/j.addr.2021.113849] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Worldwide, women face compounding reproductive health risks, including human immunodeficiency virus (HIV), sexually-transmitted infections (STIs), and unintended pregnancy. Multipurpose prevention technologies (MPTs) offer combined protection against these overlapping risks in singular prevention products that offer potential for simplified use, lower burden, higher acceptability, and increased public health benefits. Over the past decade, substantial progress has been made in development of extended-release MPTs, which have further potential to grant sexual and reproductive health autonomy to women globally and to offer choice for women to accommodate varying needs during their reproductive lives. Here, we highlight the advances made in injectable, implant, and ring delivery forms, and the importance of incorporating end-user preferences early in the research and development of these products.
Collapse
Affiliation(s)
| | | | - Ellen Luecke
- Women's Global Health Imperative, RTI International, Berkeley, CA, USA
| | - Sharon L Achilles
- University of Pittsburgh, School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA; ASTRA Consulting, Kensington, CA, USA
| |
Collapse
|
5
|
Young IC, Benhabbour SR. Multipurpose Prevention Technologies: Oral, Parenteral, and Vaginal Dosage Forms for Prevention of HIV/STIs and Unplanned Pregnancy. Polymers (Basel) 2021; 13:2450. [PMID: 34372059 PMCID: PMC8347890 DOI: 10.3390/polym13152450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
There is a high global prevalence of HIV, sexually transmitted infections (STIs), and unplanned pregnancies. Current preventative daily oral dosing regimens can be ineffective due to low patient adherence. Sustained release delivery systems in conjunction with multipurpose prevention technologies (MPTs) can reduce high rates of HIV/STIs and unplanned pregnancies in an all-in-one efficacious, acceptable, and easily accessible technology to allow for prolonged release of antivirals and contraceptives. The concept and development of MPTs have greatly progressed over the past decade and demonstrate efficacious technologies that are user-accepted with potentially high adherence. This review gives a comprehensive overview of the latest oral, parenteral, and vaginally delivered MPTs in development as well as drug delivery formulations with the potential to advance as an MPT, and implementation studies regarding MPT user acceptability and adherence. Furthermore, there is a focus on MPT intravaginal rings emphasizing injection molding and hot-melt extrusion manufacturing limitations and emerging fabrication advancements. Lastly, formulation development considerations and limitations are discussed, such as nonhormonal contraceptive considerations, challenges with achieving a stable coformulation of multiple drugs, achieving sustained and controlled drug release, limiting drug-drug interactions, and advancing past preclinical development stages. Despite the challenges in the MPT landscape, these technologies demonstrate the potential to bridge gaps in preventative sexual and reproductive health care.
Collapse
Affiliation(s)
- Isabella C. Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Soumya Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Rafiei F, Tabesh H, Farzad S, Farzaneh F, Rezaei M, Hosseinzade F, Mottaghy K. Development of Hormonal Intravaginal Rings: Technology and Challenges. Geburtshilfe Frauenheilkd 2021; 81:789-806. [PMID: 34276064 PMCID: PMC8277443 DOI: 10.1055/a-1369-9395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Intravaginal rings (IVRs) are minimally invasive polymeric devices specifically designed to be used for the sustained and prolonged release of various type of drugs such as hormones. One of the benefits of using topical drug delivery systems (e.g., IVRs) is the fact that systemic drug delivery may cause drug resistance due to elevated drug levels. Topical drug delivery also provides higher concentrations of the drug to the target site and has fewer side effects. In addition, when a drug is administered vaginally, the hepatic first-pass effect is avoided, resulting in higher absorption. Contraception and treatments for specific diseases such as endometriosis and hormone deficiencies can be improved by the administration of hormones via an IVR. This article aims to classify and compare various designs of commercially available and non-commercial hormonal IVRs and to analyze their performance. Current challenges affecting the development of IVRs are investigated, and
proposed solutions are discussed. A comprehensive search of publications in MEDLINE/PubMed and of commercial product data of IVRs was performed, and the materials, designs, performance, and applications (e.g., contraception, endometriosis, estrogen deficiency and urogenital atrophy) of hormonal IVRs were thoroughly evaluated. Most hormonal IVRs administer female sex hormones, i.e., estrogen and progestogens. In terms of material, IVRs are divided into 3 main groups: silicone, polyurethane, and polyethylene-co-vinyl acetate IVRs. As regards their design, there are 4 major designs for IVRs which strongly affect their performance and the timing and rate of hormone release. Important challenges include reducing the burst release and maintaining the bioavailability of hormones at their site of action over a prolonged period of administration as well as lowering production costs. Hormonal IVRs are a promising method which could be used to facilitate combination therapies by
administering multiple drugs in a single IVR while eliminating the side effects of conventional drug administration methods. IVRs could considerably improve womenʼs quality of life all over the world within a short period of time.
Collapse
Affiliation(s)
- Fojan Rafiei
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Shayan Farzad
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Farah Farzaneh
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezaei
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fateme Hosseinzade
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Khosrow Mottaghy
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
8
|
Patel A, Dhande R, Thakkar H. Development of intravaginal rod insert bearing liposomal raloxifene hydrochloride and Leuprolide acetate as a potential carrier for uterine targeting. J Pharm Pharmacol 2021; 73:653-663. [PMID: 33772288 DOI: 10.1093/jpp/rgab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES This project aimed at the formulation of dual drug entrapped liposomes held as freeze-dried intravaginal rod insert (IVR), to be administered by vaginal route for uterine targeting. METHODS Liposomes were formulated by dehydration-rehydration method using 3 : 1 molar ratio of1,2-distearoyl-sn-glycero-3-phosphocholine : Cholesterol. Characterization was done for vesicle size, zeta potential, entrapment efficiency, surface morphology and % loading. KEY FINDINGS Spherical and discrete vesicles of size 354 nm were observed in transmission electron microscopy (TEM) image. The entrapment efficiency of 90.91% and 74.3% w/w was obtained for Raloxifene Hydrochloride (RLX) and Leuprolide acetate (LA) respectively. Drug release was sustained for 6 days. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed that dual drug entrapped liposomal formulation show significant cytotoxicity, as also confirmed by higher apoptosis in cell cycle analysis and apoptosis studies (FACS) analysis. Pharmacodynamic studies in New Zealand white female rabbits revealed that intravaginal administration of RLX-LA entrapped liposomal formulation shows considerable fibroid regression. CONCLUSIONS Uterine targeting of liposomal RLX-LA suggests its potential to solve the limitations of the presently available therapeutic options.
Collapse
Affiliation(s)
- Arpita Patel
- Shri G.H. Patel Pharmacy Building, Centre for Postgraduate Studies in Pharmacy, TIFAC Core in NDDS, Donor's Plaza, Fatehgunj, Vadodara, India
| | - Rahul Dhande
- Shri G.H. Patel Pharmacy Building, Centre for Postgraduate Studies in Pharmacy, TIFAC Core in NDDS, Donor's Plaza, Fatehgunj, Vadodara, India
| | - Hetal Thakkar
- Shri G.H. Patel Pharmacy Building, Centre for Postgraduate Studies in Pharmacy, TIFAC Core in NDDS, Donor's Plaza, Fatehgunj, Vadodara, India
| |
Collapse
|
9
|
Koutsamanis I, Spoerk M, Arbeiter F, Eder S, Roblegg E. Development of Porous Polyurethane Implants Manufactured via Hot-Melt Extrusion. Polymers (Basel) 2020; 12:E2950. [PMID: 33321876 PMCID: PMC7764633 DOI: 10.3390/polym12122950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Implantable drug delivery systems (IDDSs) offer good patient compliance and allow the controlled delivery of drugs over prolonged times. However, their application is limited due to the scarce material selection and the limited technological possibilities to achieve extended drug release. Porous structures are an alternative strategy that can overcome these shortcomings. The present work focuses on the development of porous IDDS based on hydrophilic (HPL) and hydrophobic (HPB) polyurethanes and chemical pore formers (PFs) manufactured by hot-melt extrusion. Different PF types and concentrations were investigated to gain a sound understanding in terms of extrudate density, porosity, compressive behavior, pore morphology and liquid uptake. Based on the rheological analyses, a stable extrusion process guaranteed porosities of up to 40% using NaHCO3 as PF. The average pore diameter was between 140 and 600 µm and was indirectly proportional to the concentration of PF. The liquid uptake of HPB was determined by the open pores, while for HPL both open and closed pores influenced the uptake. In summary, through the rational selection of the polymer type, the PF type and concentration, porous carrier systems can be produced continuously via extrusion, whose properties can be adapted to the respective application site.
Collapse
Affiliation(s)
- Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
| | - Florian Arbeiter
- Institute of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria;
| | - Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
10
|
Nováková Tkadlečková V, Pitronová V, Kubová K, Pavloková S, Elbl J, Novotný R, Vetchý D, Vysloužil J. Matrix Vaginal Rings for Female Dogs-Effect of Altering Dimensions on Mechanical Properties and Dissolution Characteristics, and In vivo Safety Study. AAPS PharmSciTech 2020; 21:230. [PMID: 32779033 DOI: 10.1208/s12249-020-01770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
The vaginal rings research is almost exclusively focused on rings for human medicine, although the dosage form offers improvement of therapeutic effect in other mammals as well. This contribution studied an effect of varying dimension parameters (diameter 20, 30 or 40 mm; height 3, 4 or 5 mm; width of annulus 5, 7.5 or 10 mm) on mechanical properties and dissolution behaviour of silicone vaginal rings with constant drug amount, intended for use in dogs. Results showed that altering dimensions influenced mechanical properties (compressive force, tensile strength and resistance of removal thread), in vitro drug release and water uptake. The removal thread resistance was increasing with increasing height and width. Compression force was higher for the rings with smaller diameter. The total drug release was increasing with decreasing height and rising diameter, surface area and water uptake during dissolution test. The initial dissolution rate was slower for the rings with higher width. As the best candidate for use in model dog subjects, the ring with 30 mm diameter, 3 mm height and 7.5 mm width was found. These drug-free vaginal rings were further tested in in vivo safety study. The results did not show any major deviation from the physiological conditions. Graphical abstract.
Collapse
|
11
|
Fischer K, Nguyen K, LiWang PJ. Griffithsin Retains Anti-HIV-1 Potency with Changes in gp120 Glycosylation and Complements Broadly Neutralizing Antibodies PGT121 and PGT126. Antimicrob Agents Chemother 2019; 64:e01084-19. [PMID: 31611356 PMCID: PMC7187567 DOI: 10.1128/aac.01084-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
Griffithsin (Grft) is an antiviral lectin that has been shown to potently inhibit HIV-1 by binding high-mannose N-linked glycosylation sites on HIV-1 gp120. A key factor for Grft potency is glycosylation at N295 of gp120, which is directly adjacent to N332, a target glycan for an entire class of broadly neutralizing antibodies (bNAbs). Here, we unify previous work on the importance of other glycans to Grft potency against HIV-1 and Grft's role in mediating the conformational change of gp120 by mutating nearly every glycosylation site in gp120. In addition to a significant loss of Grft activity by the removal of glycosylation at N295, glycan absence at N332 or N448 was found to have moderate effects on Grft potency. Interestingly, in the absence of N295, Grft effectiveness could be improved by a mutation that results in the glycan at N448 shifting to N446, indicating that the importance of individual glycans may be related to their effect on glycosylation density. Grft's ability to alter the structure of gp120, exposing the CD4 binding site, correlated with the presence of glycosylation at N295 only in clade B strains, not clade C strains. We further demonstrate that Grft can rescue the activity of the bNAbs PGT121 and PGT126 in the event of a loss or a shift of glycosylation at N332, where the bNAbs suffer a drastic loss of potency. Despite targeting the same region, Grft in combination with PGT121 and PGT126 produced additive effects. This indicates that Grft could be an important combinational therapeutic.
Collapse
Affiliation(s)
- Kathryn Fischer
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Kimberly Nguyen
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Patricia J LiWang
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| |
Collapse
|
12
|
Tayyar Y, Shiels R, Bulmer AC, Lam AK, Clarke D, Idris A, McMillan NA. Development of an intravaginal ring for the topical delivery of Aurora kinase A inhibitor, MLN8237. PLoS One 2019; 14:e0225774. [PMID: 31774882 PMCID: PMC6880999 DOI: 10.1371/journal.pone.0225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/12/2019] [Indexed: 11/27/2022] Open
Abstract
Human papilloma virus (HPV) is the main culprit in cervical cancers. Although the HPV vaccine is now available, the slow and gradual process for HPV cancers to form means little will change, even for vaccinated individuals. This warrants the development of new therapeutic strategies in both the newly diagnosed and recurrent patients. We have previously shown that Alisertib (MLN8237), an Aurora A kinase inhibitor, potently and selectively kills HPV-positive cervical cancer cells. However, Alisertib is known for its unfavorable side effects when administered systemically. A targeted delivery approach is therefore warranted. The topical delivery of drugs to the cervix for the treatment of cervical cancer is an underexplored area of research that has the potential to significantly improve therapeutic outcome. Here, we design a novel topical drug delivery system for localized delivery in the vaginal tract using intravaginal silicone rings loaded with Alisertib. We assessed the suitability of the drug for the application and delivery method and develop a high-performance liquid chromatography method, then show that the vaginal rings were effective at releasing Alisertib over an extended period of time. Furthermore, we showed that Alisertib-loaded vaginal rings did not induce overt inflammation in the mouse vaginal tract. Our work has major translational implications for the future development of vaginal ring devices for the topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaman Tayyar
- School of Medical Science, Griffith University, Southport, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
| | - Ryan Shiels
- School of Medical Science, Griffith University, Southport, Australia
| | - Andrew C. Bulmer
- School of Medical Science, Griffith University, Southport, Australia
| | - Alfred K. Lam
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
| | - Daniel Clarke
- School of Medical Science, Griffith University, Southport, Australia
| | - Adi Idris
- School of Medical Science, Griffith University, Southport, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- * E-mail:
| | - Nigel A. McMillan
- School of Medical Science, Griffith University, Southport, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
| |
Collapse
|
13
|
Tietz K, Klein S. In Vitro Methods for Evaluating Drug Release of Vaginal Ring Formulations-A Critical Review. Pharmaceutics 2019; 11:pharmaceutics11100538. [PMID: 31623277 PMCID: PMC6836189 DOI: 10.3390/pharmaceutics11100538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
The vagina is a promising site for both local and systemic drug delivery and represents an interesting administration route for compounds with poor oral bioavailability. Whereas most of the currently marketed dosage forms were designed as immediate release formulations, intravaginal rings (IVRs) offer the possibility of a controlled vaginal drug delivery over several weeks or months. For a long time, the development of IVRs was limited to steroid-releasing formulations. Recently, IVRs have witnessed a surge of new interest as promising delivery systems for microbicides. Therefore, various novel IVR designs have been introduced. To ensure that only safe and effective IVRs will be administered to patients, it is important to properly distinguish between IVRs with desired and undesired release performance. In vitro methods for evaluating drug release of IVRs that present with sufficient predictive capacity for in vivo drug release, and discriminatory power with regard to IVRs quality, are an essential tool for this purpose. The objective of the present review article is to present the current status of in vitro drug release testing of IVRs and to critically discuss current compendial and non-official in vitro drug release methods with regard to their discriminatory power and in vivo predictivity.
Collapse
Affiliation(s)
- Katharina Tietz
- Center of Drug Absorption and Transport, Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Felix-Hausdorff-Str. 3, University of Greifswald, Greifswald 17489, Germany
| | - Sandra Klein
- Center of Drug Absorption and Transport, Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Felix-Hausdorff-Str. 3, University of Greifswald, Greifswald 17489, Germany.
| |
Collapse
|
14
|
In vitro release testing methods for drug-releasing vaginal rings. J Control Release 2019; 313:54-69. [PMID: 31626862 DOI: 10.1016/j.jconrel.2019.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Drug-releasing vaginal rings are torus-shaped devices, generally fabricated from thermoplastic polymers or silicone elastomers, used to administer pharmaceutical drugs to the human vagina for periods typically ranging from three weeks to twelve months. One of the most important product performance tests for vaginal rings is the in vitro release test. Although it has been fifty years since a vaginal ring device was first described in the scientific literature, and despite seven drug-releasing vaginal rings having been approved for market, there is no universally accepted method for testing in vitro drug release, and only one non-compendial shaking incubator method (for the estradiol-releasing ring Estring®) is described in the US Food and Drug Administration's Dissolution Methods Database. Here, for the first time, we critically review the diverse range of test methods that have been described in the scientific literature for testing in vitro release of drug-releasing vaginal rings. Issues around in vitro-in vivo correlation and modelling of in vitro release data are also discussed.
Collapse
|
15
|
Tyo KM, Minooei F, Curry KC, NeCamp SM, Graves DL, Fried JR, Steinbach-Rankins JM. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics 2019; 11:E160. [PMID: 30987206 PMCID: PMC6523330 DOI: 10.3390/pharmaceutics11040160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Electrospun fibers have emerged as a relatively new delivery platform to improve active agent retention and delivery for intravaginal applications. While uniaxial fibers have been explored in a variety of applications including intravaginal delivery, the consideration of more advanced fiber architectures may offer new options to improve delivery to the female reproductive tract. In this review, we summarize the advancements of electrospun coaxial, multilayered, and nanoparticle-fiber architectures utilized in other applications and discuss how different material combinations within these architectures provide varied durations of release, here categorized as either transient (within 24 h), short-term (24 h to one week), or sustained (beyond one week). We seek to systematically relate material type and fiber architecture to active agent release kinetics. Last, we explore how lessons derived from these architectures may be applied to address the needs of future intravaginal delivery platforms for a given prophylactic or therapeutic application. The overall goal of this review is to provide a summary of different fiber architectures that have been useful for active agent delivery and to provide guidelines for the development of new formulations that exhibit release kinetics relevant to the time frames and the diversity of active agents needed in next-generation multipurpose applications.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Keegan C Curry
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Sarah M NeCamp
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Danielle L Graves
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
16
|
McBride JW, Boyd P, Dias N, Cameron D, Offord RE, Hartley O, Kett VL, Malcolm RK. Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 inhibitor 5P12-RANTES. J Control Release 2019; 298:1-11. [PMID: 30731150 PMCID: PMC6414755 DOI: 10.1016/j.jconrel.2019.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
Abstract
Antiretroviral-releasing vaginal rings are at the forefront of ongoing efforts to develop microbicide-based strategies for prevention of heterosexual transmission of the human immunodeficiency virus (HIV). However, traditional ring designs are generally only useful for vaginal administration of relatively potent, lipophilic, and small molecular weight drug molecules that have sufficient permeability in the non-biodegradable silicone elastomer or thermoplastic polymers. Here, we report a novel, easy-to-manufacture 'exposed-core' vaginal ring that provides sustained release of the protein microbicide candidate 5P12-RANTES, an experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. In vitro release, mechanical, and stability testing demonstrated the utility and practicality of this novel ring design. In a sheep pharmacokinetic model, a ring containing two ¼-length excipient-modified silicone elastomer cores - each containing lyophilised 5P12-RANTES and exposed to the external environment by two large windows - provided sustained concentrations of 5P12-RANTES in vaginal fluid and vaginal tissue between 10 and 10,000 ng/g over 28days, at least 50 and up to 50,000 times the reported in vitro IC50 value.
Collapse
Affiliation(s)
- John W McBride
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | - Robin E Offord
- Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Mintaka Foundation for Medical Research, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
17
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
18
|
Murphy DJ, Amssoms K, Pille G, Clarke A, O'Hara M, van Roey J, Malcolm RK. Sustained release of the candidate antiretroviral peptides T-1249 and JNJ54310516-AFP from a rod insert vaginal ring. Drug Deliv Transl Res 2018; 6:234-42. [PMID: 26787615 PMCID: PMC4854936 DOI: 10.1007/s13346-015-0273-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Administration of biomacromolecular drugs in effective quantities from conventional vaginal rings is hampered by poor drug permeability in the polymers from which rings are commonly constructed. Here, we report the formulation development and testing of rod insert rings for sustained release of the candidate antiretroviral peptides T-1249 and JNJ54310516-AFP (JNJ peptide), both of which have potential as HIV microbicides. Rod inserts were prepared comprising antiviral peptides T-1249 or JNJ peptide in combination with a hydrophilic excipient (sodium chloride, sodium glutamate, lactose or zinc acetate) dispersed at different loadings within a medical grade silicone elastomer. The inserts were tested for weight change and swelling when immersed in simulated vaginal fluid (SVF). Dye migration into the inserts was also assessed visually over 28 days. In vitro release of T-1249 and JNJ peptide from rings containing various insert types was tested. Weight change and degree of swelling of rods immersed in SVF was dependent on the type and concentration of excipient present. The rods displayed the following rank order in terms of weight change: sodium glutamate > zinc acetate ≈ sodium chloride > lactose. The weight change and degree of swelling of the inserts did not correlate with the level of dye uptake observed. In vitro release of T-1249 was improved through addition of lactose, sodium chloride and sodium glutamate, while release of JNJ peptide was improved through addition of sodium chloride or sodium glutamate. Sustained release of hydrophobic peptides can be achieved using a rod insert ring design formulated to include a hydrophilic excipient. Release rates were dependent upon the type of excipient used. The degree of release improvement with different inserts partially reflects their ability to imbibe surrounding fluid and swell in aqueous environments.
Collapse
Affiliation(s)
- Diarmaid J Murphy
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Katie Amssoms
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Geert Pille
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Aileen Clarke
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Marc O'Hara
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jens van Roey
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
19
|
Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration. Antimicrob Agents Chemother 2017; 61:AAC.00965-17. [PMID: 28784672 DOI: 10.1128/aac.00965-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (105 to 107 ng/ml), followed by vaginal tissue (104 to 106 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<102 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as a microbicide.
Collapse
|
20
|
Pharmacokinetics and Preliminary Safety of Pod-Intravaginal Rings Delivering the Monoclonal Antibody VRC01-N for HIV Prophylaxis in a Macaque Model. Antimicrob Agents Chemother 2017; 61:AAC.02465-16. [PMID: 28416548 DOI: 10.1128/aac.02465-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/09/2017] [Indexed: 01/02/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro, is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana-manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 102 to 103 μg g-1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation.
Collapse
|
21
|
McKay PF, Mann JFS, Pattani A, Kett V, Aldon Y, King D, Malcolm RK, Shattock RJ. Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses. J Control Release 2017; 249:74-83. [PMID: 28115243 PMCID: PMC5333785 DOI: 10.1016/j.jconrel.2017.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
The generation of effective levels of antigen-specific immunity at the mucosal sites of pathogen entry is a key goal for vaccinologists. We explored topical vaginal application as an approach to initiate local antigen-specific immunity, enhance previously existing systemic immunity or re-target responses to the mucosae. To deliver a protein vaccine formulation to the vaginal mucosal surface, we used a novel vaginal ring device comprising a silicone elastomer body into which three freeze-dried, rod-shaped, hydroxypropylmethylcellulose inserts were incorporated. Each rod contained recombinant HIV-1 CN54gp140 protein (167μg)±R848 (167μg) adjuvant. The inserts were loaded into cavities within each ring such that only the ends of the inserts were initially exposed. Sheep received a prime-boost vaccination regime comprising intramuscular injection of 100μg CN54gp140+200μg R848 followed by three successive ring applications of one week duration and separated by one month intervals. Other sheep received only the ring devices without intramuscular priming. Serum and vaginal mucosal fluids were sampled every two weeks and analysed by CN54gp140 ELISA and antigen-specific B cells were measured by flow cytometry at necropsy. Vaccine antigen-specific serum antibody responses were detected in both the intramuscularly-primed and vaginal mucosally-primed groups. Those animals that received only vaginal vaccinations had identical IgG but superior IgA responses. Analysis revealed that all animals exhibited mucosal antigen-specific IgG and IgA with the IgA responses 30-fold greater than systemic levels. Importantly, very high numbers of antigen-specific B cells were detected in local genital draining lymph nodes. We have elicited local genital antigen-specific immune responses after topical application of an adjuvanted antigen formulation within a novel vaginal ring vaccine release device. This regimen and delivery method elicited high levels of antigen-specific mucosal IgA and large numbers of local antigen-reactive B cells, both likely essential for effective mucosal protection.
Collapse
Affiliation(s)
- Paul F McKay
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK.
| | - Jamie F S Mann
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Aditya Pattani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - Deborah King
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
22
|
Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring. Eur J Pharm Biopharm 2016; 110:1-12. [PMID: 27793758 DOI: 10.1016/j.ejpb.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
Abstract
Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release.
Collapse
|
23
|
Malcolm RK, Boyd PJ, McCoy CF, Murphy DJ. Microbicide vaginal rings: Technological challenges and clinical development. Adv Drug Deliv Rev 2016; 103:33-56. [PMID: 26829289 DOI: 10.1016/j.addr.2016.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Vaginal rings (VRs) are flexible, torus-shaped, polymeric devices designed to sustain delivery of pharmaceutical drugs to the vagina for clinical benefit. Following first report in a 1970 patent application, several steroid-releasing VR products have since been marketed for use in hormone replacement therapy and contraception. Since 2002, there has been growing interest in the use of VR technology for delivery of drugs that can reduce the risk of sexual acquisition of human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Although no vaginally-administered product has yet been approved for HIV reduction/prevention, extensive research efforts are continuing and a number of VR devices offering sustained release of so-called 'HIV microbicide' compounds are currently being evaluated in late-stage clinical studies. This review article provides an overview of the published scientific literature within this important field of research, focusing primarily on articles published within peer-reviewed journal publications. Many important aspects of microbicide-releasing VR technology are discussed, with a particular emphasis on the technological, manufacturing and clinical challenges that have emerged in recent years.
Collapse
|
24
|
Kimball AB, Javorsky E, Ron ES, Crowley W, Langer R. A novel approach to administration of peptides in women: Systemic absorption of a GnRH agonist via transvaginal ring delivery system. J Control Release 2016; 233:19-28. [PMID: 27130696 DOI: 10.1016/j.jconrel.2016.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/11/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED trans-Epithelial delivery of medication across the vagina has proven successful for administration of small, lipophilic molecules such as sex steroids. However, little information is available regarding the vaginal delivery of larger and more polar molecules that currently require parenteral administration because the vaginal epithelium is perceived as a barrier to absorption of larger molecular weight (MW) molecules. Six healthy women underwent administration of 18 or 36mg of leuprolide, a GnRH agonist and a larger MW peptide, via a novel ethylene vinyl acetate (EVA) ring transvaginal drug delivery system (TVDS). Serum levels rose within 8h following insertion: low dose at 310pg/ml and high dose at 1220pg/ml, i.e. levels typically following parenteral injections of leuprolide. GnRHa biological activity was validated by secretion of gonadotropins and sex steroids. These results demonstrate that the non-keratinized vaginal epithelium permits a rapid absorption of a biologically active peptide and that there is significant potential for a novel TVDS to deliver peptides and possibly other macromolecules therapeutically. SIGNIFICANCE STATEMENT Current routes of administration of medications can include oral, subcutaneous, intravenous, intramuscular, transcutaneous, etc. Many of these approaches have limitations, including pain, poor tolerability, lack of adherence, and inadequate delivery. Peptides, in particular, cannot typically be given orally because they are broken down in the intestinal tract before they are absorbed. While the skin is an attractive way to deliver medications, its superb intrinsic barrier function often makes this route untenable at times. The vaginal epithelium, in contrast, is not keratinized and can allow absorption of other molecules. In this study, we demonstrate that a novel transvaginal drug delivery system (TVDS) is capable of delivering peptide therapeutics to women in a non-parenteral fashion as demonstrated by both blood levels and biologic effects of its delivery.
Collapse
Affiliation(s)
- A B Kimball
- Harvard Medical School, Massachusetts General Hospital, Boston, Mass, United States.
| | - E Javorsky
- Harvard Medical School, Massachusetts General Hospital, Boston, Mass, United States
| | - E S Ron
- Madash, LLC, Lexington Mass, United States
| | - W Crowley
- Harvard Medical School, Massachusetts General Hospital, Boston, Mass, United States
| | - R Langer
- Massachusetts Institute of Technology, Cambridge Mass, United States
| |
Collapse
|
25
|
Teller RS, Malaspina DC, Rastogi R, Clark JT, Szleifer I, Kiser PF. Controlling the hydration rate of a hydrophilic matrix in the core of an intravaginal ring determines antiretroviral release. J Control Release 2015; 224:176-183. [PMID: 26723526 DOI: 10.1016/j.jconrel.2015.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022]
Abstract
Intravaginal ring technology is generally limited to releasing low molecular weight species that can diffuse through the ring elastomer. To increase the diversity of drugs that can be delivered from intravaginal rings, we designed an IVR that contains a drug matrix encapsulated in the core of the IVR whereby the mechanism of drug release is uncoupled from the interaction of the drug with the ring elastomer. We call the device a flux controlled pump, and it is comprised of compressed pellets of a mixture of drug and hydroxypropyl cellulose within the hollow core of the ring. The pump orifice size and chemistry of the polymer pellets control the rate of hydration and diffusion of the drug-containing hydroxypropyl cellulose gel from the device. A mechanistic model describing the hydration and diffusion of the hydroxypropyl cellulose matrix is presented. Good agreement between the quantitative model predictions and the experimental studies of drug release was obtained. We achieved controlled release rates of multiple antiretrovirals ranging from μg/d to mg/d by altering the orifice design, drug loading, and mass of pellets loaded in the device. This device could provide an adaptable platform for the vaginal drug delivery of many molecules.
Collapse
Affiliation(s)
- Ryan S Teller
- Department of Bioengineering, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - David C Malaspina
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States; Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Rachna Rastogi
- Department of Bioengineering, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Justin T Clark
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States; Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Patrick F Kiser
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States; Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States; Department of Obstetrics and Gynecology, Northwestern University, 250 E. Superior, Suite 03-2303, Chicago, IL 60611, United States.
| |
Collapse
|
26
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 607] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
27
|
Ugaonkar SR, Wesenberg A, Wilk J, Seidor S, Mizenina O, Kizima L, Rodriguez A, Zhang S, Levendosky K, Kenney J, Aravantinou M, Derby N, Grasperge B, Gettie A, Blanchard J, Kumar N, Roberts K, Robbiani M, Fernández-Romero JA, Zydowsky TM. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy. J Control Release 2015; 213:57-68. [PMID: 26091920 DOI: 10.1016/j.jconrel.2015.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/02/2015] [Accepted: 06/14/2015] [Indexed: 12/12/2022]
Abstract
Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, NY 10065, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | | | | | | | | | | |
Collapse
|
28
|
Malcolm RK, Boyd P, McCoy CF, Murphy DJ. Beyond HIV microbicides: multipurpose prevention technology products. BJOG 2014; 121 Suppl 5:62-9. [PMID: 25335842 DOI: 10.1111/1471-0528.12852] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
Multipurpose prevention technologies (MPTs) that aim to simultaneously prevent unintended pregnancy, HIV-1 infection and other sexually transmitted infections are among the most innovative and complex products currently in development within women's sexual and reproductive health care. In this review article, MPTs are placed within the wider context of combination products, combination drug products and multi-indication products. The current MPT product landscape is mapped and assessed with reference to existing products for the corresponding single indications, before identifying the gaps in the current MPT product pipeline and highlighting priority products and challenges moving forward.
Collapse
Affiliation(s)
- R K Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
29
|
Dang NT, Sivakumaran H, Harrich D, Shaw PN, Davis-Poynter N, Coombes AG. Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route. Eur J Pharm Biopharm 2014; 88:406-14. [DOI: 10.1016/j.ejpb.2014.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
|
30
|
Gunawardana M, Baum MM, Smith TJ, Moss JA. An intravaginal ring for the sustained delivery of antibodies. J Pharm Sci 2014; 103:3611-3620. [PMID: 25231193 DOI: 10.1002/jps.24154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
Human monoclonal antibodies (mAbs) based on IgG and IgA have shown promise as topical microbicide candidates to protect women from HIV infection. Application of mAbs has been limited, however, by the inability of vaginal gels and conventional intravaginal ring (IVR) designs, the predominant vaginal product formulations, to effectively deliver biomolecules in a coitally independent fashion with retention of bioactivity. We have developed a novel pod-IVR platform that delivers ovine IgG (ov-IgG) as a model for IgG and IgA human mAbs. In vitro release of ov-IgG from the pod-IVRs was sustained for 14 days. Facile control of release rate was achieved by changing the size of delivery channels in the ring structure, and the feasibility of ov-IgG delivery in the range 0.5-30 mg day(-1) from a 10-pod IVR was demonstrated. The activity of ov-IgG in pod-IVR formulations was maintained as confirmed by ELISA binding assay. Pod-IVRs delivering ov-IgG show promise for the effective sustained topical delivery of antibody-based microbicides. This significantly broadens the range of microbicides that can be delivered in a sustained fashion from IVRs and enables a new arsenal of topical biologic microbicide candidates beyond small molecule antiretrovirals.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California
| | - Thomas J Smith
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California.
| |
Collapse
|
31
|
Panou AI, Papadokostaki KG, Sanopoulou M. Release mechanisms of semipolar solutes from poly(dimethylsiloxane) elastomers: Effect of a hydrophilic additive. J Appl Polym Sci 2014. [DOI: 10.1002/app.40782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Athanasia I. Panou
- Department of Physical Chemistry, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems; National Center for Scientific Research; “Demokritos,” 15310 Ag. Paraskevi Athens Greece
| | - Kyriaki G. Papadokostaki
- Department of Physical Chemistry, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems; National Center for Scientific Research; “Demokritos,” 15310 Ag. Paraskevi Athens Greece
| | - Merope Sanopoulou
- Department of Physical Chemistry, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems; National Center for Scientific Research; “Demokritos,” 15310 Ag. Paraskevi Athens Greece
| |
Collapse
|
32
|
Teller RS, Rastogi R, Johnson TJ, Blair MJ, Hitchcock RW, Kiser PF. Intravaginal Flux Controlled Pump for Sustained Release of Macromolecules. Pharm Res 2014; 31:2344-53. [DOI: 10.1007/s11095-014-1331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/08/2014] [Indexed: 11/28/2022]
|
33
|
The Optimization of an Intravaginal Ring Releasing Progesterone Using a Mathematical Model. Pharm Res 2013; 31:795-808. [DOI: 10.1007/s11095-013-1201-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
34
|
Malcolm RK, Fetherston SM, McCoy CF, Boyd P, Major I. Vaginal rings for delivery of HIV microbicides. Int J Womens Health 2012. [PMID: 23204872 PMCID: PMC3508658 DOI: 10.2147/ijwh.s36282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Following the successful development of long-acting steroid-releasing vaginal ring devices for the treatment of menopausal symptoms and contraception, there is now considerable interest in applying similar devices to the controlled release of microbicides against HIV. In this review article, the vaginal ring concept is first considered within the wider context of the early advances in controlled-release technology, before describing the various types of ring device available today. The remainder of the article highlights the key developments in HIV microbicide-releasing vaginal rings, with a particular focus on the dapivirine ring that is presently in late-stage clinical testing.
Collapse
Affiliation(s)
- R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | | | |
Collapse
|
35
|
Fetherston SM, Geer L, Veazey RS, Goldman L, Murphy DJ, Ketas TJ, Klasse PJ, Blois S, La Colla P, Moore JP, Malcolm RK. Partial protection against multiple RT-SHIV162P3 vaginal challenge of rhesus macaques by a silicone elastomer vaginal ring releasing the NNRTI MC1220. J Antimicrob Chemother 2012; 68:394-403. [PMID: 23109186 DOI: 10.1093/jac/dks415] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The non-nucleoside reverse transcriptase inhibitor MC1220 has potent in vitro activity against HIV type 1 (HIV-1). A liposome gel formulation of MC1220 has previously been reported to partially protect rhesus macaques against vaginal challenge with a simian HIV (SHIV). Here, we describe the pre-clinical development of an MC1220-releasing silicone elastomer vaginal ring (SEVR), including pharmacokinetic (PK) and efficacy studies in macaques. METHODS In vitro release studies were conducted on SEVRs loaded with 400 mg of MC1220, using simulated vaginal fluid (SVF, n = 4) and 1 : 1 isopropanol/water (IPA/H(2)O, n = 4) as release media. For PK evaluation, SEVRs were inserted into adult female macaques (n = 6) for 30 days. Following a 1 week washout period, fresh rings were placed in the same animals, which were then challenged vaginally with RT-SHIV162P3 once weekly for 4 weeks. RESULTS SEVRs released 1.66 and 101 mg of MC1220 into SVF and IPA/H(2)O, respectively, over 30 days, the differential reflecting the low aqueous solubility of the drug. In macaque PK studies, MC1220 was consistently detected in vaginal fluid (peak 845 ng/mL) and plasma (peak 0.91 ng/mL). Kaplan-Meier analysis over 9 weeks showed significantly lower infection rates for animals given MC1220-containing SEVRs than placebo rings (hazard ratio 0.20, P = 0.0037). CONCLUSIONS An MC1220-releasing SEVR partially protected macaques from vaginal challenge. Such ring devices are a practical method for providing sustained, coitally independent protection against vaginal exposure to HIV-1.
Collapse
|
36
|
Baum MM, Butkyavichene I, Gilman J, Kennedy S, Kopin E, Malone AM, Nguyen C, Smith TJ, Friend DR, Clark MR, Moss JA. An intravaginal ring for the simultaneous delivery of multiple drugs. J Pharm Sci 2012; 101:2833-43. [PMID: 22619076 PMCID: PMC3857731 DOI: 10.1002/jps.23208] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/04/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023]
Abstract
Intravaginal delivery of microbicide combinations is a promising approach for the prevention of sexually transmitted infections, but requires a method of providing simultaneous, independent release of multiple agents into the vaginal compartment. A novel intravaginal ring (IVR) platform has been developed for simultaneous delivery of the reverse-transcriptase inhibitor tenofovir (TFV) and the guanosine analogue antiviral acyclovir (ACV) with independent control of release rate for each drug. The IVR is based on a pod design, with up to 10 individual polymer-coated drug cores embedded in the ring releasing through preformed delivery channels. The release rate from each pod is controlled independently of the others by the drug properties, polymer coating, and size and number of delivery channels. Pseudo-zero-order in vitro release of TFV (144 ± 10 µg day) and ACV (120 ± 19 µg day⁻¹) from an IVR containing both drugs was sustained for 28 days. The mechanical properties of the pod IVR were evaluated and compared with the commercially available Estring® (Pfizer, NY, NY). The pod-IVR design enables the vaginal delivery of multiple microbicides with differing physicochemical properties, and is an attractive approach for the sustained intravaginal delivery of relatively hydrophilic drugs that are difficult to deliver using conventional matrix IVR technology.
Collapse
Affiliation(s)
- Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, 91107
| | | | - Joshua Gilman
- Auritec Pharmaceuticals, Inc., Santa Monica, California, 90401
| | - Sean Kennedy
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, 91107
| | - Etana Kopin
- Auritec Pharmaceuticals, Inc., Santa Monica, California, 90401
| | | | - Cali Nguyen
- Auritec Pharmaceuticals, Inc., Santa Monica, California, 90401
| | - Thomas J. Smith
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, 91107
- Auritec Pharmaceuticals, Inc., Santa Monica, California, 90401
- Department of Opthamology, University of Kentucky, Lexington, Kentucky, 40506
| | - David R. Friend
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, Virginia, 22209
| | - Meredith R. Clark
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, Virginia, 22209
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, 91107
| |
Collapse
|
37
|
Pattani A, Lowry D, Curran RM, McGrath S, Kett VL, Andrews GP, Malcolm RK. Characterisation of protein stability in rod-insert vaginal rings. Int J Pharm 2012; 430:89-97. [DOI: 10.1016/j.ijpharm.2012.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
38
|
Gunaseelan S, Gallay PA, Bobardt MD, Dezzutti CS, Esch T, Maskiewicz R. Sustained local delivery of structurally diverse HIV-1 microbicides released from sublimation enthalpy controlled matrices. Pharm Res 2012; 29:3156-68. [PMID: 22736232 PMCID: PMC3473190 DOI: 10.1007/s11095-012-0811-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/21/2012] [Indexed: 12/23/2022]
Abstract
PURPOSE Use of coital-dependent products to prevent HIV-1 transmission has resulted in mixed success. We hypothesize that incorporation of antiviral drug candidates into a novel controlled delivery system will prolong their activity, making their use coital independent, thus increasing their chance of prophylactic success. METHODS Tenofovir, emtricitabine, and C5A peptide HIV microbicides were mechanically incorporated into matrices comprising a series of subliming solids. Matrix sublimation rates and drug release rates were measured in three in vitro and one in vivo environments intended to model human vaginal interior. Antiviral activity studies evaluating matrix incorporated microbicides were performed using in vitro cell cultures and human ectocervical explants. RESULTS Drug release rates were identical to matrix sublimation rates, and were zero order. Differences in matrix material sublimation enthalpies determined drug release and matrix erosion rates in a thermodynamically definable manner, in vitro and in vivo. Durations of release ranging from several days to several months were readily achieved. Prolonged duration of anti HIV-1 activity was shown for matrix incorporated microbicides, using ectocervical explant and cell culture models of HIV-1 infection. CONCLUSION Subliming solid matrices show promise as a delivery system providing multi month intravaginal release of a wide range of HIV-1 microbicides.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutical Sciences, School of Pharmacy Loma Linda University, 11175 Campus Street, Chan Shun Pavilion 21018, Loma Linda, California 92350 USA
| | - Philippe A. Gallay
- Department of Immunology and Microbial Science, IMM-9 The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 USA
| | - Michael D. Bobardt
- Department of Immunology and Microbial Science, IMM-9 The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 USA
| | - Charlene S. Dezzutti
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213 USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213 USA
| | - Timothy Esch
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213 USA
| | - Richard Maskiewicz
- Department of Pharmaceutical Sciences, School of Pharmacy Loma Linda University, 11175 Campus Street, Chan Shun Pavilion 21018, Loma Linda, California 92350 USA
| |
Collapse
|
39
|
McConville C, Woolfson AD, Malcolm RK. The effect of freeze-drying parameters on the cure characteristics of freeze-dried BSA-loaded silicone elastomer. J Appl Polym Sci 2012. [DOI: 10.1002/app.38012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Friend DR. Drug delivery in multiple indication (multipurpose) prevention technologies: systems to prevent HIV-1 transmission and unintended pregnancies or HSV-2 transmission. Expert Opin Drug Deliv 2012; 9:417-27. [PMID: 22385316 DOI: 10.1517/17425247.2012.668183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The development of multiple indication (multipurpose) prevention technologies (MIPTs) is driven by overlapping relationships in the area of female reproductive health. AREAS COVERED In this review, the basis for MIPTs is detailed. The current state of the field for the use of drug delivery in novel MIPTs is covered. Of particular interest is the application of intravaginal rings (IVRs) for the delivery of two drugs simultaneously, to prevent one STI and pregnancy, or two STIs. IVRs are currently available commercially for contraception and have been developed for release of microbicides to prevent sexual transmission of HIV-1. Novel IVRs capable of releasing relatively large amounts of drugs such as tenofovir are discussed, along with those that contain independent delivery elements, such as pods, that can be used to release drugs at independent rates. The vaginal administration of macromolecules (antibodies and vaccines) is also reviewed in the context of MIPTs. EXPERT OPINION The field of MIPTs remains one of potential. There is yet to be a proven microbicide effective at preventing sexual transmission of HIV-1. Development of MIPTs in the near term will proceed under the assumption that one or more antiretroviral (ARV) drugs will eventually be proven successful. IVRs have already demonstrated success in the area of contraception. Prevention of sexual transmission of HIV-1 and herpes simplex virus-2 (HSV-2) (or suppression of recurrence) remains an attractive MIPT target. In the long term, development of MIPTs will require validation of surrogate end points, particularly for prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- David R Friend
- Eastern Virginia Medical School, CONRAD, Department of Obstetrics and Gynecology, 1911 North Fort Myer Drive, Suite 900, Arlington, VA 22209, USA.
| |
Collapse
|
41
|
pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 2011; 79:526-36. [PMID: 21736940 DOI: 10.1016/j.ejpb.2011.06.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/25/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022]
Abstract
This study is designed to test the hypothesis that tenofovir (TNF) or tenofovir disoproxil fumarate (TDF) loaded nanoparticles (NPs) prepared with a blend of poly(lactic-co-glycolic acid) (PLGA) and methacrylic acid copolymer (Eudragit® S-100, or S-100) are noncytotoxic and exhibit significant pH-responsive release of anti-HIV microbicides in the presence of human semen fluid simulant (SFS). After NPs preparation by emulsification diffusion, their size, encapsulation efficiency (EE%), drug release profile, morphology, and cytotoxicity are characterized by dynamic light scattering, spectrophotometry, transmission electron microscopy, and cellular viability assay/transepithelial electrical resistance measurement, respectively. Cellular uptake was elucidated by fluorescence spectroscopy and confocal microscopy. The NPs have an average size of 250 nm, maximal EE% of 16.1% and 37.2% for TNF and TDF, respectively. There is a 4-fold increase in the drug release rate from the 75% S-100 blend in the presence of SFS over 72 h. At a concentration up to 10mg/ml, the PLGA/S-100 NPs are noncytotoxic for 48 h to vaginal endocervical/epithelial cells and Lactobacillus crispatus. The particle uptake (∼ 50% in 24h) by these vaginal cell lines mostly occurred through caveolin-mediated pathway. These data suggest the promise of using PLGA/S-100 NPs as an alternative controlled drug delivery system in intravaginal delivery of an anti-HIV/AIDS microbicide.
Collapse
|
42
|
Intravaginal rings: controlled release systems for contraception and prevention of transmission of sexually transmitted infections. Drug Deliv Transl Res 2011; 1:185-93. [DOI: 10.1007/s13346-011-0024-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|