1
|
Alhajj N, Yahya MFZR, O'Reilly NJ, Cathcart H. Development and characterization of a spray-dried inhalable ternary combination for the treatment of Pseudomonas aeruginosa biofilm infection in cystic fibrosis. Eur J Pharm Sci 2024; 192:106654. [PMID: 38013123 DOI: 10.1016/j.ejps.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland.
| | | | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland
| |
Collapse
|
2
|
Huang Y, Tang H, Meng X, Zhao Z, Liu Y, Liu D, Chen B, Zou Z. Development of Large Hollow Particles for Pulmonary Delivery of Cyclosporine A. Pharmaceutics 2023; 15:2204. [PMID: 37765173 PMCID: PMC10537410 DOI: 10.3390/pharmaceutics15092204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this study was to prepare large hollow particles (LHPs) by spray drying for pulmonary delivery of cyclosporine A (CsA), using L-Leucine (LEU) and hydroxypropyl methylcellulose (HPMC) as excipients and ammonium bicarbonate (AB) as a porogen. The prepared LHPs were spherical particles composed of both CsA and LEU on the surface and HPMC on the inner layer. The formulation of CsA-LEU-0.8HPMC-AB as typical LHPs showed excellent in vitro aerodynamic performance with a minimum mass median aerodynamic diameter (MMAD) of 1.15 μm. The solubility of CsA-LEU-0.8HPMC-AB was about 5.5-fold higher than that of raw CsA, and the dissolution of CsA-LEU-0.8HPMC-AB suggested that the drug was released within 1 h. The cell viability of the A549 cell line showed that CsA-LEU-0.8HPMC-AB was safe for delivering CsA to the lungs. In addition, inhalation administration of CsA-LEU-0.8HPMC-AB with the Cmax and AUC0-∞ increasing by about 2-fold and 2.8-fold compared with the oral administration of Neoral® could achieve therapeutic drug concentrations with lower systemic exposure and significantly improve the in vivo bioavailability of CsA. From these findings, the LHPs, with the advantage of avoiding alveolar macrophage clearance, could be a viable choice for delivering CsA by inhalation administration relative to oral administration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Y.H.); (H.T.); (X.M.); (Z.Z.); (Y.L.); (D.L.)
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Y.H.); (H.T.); (X.M.); (Z.Z.); (Y.L.); (D.L.)
| |
Collapse
|
3
|
Soltani F, Kamali H, Akhgari A, Garekani HA, Nokhodchi A, Sadeghi F. Different trends for preparation of budesonide pellets with enhanced dissolution rate. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes (Basel) 2020. [DOI: 10.3390/pr8070788] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanoparticle-based therapeutics have been used in pulmonary formulations to enhance delivery of poorly water-soluble drugs, protect drugs against degradation and achieve modified release and drug targeting. This review focuses on the use of spray drying as a solidification technique to produce microparticles containing nanoparticles (i.e., nanoparticle (NP) agglomerates) with suitable properties as dry powders for inhalation. The review covers the general aspects of pulmonary drug delivery with emphasis on nanoparticle-based dry powders for inhalation and the principles of spray drying as a method for the conversion of nanosuspensions to microparticles. The production and therapeutic applications of the following types of NP agglomerates are presented: nanoporous microparticles, nanocrystalline agglomerates, lipid-based and polymeric formulations. The use of alternative spray-drying techniques, namely nano spray drying, and supercritical CO2-assisted spray drying is also discussed as a way to produce inhalable NP agglomerates.
Collapse
|
7
|
Roy N, Bomzan P, Nath Roy M. Probing Host-Guest inclusion complexes of Ambroxol Hydrochloride with α- & β-Cyclodextrins by physicochemical contrivance subsequently optimized by molecular modeling simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat 2020; 30:375-387. [DOI: 10.1080/13543776.2020.1741547] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Umerska A, Mugheirbi NA, Kasprzak A, Saulnier P, Tajber L. Carbohydrate-based Trojan microparticles as carriers for pulmonary delivery of lipid nanocapsules using dry powder inhalation. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gaspar MC, Pais AA, Sousa JJ, Brillaut J, Olivier JC. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 2019; 556:117-124. [DOI: 10.1016/j.ijpharm.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
|
11
|
Fragmented particles containing octreotide acetate prepared by spray drying technique for dry powder inhalation. Drug Deliv Transl Res 2018; 8:693-701. [PMID: 29600480 DOI: 10.1007/s13346-018-0515-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dry powder inhalers (DPIs) have been proposed as an alternative administration route for protein and peptide drugs. However, DPI particles are easy to aggregate due to the strong interactions between the particles, leading to poor aerosolization performance. In this study, fragmented particles containing octreotide acetate (OA) were prepared by spray drying technique for dry powder inhalation, which were expected to decrease the particle-particle interaction by reducing the contact sites. Mannitol and ammonium carbonate were used as protein stabilizer and fragment-forming agent, respectively. The obtained fragmented particles presented larger particle size, lower density, better dispersibility, and well in vitro aerodynamic behavior (emitted dose > 97%, fine particle fraction ≈ 40%). The circular dichroism spectrum results indicated that OA maintained the stability throughout the spray drying process. The relative bioavailability of dry powder inhalation (DPI) compared with subcutaneous injection of commercial product was up to 88.0%, demonstrating the feasibility of DPI for OA delivery. These results confirmed that the proposed fragmented particles had great potential for pulmonary delivery of protein and peptide drugs in a painless, rapid, and convenient manner.
Collapse
|
12
|
Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. J Control Release 2018; 283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
|
13
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
14
|
Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu CY, Pan X, Wu C. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci Rep 2017; 7:46517. [PMID: 28462948 PMCID: PMC5411962 DOI: 10.1038/srep46517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 12/01/2022] Open
Abstract
An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance.
Collapse
Affiliation(s)
- Tingting Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiuying Liao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuan-yu Wu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Zhongshan WanYuan New Drug R&D Co., Ltd., Zhongshan City 528451, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Research Center for Drug Delivery Systems, Guangzhou 510006, China
| |
Collapse
|
15
|
Kadota K, Senda A, Tagishi H, Ayorinde JO, Tozuka Y. Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs. Int J Pharm 2017; 517:8-18. [DOI: 10.1016/j.ijpharm.2016.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022]
|
16
|
Iyer R, Hsia CCW, Nguyen KT. Nano-Therapeutics for the Lung: State-of-the-Art and Future Perspectives. Curr Pharm Des 2016; 21:5233-44. [PMID: 26412358 DOI: 10.2174/1381612821666150923095742] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022]
Abstract
Inhalation of aerosolized compounds is a popular, non-invasive route for the targeted delivery of therapeutic molecules to the lung. Various types of nanoparticles have been used as carriers to facilitate drug uptake and intracellular action in order to treat lung diseases and/or to facilitate lung repair and growth. These include polymeric nanoparticles, liposomes, and dendrimers, among many others. In addition, nanoparticles are sometimes used in combination with small molecules, cytokines, growth factors, and/or pluripotent stem cells. Here we review the rationale and state-of-the-art nanotechnology for pulmonary drug delivery, with particular attention to new technological developments and approaches as well as the challenges associated with them, the emerging advances, and opportunities for future development in this field.
Collapse
Affiliation(s)
| | | | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, ERB 241, Arlington, TX 76019.
| |
Collapse
|
17
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|
18
|
Tewes F, Gobbo OL, Ehrhardt C, Healy AM. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1164-1175. [PMID: 26692360 DOI: 10.1021/acsami.5b09023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.
Collapse
Affiliation(s)
- Frederic Tewes
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin , Dublin 2, Ireland
- INSERM U 1070, Pôle Biologie-Santé, Université de Poitiers , Faculté de Médecine & Pharmacie, 1 Rue Georges Bonnet, 86022 Poitiers Cedex, France
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin , Dublin 2, Ireland
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin , Dublin 2, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin , Dublin 2, Ireland
| |
Collapse
|
19
|
Tewes F, Brillault J, Lamy B, O'Connell P, Olivier JC, Couet W, Healy AM. Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection. Mol Pharm 2015; 13:100-12. [PMID: 26641021 DOI: 10.1021/acs.molpharmaceut.5b00543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction.
Collapse
Affiliation(s)
- Frederic Tewes
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Julien Brillault
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Barbara Lamy
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Jean-Christophe Olivier
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - William Couet
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| |
Collapse
|
20
|
Dufour G, Bigazzi W, Wong N, Boschini F, de Tullio P, Piel G, Cataldo D, Evrard B. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm 2015; 495:869-78. [PMID: 26410753 DOI: 10.1016/j.ijpharm.2015.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
Abstract
To achieve an efficient lung delivery and efficacy, both active ingredient aerosolisation properties and permeability through the lung need to be optimized. To overcome these challenges, the present studies aim to develop cyclodextrin-based spray-dried microparticles containing a therapeutic corticosteroid (budesonide) that could be used to control airway inflammation associated with asthma. The complexation between budesonide and hydroxypropyl-β-cyclodextrin (HPBCD) has been investigated. Production of inhalation powders was carried out using a bi-fluid nozzle spray dryer and was optimized based on a design of experiments. Spray-dried microparticles display a specific "deflated-ball like shape" associated with an appropriate size for inhalation. Aerodynamic assessment show that the fine particle fraction was increased compared to a classical lactose-based budesonide formulation (44.05 vs 26.24%). Moreover, the budesonide permeability out of the lung was shown to be reduced in the presence of cyclodextrin complexes. The interest of this sustained budesonide release was evaluated in a mouse model of asthma. The anti-inflammatory effect was compared to a non-complexed budesonide formulation at the same concentration and attests the higher anti-inflammatory activity reach with the cyclodextrin-based formulation. This strategy could therefore be of particular interest for improving lung targeting while decreasing systemic side effects associated with high doses of corticosteroids. In conclusion, this works reports that cyclodextrins could be used in powder for inhalation, both for their abilities to improve active ingredient aerosolisation properties and further to their dissolution in lung fluid, to decrease permeability out of the lungs leading to an optimized activity profile.
Collapse
Affiliation(s)
- Gilles Dufour
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium.
| | - William Bigazzi
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Nelson Wong
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Frederic Boschini
- APTIS, Chemistry Institute B6a, University of Liege, 4000 Liège, Belgium
| | - Pascal de Tullio
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liege, 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| |
Collapse
|
21
|
Meindl C, Stranzinger S, Dzidic N, Salar-Behzadi S, Mohr S, Zimmer A, Fröhlich E. Permeation of Therapeutic Drugs in Different Formulations across the Airway Epithelium In Vitro. PLoS One 2015; 10:e0135690. [PMID: 26274590 PMCID: PMC4537286 DOI: 10.1371/journal.pone.0135690] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/26/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pulmonary drug delivery is characterized by short onset times of the effects and an increased therapeutic ratio compared to oral drug delivery. This delivery route can be used for local as well as for systemic absorption applying drugs as single substance or as a fixed dose combination. Drugs can be delivered as nebulized aerosols or as dry powders. A screening system able to mimic delivery by the different devices might help to assess the drug effect in the different formulations and to identify potential interference between drugs in fixed dose combinations. The present study evaluates manual devices used in animal studies for their suitability for cellular studies. METHODS Calu-3 cells were cultured submersed and in air-liquid interface culture and characterized regarding mucus production and transepithelial electrical resistance. The influence of pore size and material of the transwell membranes and of the duration of air-liquid interface culture was assessed. Compounds were applied in solution and as aerosols generated by MicroSprayer IA-1C Aerosolizer or by DP-4 Dry Powder Insufflator using fluorescein and rhodamine 123 as model compounds. Budesonide and formoterol, singly and in combination, served as examples for drugs relevant in pulmonary delivery. RESULTS AND CONCLUSIONS Membrane material and duration of air-liquid interface culture had no marked effect on mucus production and tightness of the cell monolayer. Co-application of budesonide and formoterol, applied in solution or as aerosol, increased permeation of formoterol across cells in air-liquid interface culture. Problems with the DP-4 Dry Powder Insufflator included compound-specific delivery rates and influence on the tightness of the cell monolayer. These problems were not encountered with the MicroSprayer IA-1C Aerosolizer. The combination of Calu-3 cells and manual aerosol generation devices appears suitable to identify interactions of drugs in fixed drug combination products on permeation.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | | | - Neira Dzidic
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | - Stefan Mohr
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Andreas Zimmer
- Department of Pharmaceutical Technology, Institute of Pharmaceutical Sciences, Karl-Franzens-University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Gaspar MC, Sousa JJS, Pais AACC, Cardoso O, Murtinho D, Serra MES, Tewes F, Olivier JC. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm 2015; 96:65-75. [PMID: 26192459 DOI: 10.1016/j.ejpb.2015.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 01/08/2023]
Abstract
The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronicPseudomonas aeruginosainfections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics,in vitroantibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.
Collapse
Affiliation(s)
- Marisa C Gaspar
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal; Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João J S Sousa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal; Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | - Olga Cardoso
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Dina Murtinho
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M Elisa S Serra
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Frédéric Tewes
- INSERM, U 1070, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; University of Poitiers, Faculty of Medicine and Pharmacy, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Jean-Christophe Olivier
- INSERM, U 1070, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; University of Poitiers, Faculty of Medicine and Pharmacy, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| |
Collapse
|
23
|
Lee SH, Teo J, Heng D, Zhao Y, Ng WK, Chan HK, Tan LT, Tan RB. A novel inhaled multi-pronged attack against respiratory bacteria. Eur J Pharm Sci 2015; 70:37-44. [DOI: 10.1016/j.ejps.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/26/2014] [Accepted: 01/10/2015] [Indexed: 01/01/2023]
|
24
|
Haghi M, Saadat A, Zhu B, Colombo G, King G, Young PM, Traini D. Immunomodulatory Effects of a Low-Dose Clarithromycin-Based Macrolide Solution Pressurised Metered Dose Inhaler. Pharm Res 2014; 32:2144-53. [DOI: 10.1007/s11095-014-1605-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 02/02/2023]
|
25
|
Rubin BK, Williams RW. Emerging aerosol drug delivery strategies: from bench to clinic. Adv Drug Deliv Rev 2014; 75:141-8. [PMID: 24993613 DOI: 10.1016/j.addr.2014.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Patients with tracheostomies, those requiring mechanical ventilation, and those too small or compromised for conventional devices, are realizing the benefits of increasingly sophisticated aerosol delivery systems. New medicines and novel aerosol formulations, have enhanced our ability to treat lung disease, and are opening the doors for therapy to treat diseases like diabetes, pulmonary hypertension, and cancer. Progress in the aerosol delivery of drugs has been spurred by the significant benefits, including ease of use, patient comfort, greater selectivity of effect, and the potential to decrease side effects.
Collapse
|
26
|
Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev 2014; 75:32-52. [PMID: 24735676 DOI: 10.1016/j.addr.2014.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
Dry powder inhaler (DPI) products have traditionally comprised a simple formulation of micronised drug mixed with a carrier excipient, typically lactose monohydrate. The presence of the carrier is aimed at overcoming issues of poor flowability and dispersibility, associated with the cohesive nature of small, micronised active pharmaceutical ingredient (API) particles. Both the powder blend and the DPI device must be carefully designed so as to ensure detachment of the micronised drug from the carrier excipient on inhalation. Over the last two decades there has been a significant body of research undertaken on the design of carrier-free formulations for DPI products. Many of these formulations are based on sophisticated particle engineering techniques; a common aim in formulation design of carrier-free products being to reduce the intrinsic cohesion of the particles, while maximising dispersion and delivery from the inhaler. In tandem with the development of alternative formulations has been the development of devices designed to ensure the efficient delivery and dispersion of carrier-free powder on inhalation. In this review we examine approaches to both the powder formulation and inhaler design for carrier-free DPI products.
Collapse
|
27
|
Tewes F, Ehrhardt C, Healy AM. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung. Eur J Pharm Biopharm 2013; 86:98-104. [PMID: 24055690 DOI: 10.1016/j.ejpb.2013.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/19/2013] [Accepted: 09/07/2013] [Indexed: 12/29/2022]
Abstract
Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci.
Collapse
Affiliation(s)
- Frederic Tewes
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin, Ireland; INSERM U-1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers, Poitiers Cedex, France
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin, Ireland.
| |
Collapse
|
28
|
Bianco S, Tewes F, Tajber L, Caron V, Corrigan OI, Healy AM. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. Int J Pharm 2013; 456:143-52. [PMID: 23948137 DOI: 10.1016/j.ijpharm.2013.07.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Developing amorphous pharmaceuticals can be desirable due to advantageous biopharmaceutical properties. Low glass transition temperature (Tg) amorphous drugs can be protected from crystallisation by mixing with high Tg excipients, such as polymers, or with salt forms. However, both polymers and salts can enhance the water uptake. The aim of this study was to formulate physico-chemically stable amorphous materials, by co-processing different proportions of sulfathiazole and its sodium salt to produce an optimum ratio, characterised by the best physical stability and lowest hygroscopicity. Both sulfathiazole and salt amorphised upon spray drying. At room temperature, sulfathiazole crystallised within 1h at <5% relative humidity while the salt deliquesced when exposed to ambient humidity conditions. In the case of composite systems, FTIR spectroscopy, thermal and surface analysis suggested interactions with an acid:salt stoichiometry of 1:2. Increasing proportions of salt raised the Tg, enhancing the storage stability, however this was opposed by an enhanced hygroscopicity. The water uptake mechanism within the different amorphous systems, analysed by fitting the water sorption isotherms with the Young and Nelson equation, was dependent on the ratio employed, with the salt and the acid facilitating absorption and adsorption, respectively. Tuning the properties of amorphous salt/acid composites by optimising the ratio appears potentially promising to improve the physical stability of amorphous formulations.
Collapse
Affiliation(s)
- Stefano Bianco
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|