1
|
Arriaga MA, Amieva JA, Quintanilla J, Jimenez A, Ledezma J, Lopez S, Martirosyan KS, Chew SA. The application of electrosprayed minocycline-loaded PLGA microparticles for the treatment of glioblastoma. Biotechnol Bioeng 2023; 120:3409-3422. [PMID: 37605630 PMCID: PMC10592149 DOI: 10.1002/bit.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.
Collapse
Affiliation(s)
- Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Juan A. Amieva
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Jaqueline Quintanilla
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Angela Jimenez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Julio Ledezma
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Silverio Lopez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Karen S. Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| |
Collapse
|
2
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
3
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
4
|
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R, Lenders V, Manshian BB, Hua D, Soenen SJ, Huang C. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci 2022; 299:102568. [PMID: 34896747 DOI: 10.1016/j.cis.2021.102568] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.
Collapse
|
5
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Soeta H, Fujisawa S, Saito T, Isogai A. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites. ACS OMEGA 2020; 5:23755-23761. [PMID: 32984694 PMCID: PMC7513333 DOI: 10.1021/acsomega.0c02772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/26/2020] [Indexed: 06/02/2023]
Abstract
The miscibility at the interphase of polymer-grafted nanocellulose/cellulose triacetate (CTA) composite films was tailored using different casting solvents. The polymer-grafted cellulose nanofibrils were prepared by modifying surfaces of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized nanocellulose with amine-terminated poly(ethylene glycol) (PEG). The PEG-grafted nanocelluloses were individually dispersed in dichloromethane, 1,4-dioxane, and N,N-dimethylacetamide. The PEG-grafted nanocellulose/CTA composite films were prepared by mixing the nanocellulose dispersion and CTA solution and subsequent casting-drying. The miscibility of PEG and CTA at the interphase of the composite was controlled by controlling the solvent, which was confirmed by dynamic mechanical analysis. All the composite films showed high optical transparency. However, the mechanical properties of the composites differed because of the difference in the PEG/CTA interfacial miscibility. The composite films with better PEG/CTA interfacial miscibility showed higher Young's modulus, strength, and toughness. This interfacial design technique paves the way to exploiting the reinforcing potential of highly transparent and hydrophobic surface-grafted nanocellulose/polymer composite materials.
Collapse
Affiliation(s)
- Hiroto Soeta
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan
| | - Shuji Fujisawa
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan
| | - Tsuguyuki Saito
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan
| | - Akira Isogai
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan
| |
Collapse
|
7
|
Vigata M, Meinert C, Pahoff S, Bock N, Hutmacher DW. Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel. Polymers (Basel) 2020; 12:E501. [PMID: 32102478 PMCID: PMC7077643 DOI: 10.3390/polym12020501] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are excellent candidates for the sustained local delivery of anticancer drugs, as they possess tunable physicochemical characteristics that enable to control drug release kinetics and potentially tackle the problem of systemic side effects in traditional chemotherapeutic delivery. Yet, current systems often involve complicated manufacturing or covalent bonding processes that are not compatible with regulatory or market reality. Here, we developed a novel gelatin methacryloyl (GelMA)-based drug delivery system (GelMA-DDS) for the sustained local delivery of paclitaxel-based Abraxane®, for the prevention of local breast cancer recurrence following mastectomy. GelMA-DDS readily encapsulated Abraxane® with a maximum of 96% encapsulation efficiency. The mechanical properties of the hydrogel system were not affected by drug loading. Tuning of the physical properties, by varying GelMA concentration, allowed tailoring of GelMA-DDS mesh size, where decreasing the GelMA concentration provided overall more sustained cumulative release (significant differences between 5%, 10%, and 15%) with a maximum of 75% over three months of release, identified to be released by diffusion. Additionally, enzymatic degradation, which more readily mimics the in vivo situation, followed a near zero-order rate, with a total release of the cargo at various rates (2-14 h) depending on GelMA concentration. Finally, the results demonstrated that Abraxane® delivery from the hydrogel system led to a dose-dependent reduction of viability, metabolic activity, and live-cell density of triple-negative breast cancer cells in vitro. The GelMA-DDS provides a novel and simple approach for the sustained local administration of anti-cancer drugs for breast cancer recurrence.
Collapse
Affiliation(s)
- Margaux Vigata
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Stephen Pahoff
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
8
|
Effect of microsphere size on the drug release and experimental characterization of an electrospun naringin‐loaded microsphere/sucrose acetate isobutyrate (SAIB) depot. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Morais AÍS, Vieira EG, Afewerki S, Sousa RB, Honorio LMC, Cambrussi ANCO, Santos JA, Bezerra RDS, Furtini JAO, Silva-Filho EC, Webster TJ, Lobo AO. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. J Funct Biomater 2020; 11:jfb11010004. [PMID: 31952157 PMCID: PMC7151563 DOI: 10.3390/jfb11010004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems.
Collapse
Affiliation(s)
- Alan Í. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Ewerton G. Vieira
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Cambridge, MA 02139, USA;
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA 02139, USA
| | - Ricardo B. Sousa
- Federal Institute of Education, Science and Technology of Tocantins, Dianápolis Campus, IFTO, Dianápolis 77300-000, Tocantins, Brazil;
| | - Luzia M. C. Honorio
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Anallyne N. C. O. Cambrussi
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Jailson A. Santos
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Josy A. O. Furtini
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
- Correspondence: ; Tel.: +55-86-3237-1057
| |
Collapse
|
10
|
Chagas JO, Gomes JM, Cunha ICDM, de Melo NFS, Fraceto LF, da Silva GA, Lobo FA. Polymeric microparticles for modified release of NPK in agricultural applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:2041-2062. [PMID: 31872975 DOI: 10.1002/jbm.b.34544] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-β1) over mesenchymal stem cells have previously been verified. In this study, silk fibroin (SF) and of poly(ethylene glycol) dimethacrylate (PEGDMA) were used to provide a versatile platform for preparing hydrogels with tunable mechanical, swelling and degradation properties through physical and chemical crosslinking as a microenvironment for chondrogenic differentiation in the presence of bFGF and TGF-β1 releasing nanoparticles (NPs) for the first time. Scaffolds with compressive moduli ranging from 95.70 ± 17.82 to 338.05 ± 38.24 kPa were obtained by changing both concentration PEGDMA and volume ratio of PEGDMA with 8% SF. Highest cell viability was observed in PEGDMA 10%-SF 8% (1:1) [PEG10-SF8(1:1)] hydrogel group. Release of bFGF and TGF-β1 within PEG10-SF8(1:1) hydrogels resulted in higher DNA and glycosaminoglycans amounts indicating synergistic effect of dual release over proliferation and chondrogenic differentiation of dental pulp stem cells in hydrogels, respectively. Our results suggested that simultaneous delivery of bFGF and TGF-β1 through utilization of PLGA NPs within PEG10-SF8(1:1) hydrogel provided a novel and versatile means for articular cartilage regeneration as they allow for dosage- and site-specific multiple growth factor delivery.
Collapse
Affiliation(s)
| | - Dilek Keskin
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN), Middle East Technical University, Ankara, Turkey.,Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Erhan Bat
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nihal E Vrana
- Inserm UMR 1121, Strasbourg, France.,SPARTHA Medical, Strasbourg, France
| | - Aysen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN), Middle East Technical University, Ankara, Turkey.,Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
12
|
Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharm 2019; 17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poulomi Polley
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Shivam Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Remya V.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|
13
|
Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Lee K, Lee KI, Jeon SY, Kim S. Preparation of monodisperse charged droplets via electrohydrodynamic device for the removal of fine dust particles smaller than 10 μm. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2018.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Stubelius A, Sheng W, Lee S, Olejniczak J, Guma M, Almutairi A. Disease-Triggered Drug Release Effectively Prevents Acute Inflammatory Flare-Ups, Achieving Reduced Dosing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800703. [PMID: 30009516 PMCID: PMC6165597 DOI: 10.1002/smll.201800703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/01/2018] [Indexed: 06/08/2023]
Abstract
For conditions with inflammatory flare-ups, fast drug-release from a depot is crucial to reduce cell infiltration and prevent long-term tissue destruction. While this concept has been explored for chronic diseases, preventing acute inflammatory flares has not been explored. To address this issue, a preventative inflammation-sensitive system is developed and applied to acute gout, a condition where millions of inflammatory cells are recruited rapidly, causing excruciating and debilitating pain. Rapid drug release is first demonstrated from a pH-responsive acetalated dextran particle loaded with dexamethasone (AcDex-DXM), reducing proinflammatory cytokines in vitro as efficiently as free drug. Then, using the air pouch model of gout, mice are pretreated 24 h before inducing inflammation. AcDex-DXM reduces overall cell infiltration with decreased neutrophils, increases monocytes, and diminishes cytokines and chemokines. In a more extended prophylaxis model, murine joints are pretreated eight days before initiating inflammation. After quantifying cell infiltration, only AcDex-DXM reduces the overall joint inflammation, where neither free drug nor a conventional drug-depot achieves adequate anti-inflammatory effects. Here, the superior efficacy of disease-triggered drug-delivery to prevent acute inflammation is demonstrated over free drug and slow-release depots. This approach and results promise exciting treatment opportunities for multiple inflammatory conditions suffering from acute flares.
Collapse
Affiliation(s)
- Alexandra Stubelius
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wangzhong Sheng
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sangeun Lee
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Monica Guma
- School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adah Almutairi
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Wang P, Li Y, Jiang M. Effects of the multilayer structures on Exenatide release and bioactivity in microsphere/thermosensitive hydrogel system. Colloids Surf B Biointerfaces 2018; 171:85-93. [PMID: 30015142 DOI: 10.1016/j.colsurfb.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Traditional polypeptide-loaded PLGA microspheres (PM) using emulsion electrospray techniques often exhibit unsteady release and limited bioactivity. To solve these two problems, an Exenatide (EXT)-loaded multilayer system composed ofPM and thermosensitive hydrogel was prepared by the emulsion electrospray technique in this study. Hydrogel mixture were loaded in PLGA microspheres as Depot-hydrogel to prepare Gel/PM. The PM/Gel and Gel/PM/Gel systems were obtained by dispersion of PM and Gel/PM into hydrogel mixture, respectively. EXT in Gel/PM/Gel showed a constantly in vitro release for 30 days, which was significantly enhanced in comparison of those in the PM/Gel and the Gel/PM. PM/Gel and Gel/PM/Gel showed diminished burst release and no platform period compared with PM and Gel/PM. And these could be because the introduced Matrix-hydrogel outside, as a buffer layer, inhibited burst releases and exhibited a sustained manner. The inner Depot-hydrogelstructure slowed the PLGA degradation rate and drug release rate. As well, more than 15-day blood glucose levels in KKAy mice were greatly maintained at 7.50-9.50 mmol/L after a single subcutaneous injection of Gel/PM/Gel (4.95 μg/kg). Spatial stability and further bioactivity of released EXT were well protected by EXT-hydrogel complexes, and undesirable uptake of EXT and microspheres via phagocytes were also decreased by PEG shell. Thus, the long-acting microspheres/hydrogel multilayer system prepared by emulsion electrospray technique showed promising potentials for loading hydrophilic polypeptides and proteins.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of the First Clinical Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yue Li
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Mingyan Jiang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
17
|
Electrospraying: a Novel Technique for Efficient Coating of Foods. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Pharmaceutical Applications of Electrospraying. J Pharm Sci 2016; 105:2601-2620. [DOI: 10.1016/j.xphs.2016.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/01/2023]
|
19
|
Mukhija K, Singhal K, Angmo S, Yadav K, Yadav H, Sandhir R, Singhal NK. Potential of Alginate Encapsulated Ferric Saccharate Microemulsions to Ameliorate Iron Deficiency in Mice. Biol Trace Elem Res 2016; 172:179-192. [PMID: 26637994 DOI: 10.1007/s12011-015-0564-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
Iron deficiency is one of the most prominent mineral deficiencies around the world, which especially affects large population of women and children. Development of new technologies to combat iron deficiency is on high demand. Therefore, we developed alginate microcapsule with encapsulated iron that had better oral iron bioavailability. Microcapsules containing iron with varying ratios of sodium alginate ferric(III)-saccharide were prepared using emulsification method. In vitro studies with Caco-2 cells suggested that newly synthesized microemulsions had better iron bioavailability as compared to commercially available iron dextran formulations. Ferrozine in vitro assay showed that alginate-encapsulated ferric galactose microemulsion (AFGM) had highest iron bioavailability in comparison to other four ferric saccharate microemulsions, namely AFGlM, AFMM, AFSM, and AFFM synthesized in our laboratory. Mice studies also suggested that AFGM showed higher iron absorption as indicated by increased serum iron, hemoglobin, and other hematopoietic measures with almost no toxicity at tested doses. Development of iron-loaded microemulsions leads to higher bioavailability of iron and can provide alternative strategies to treat iron deficiency.
Collapse
Affiliation(s)
- Kimmi Mukhija
- Department of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Kirti Singhal
- Department of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Stanzin Angmo
- National Agri Food Biotechnology Institute, Mohali, Punjab, India
| | - Kamalendra Yadav
- National Agri Food Biotechnology Institute, Mohali, Punjab, India
| | - Hariom Yadav
- National Agri Food Biotechnology Institute, Mohali, Punjab, India
- Present Address: National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | | |
Collapse
|
20
|
Guarino V, Ambrosio L. Electrofluidodynamics: exploring a new toolbox to design biomaterials for tissue regeneration and degeneration. Nanomedicine (Lond) 2016; 11:1515-8. [DOI: 10.2217/nnm-2016-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vincenzo Guarino
- Institute for Polymers, Composites & Biomaterials, National Research Council of Italy, V.le Kennedy 54, 80125, Naples, Italy
| | - Luigi Ambrosio
- Department of Chemical Sciences & Materials Technology, National Research Council of Italy, P.le A. Moro, 7, 00185, Rome, Italy
| |
Collapse
|
21
|
Bock N, Dargaville TR, Kirby GTS, Hutmacher DW, Woodruff MA. Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Eng Part C Methods 2016; 22:142-154. [PMID: 26654547 PMCID: PMC4744875 DOI: 10.1089/ten.tec.2015.0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Collapse
Affiliation(s)
- Nathalie Bock
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Tim R. Dargaville
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Giles T. S. Kirby
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Dietmar W. Hutmacher
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Maria A. Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| |
Collapse
|
22
|
Chen J, Ge J, Guo B, Gao K, Ma PX. Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering. J Mater Chem B 2016; 4:2477-2485. [DOI: 10.1039/c5tb02703a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conveniently fabricated electroactive nanofibrous composite scaffold serves as a sustained drug release system and promotes myoblast differentiation.
Collapse
Affiliation(s)
- Jing Chen
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Xi'an Modern Chemistry Research Institute
| | - Juan Ge
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Gao
- State Key Laboratory for Manufacturing Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- China
- Department of Biomedical Engineering
| |
Collapse
|
23
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
24
|
Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:66-73. [DOI: 10.1016/j.msec.2015.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
|
25
|
Haigh JN, Chuang YM, Farrugia B, Hoogenboom R, Dalton PD, Dargaville TR. Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. Macromol Rapid Commun 2015; 37:93-99. [DOI: 10.1002/marc.201500495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/11/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jodie N. Haigh
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| | - Ya-mi Chuang
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| | - Brooke Farrugia
- Graduate School of Biomedical Engineering; Faculty of Engineering; University of New South Wales; Sydney 2052 Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | - Paul D. Dalton
- Department for Functional Materials in Medicine and Dentistry; Universität Würzburg; Pleicherwall 2 D97070 Germany
| | - Tim R. Dargaville
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| |
Collapse
|
26
|
Guarino V, Altobelli R, Cirillo V, Cummaro A, Ambrosio L. Additive electrospraying: a route to process electrospun scaffolds for controlled molecular release. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3588] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Rosaria Altobelli
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Valentina Cirillo
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Annunziata Cummaro
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials; Department of Chemical Science and Materials Technology, National Research Council of Italy; V.le Kennedy 54, Mostra D'Oltremare, Pad.20 80125 Naples Italy
- Department of Chemical Sciences and Materials Technology; National Research Council of Italy; 80125 Naples Italy
| |
Collapse
|
27
|
Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm 2015; 480:27-36. [PMID: 25578370 DOI: 10.1016/j.ijpharm.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 01/14/2023]
Abstract
Low drug loading, burst effect during release and drug inactivation account for the main drawbacks of protein microencapsulation in poly(d,l-lactic-co-glycolic) acid (PLGA) matrix by the water-in oil-in water (W/O/W) solvent evaporation method. Thus, the current study was set to invest the critical attributes of formulation and of elaboration process which determine protein loading into microparticles as well as its further release, using albumin as protein model. NaCl concentration in the external aqueous phase, poly(vinyl alcohol) (PVA) concentration and mostly viscosity of both the internal aqueous phase and the organic phase were critical attributes for improving drug loading, with polymer molecular weight and hydrophobicity likewise directly related to albumin loading. In such a way, when using 0.5% PVA as internal aqueous phase the highest albumin loading was achieved. Optimized microparticles exhibited a sustained in vitro release of albumin over 130 days. The influence of the microencapsulation process on albumin stability and biological activity was evaluated by carrying out cell proliferation assays on PC12 cells with albumin released from microparticles. Such assay demonstrated that the microencapsulation procedure optimized in this study did not affect the biological stability of the microencapsulated protein.
Collapse
|
28
|
Zhang C, Chang MW, Ahmad Z, Hu W, Zhao D, Li JS. Stable single device multi-pore electrospraying of polymeric microparticles via controlled electrostatic interactions. RSC Adv 2015. [DOI: 10.1039/c5ra18482g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel flute-like multi-pore electrospray emitter was designed and manufactured to enable economical scale-up smooth spherical microparticles. The effect of processing parameters and device configuration on particle sizes is described.
Collapse
Affiliation(s)
- Chunchen Zhang
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Ming-Wei Chang
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Zeeshan Ahmad
- Leicester School of Pharmacy
- De Montfort, University
- Leicester
- UK
| | - Weiwen Hu
- College of Electrical Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Ding Zhao
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Jing-Song Li
- College of Biomedical Engineering and Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
29
|
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014; 13:655-72. [PMID: 25103255 PMCID: PMC4455970 DOI: 10.1038/nrd4363] [Citation(s) in RCA: 1130] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies--such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs--and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.
Collapse
Affiliation(s)
- Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 92106, USA
| | - Paul A Burke
- Burke Bioventures LLC, 277 Broadway, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|