1
|
Ashique S, Kumar P, Taj T, Debnath B, Mukherjee S, Patel A, Sridhar SB, Panigrahy UP, Poonia P, Selim S, Hussain MS. Nanotechnology: A State of the Art for the Management of Ocular Disorders—A Roadmap. BIONANOSCIENCE 2025; 15:285. [DOI: 10.1007/s12668-025-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
|
2
|
Huang J, Yuan S, Mao J, Pan K, Liu L, Rupenthal ID, Long Q, He L, Li Q, Guo L, Bei S, Huang T, Teng X, Yu X, Hou D. Design and delivery effect of prolonged-retention dexamethasone and tacrolimus microcrystals eye drops. Int J Pharm 2025; 674:125518. [PMID: 40139447 DOI: 10.1016/j.ijpharm.2025.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/02/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The improvement of drug solubility is essential for enhancing drug absorption of eye drops, particularly for poorly soluble drugs. In this study, drug crystallization techniques were utilized to synthesize dexamethasone microcrystals (DES MCs) and tacrolimus microcrystals (TAM MCs). To further enhance the retention of the MCs, DES MCs@(PEI/HA)3 and TAM MCs@(PEI/HA)3 were prepared by the alternate deposition of polyethyleneimine (PEI) and hyaluronic acid (HA) on the surface of the MCs through electrostatic adsorption. The sustained release effect of TAM MCs@(PEI/HA)3, resulting from enhanced solubility through micro-crystallization, was confirmed via solubility measurements and in vitro release studies. Similarly, DES MCs@(PEI/HA)3 exhibited comparable sustained release properties. Subsequently, the hydrophobicity, safety, and efficacy of DES MCs@(PEI/HA)3 and TAM MCs@(PEI/HA)3 were investigated through the in vitro and in vivo experiments. Notably, TAM MCs@(PEI/HA)3 demonstrated superior efficacy over commercially available TALYMUS®, enabling a once-daily dosing regimen. In conclusion, microcrystal preparation exhibited a more significant impact on the delivery of tacrolimus compared to dexamethasone. The TAM MCs@(PEI/HA)3 microcrystals suspension eye drops prepared using the layer-by-layer self-assembly technique, offer a promising strategy for enhancing the solubility of poorly soluble drugs and ocular drug delivery.
Collapse
Affiliation(s)
- Ji Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siying Yuan
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinlan Mao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kangyiran Pan
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Liu
- Guangzhou Huangpu District New Drug Application Service Center, Guangzhou 510663, PR China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin He
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Qinyu Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lirong Guo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Suling Bei
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tianying Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xifeng Teng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiao Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Menezes Ferreira A, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa
dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 PMCID: PMC11815637 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
4
|
Baghban R, Namvar E, Attar A, Mortazavi M. Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy. Biomed Pharmacother 2025; 183:117786. [PMID: 39753094 DOI: 10.1016/j.biopha.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/08/2025] Open
Abstract
The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects. This review highlights the progress, challenges, and opportunities in developing effective diagnostics and therapeutics for DR. Additionally, it explores innovative engineering techniques that leverage our growing understanding of nano-bio interactions to create more potent nanotherapeutics for patients.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Namvar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
5
|
Liu J, Zhang F, Shi X. The role of metal nanocarriers, liposomes and chitosan-based nanoparticles in diabetic retinopathy treatment: A review study. Int J Biol Macromol 2025; 291:139017. [PMID: 39708854 DOI: 10.1016/j.ijbiomac.2024.139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Diabetic Retinopathy (DR) is a significant and progressive eye complication associated with diabetes mellitus, leading to potential vision loss. The pathophysiology of DR involves complex neurovascular changes due to prolonged hyperglycemia, resulting in microangiopathy and neurodegeneration. Current treatment modalities come with limitations such as low bioavailability of therapeutic agents, risk of side effects, and surgical complications. Consequently, the prevention and management of DR, particularly in its advanced stages, present ongoing challenges. This review investigates recent advancements in nanotechnology as a novel approach to enhance the treatment of DR. A comprehensive literature review of recent studies focusing on nanocarriers for drug delivery in DR treatment and an analysis of their efficacy compared to traditional methods was conducted for this study. The findings indicate that nanotechnology can significantly enhance the bioavailability of therapeutic agents while minimizing systemic exposure and associated side effects. The novelty of this study lies in its focus on the intersection of nanotechnology and ophthalmology, exploring innovative solutions that extend beyond existing literature on DR treatments. By highlighting recent advancements in this field, the study paves the way for future research aimed at developing more effective therapeutic strategies for managing DR.
Collapse
Affiliation(s)
- Junling Liu
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| | - Feng Zhang
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China.
| | - Xiaolong Shi
- Linqu Zhengda Guangming Eye Hospital, Zhengda Guangming Eye Group, Weifang 262600, Shandong, China
| |
Collapse
|
6
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
7
|
Toumasis P, Vrioni G, Gardeli I, Michelaki A, Exindari M, Orfanidou M. Macrophomina phaseolina: A Phytopathogen Associated with Human Ocular Infections-A Case Report of Endophthalmitis and Systematic Review of Human Infections. J Clin Med 2025; 14:430. [PMID: 39860436 PMCID: PMC11765806 DOI: 10.3390/jcm14020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Macrophomina phaseolina is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. Methods: We reported the first case of endophthalmitis due to M. phaseolina, describing microbiological diagnostic approaches. Also, we performed a systematic review of human infections by this plant pathogen in literature. We searched PubMed, Scopus, and Web of Science databases from inception to 31 December 2024. Results: Our case involved a male patient who presented with photophobia and pain in his right eye. His recent medical history revealed a superficial corneal injury caused by a metal burr three months prior, managed unsuccessfully by topical treatment and subsequent conjunctival flap surgery two months later. Ophthalmological and microbiological investigations, including microscopic examination, cultures, and DNA sequencing of ocular specimens, revealed M. phaseolina endophthalmitis. Despite intravenous and intravitreal antifungal therapy, the patient's condition continued to worsen, eventually leading to enucleation. Regarding the literature review, we identified 12 additional cases of M. phaseolina human infections previously reported in literature. Overall, M. phaseolina was primarily associated with ocular infections (76.9% of cases), followed by skin infections and combined skin-joint infections. The majority of patients with M. phaseolina infection (63.6%) had no known immunosuppressive factors. Clinical outcomes were unfavorable in 46.15% of cases. Conclusions: M. phaseolina is an emerging cause of human infections, even in immunocompetent hosts, with a predilection for ocular infections. Further research is warranted to elucidate the pathogenesis of fungal infections caused by plant pathogens in humans.
Collapse
Affiliation(s)
- Panagiotis Toumasis
- Postgraduate Master Program “Ocular Surgery”, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Gardeli
- Department of Ophthalmology, General Hospital “G. Gennimatas”, 11527 Athens, Greece
| | - Aikaterini Michelaki
- Department of Clinical Microbiology, General Hospital “G. Gennimatas”, 11527 Athens, Greece
| | - Maria Exindari
- Postgraduate Master Program “Ocular Surgery”, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Orfanidou
- Department of Clinical Microbiology, General Hospital “G. Gennimatas”, 11527 Athens, Greece
| |
Collapse
|
8
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
9
|
Erdal E. Injectable nanogels to improve triamcinolone acetonide delivery and toxicity on the treatment of eye diseases. J Biomater Appl 2025; 39:498-509. [PMID: 39208349 DOI: 10.1177/08853282241277345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Triamcinolone acetonide (TA) is a corticosteroid, and widely used in the treatment of eye diseases such as macular edema, proliferative vitreoretinopathy, and chronic uveitis. It's also used in diseases such as osteoarthritis and rheumatoid arthritis. Despite the width of its usage, it has toxicity in the eye. Nanogels are advantageous in applying toxic and low bioavailability drugs thanks to their swelling ability and stability. In the presented study, to minimize the disadvantages of TA, and to reach the drug into the back segment of the eye, TA-loaded chitosan (CS) nanogel (CS-TA Nanogel) has been prepared, and in vitro characterized. CS-TA nanogels were prepared by ionic gelation and characterized by SEM, FTIR, and TGA. Drug release profile, and in vitro cytotoxicity was determined to evaluate the efficacy of nanogels for intravitreal eye applications. DNA damage, and oxidative stress caused by nanogels in eye endothelial cells were investigated. CS and CS-TA nanogels were synthesized in the sizes range 200-300 nm with an overall positive charge surface. The loading efficiency of TA on nanogels was determined as 50%. Cells exposed to 250 µg/ml free TA showed 74% viability, while this rate was 90% in cells exposed to CS-TA nanogels. 8-OHdG levels were determined as 54.93 ± 1.118 ng/mL in control cells and 92.47 ± 0.852 ng/mL in cells exposed to 250 µg/ml TA. TA both induces oxidative stress and causes DNA damage in HRMEC cells. However, administration of TA with carrier increased cell viability, total antioxidant capacity, and reduced oxidative DNA damage.
Collapse
Affiliation(s)
- Ebru Erdal
- Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
10
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
12
|
Tang B, Wang Q, Zhang G, Zhang A, Zhu L, Zhao R, Gu H, Meng J, Zhang J, Fang G. OCTN2- and ATB 0,+-targeted nanoemulsions for improving ocular drug delivery. J Nanobiotechnology 2024; 22:130. [PMID: 38532399 DOI: 10.1186/s12951-024-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lu Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rongrong Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hongwei Gu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jie Meng
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
13
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
14
|
Racaniello GF, Balenzano G, Arduino I, Iacobazzi RM, Lopalco A, Lopedota AA, Sigurdsson HH, Denora N. Chitosan and Anionic Solubility Enhancer Sulfobutylether-β-Cyclodextrin-Based Nanoparticles as Dexamethasone Ophthalmic Delivery System for Anti-Inflammatory Therapy. Pharmaceutics 2024; 16:277. [PMID: 38399331 PMCID: PMC10893235 DOI: 10.3390/pharmaceutics16020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Cataract surgery interventions are constantly increasing, particularly among adult and elderly patients. This type of surgery can lead to inflammatory states of the ocular anterior segment (AS), usually healed via postoperative treatment with dexamethasone (DEX)-containing eye drops. The application of eye drops is challenging due to the high number of daily administrations. In this study, mucoadhesive nanoparticles (NPs) were formulated to improve the residence time of DEX on the corneal mucosa, enhancing the drug's solubility and bioavailability. The NPs were generated using an ionotropic gelation technique, exploiting the interaction between the cationic group of chitosan (CS) and the anionic group of sulfobutylether-β-cyclodextrin (SBE-β-CD). The formation of the inclusion complex and its stoichiometry were studied through phase solubility studies, Job's plot method, and Bi-directional transport studies on MDCKII-MDR1. The obtained NPs showed good chemical and physical characteristics suitable for drug loading and subsequent testing on animal mucosa. The DEX-loaded CS/SBE-β-CD NPs exhibited a prolonged residence time on animal mucosa and demonstrated enhanced drug permeability through the corneal membrane, showing a sustained release profile. The developed NPs posed no irritation or toxicity concerns upon local administration, making them an optimal and innovative drug delivery system for inflammatory AS diseases treatment.
Collapse
Affiliation(s)
- Giuseppe Francesco Racaniello
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | - Gennaro Balenzano
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | - Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | - Rosa Maria Iacobazzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | - Antonio Lopalco
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | - Angela Assunta Lopedota
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| | | | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.F.R.); (G.B.); (I.A.); (R.M.I.); (A.L.); (A.A.L.)
| |
Collapse
|
15
|
Osi B, Al-Kinani AA, Al-Qaysi ZK, Khoder M, Alany RG. Exploring the Ocular Absorption Pathway of Fasudil Hydrochloride towards Developing a Nanoparticulate Formulation with Improved Performance. Pharmaceutics 2024; 16:112. [PMID: 38258122 PMCID: PMC10819904 DOI: 10.3390/pharmaceutics16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and canal of Schlemm's aqueous humor outflow. This study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently, develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil permeation through the sclera compared to the cornea (370.0 μg/cm2 vs. 96.8 μg/cm2, respectively). The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved (17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial improvement in the permeation of Fasudil via the cornea, along with slower release compared to the Fasudil aqueous solution. The results from the Hen's Egg Test Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil hydrochloride where the cornea has been identified as a potential barrier that could be overcome using Cs NPs.
Collapse
Affiliation(s)
- Barzan Osi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Ali A. Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Zinah K. Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Singh CP, Rai PK, Kumar M, Tiwari V, Tiwari A, Sharma A, Sharma K. Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics. Pharm Nanotechnol 2024; 12:126-142. [PMID: 37519002 DOI: 10.2174/2211738511666230727102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Drug distribution to the eye is still tricky because of the eye's intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful. OBJECTIVE The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs. METHODS To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc. Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers. CONCLUSION Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.
Collapse
Affiliation(s)
- Chandra Pratap Singh
- Usha college of Pharmacy & Medical Sciences, Vijaygaon, Ambedkar Nagar, 224122, UP, India
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Pankaj Kumar Rai
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Kamini Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
17
|
Uğurlu N, Erdal E, Malekghasemi S, Demirbilek M. Effectiveness of carbonic anhydrase inhibitor loaded nanoparticles in the treatment of diabetic retinopathy. Biomed Phys Eng Express 2023; 10:015002. [PMID: 36758224 DOI: 10.1088/2057-1976/acba9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Diabetic Retinopathy (DRP) is a disease consisting of all the structural and functional changes that develop in the retinal layer of the eye due to diabetes. DRP is the most important cause of blindness between the ages of 20-74 in the world, and the most successful standard treatment option in the treatment of DRP is intravitreal injections. To synthesize acetazolamide loaded nanoparticles to be applied intravitreal treatment of DRP and to examine thein vitroefficacy of the nanoparticles. ACZ loaded PHBV nanoparticles (PHBV-ACZ NPs) formulations were prepared. Nanoparticles with a particle size of 253.20 ± 0.55 nm. A DRP model was established and characterized in HRMEC cells. The effect of the nanoparticles on permeability has been investigated and carrier proteins in BRB due to the development of DRP has been investigated. To establish thein vitroDRP model, HRMEC was stimulated with Recombinant human 165 Vascular Endothelial Growth Factor (VEGF), thereby temporarily reducing the expression levels of endothelial junction proteins, increasing the number of intercellular spaces in the monolayers of HRMECs. It was determined that after the cells were exposed to Carbonic anhydrase inhibitors (CAI) loaded nanoparticles, permeability decreased and protein expression increased.
Collapse
Affiliation(s)
- Nagihan Uğurlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Ophthalmology, Advanced Technologies Application and Research Center, Ankara, Turkey
- Ministry of Health, Ankara City Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Ebru Erdal
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara, Turkey
| | - Soheil Malekghasemi
- Hacettepe University, Department of Bioengineering, Graduate School of Science and Engineering, Ankara, Turkey
| | - Murat Demirbilek
- Ankara Haci Bayram Veli University, Biology Department, Ankara, Turkey
| |
Collapse
|
18
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
19
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
20
|
Chan HW, Chow S, Zhang X, Kwok PCL, Chow SF. Role of Particle Size in Translational Research of Nanomedicines for Successful Drug Delivery: Discrepancies and Inadequacies. J Pharm Sci 2023; 112:2371-2384. [PMID: 37453526 DOI: 10.1016/j.xphs.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China.
| |
Collapse
|
21
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Li L, Jia F, Wang Y, Liu J, Tian Y, Sun X, Lei Y, Ji J. Trans-corneal drug delivery strategies in the treatment of ocular diseases. Adv Drug Deliv Rev 2023; 198:114868. [PMID: 37182700 DOI: 10.1016/j.addr.2023.114868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The cornea is a remarkable tissue that possesses specialized structures designed to safeguard the eye against foreign objects. However, its unique properties also make it challenging to deliver drugs in a non-invasive manner. This review highlights recent advancements in achieving highly efficient drug transport across the cornea, focusing on nanomaterials. We have classified these strategies into three main categories based on their mechanisms and have analyzed their success and limitations in a systematic manner. The purpose of this review is to examine potential general principles that could improve drug penetration through the cornea and other natural barriers in the eye. We hope it will inspire the development of more effective drug delivery systems that can better treat ocular diseases.
Collapse
Affiliation(s)
- Liping Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Jiamin Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Yi Tian
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Xinghuai Sun
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Yuan Lei
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China.
| |
Collapse
|
23
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
24
|
Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023; 15:pharmaceutics15041077. [PMID: 37111563 PMCID: PMC10146987 DOI: 10.3390/pharmaceutics15041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids’ unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Lucía Martín-Banderas
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556754
| | - Matilde Durán-Lobato
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
| |
Collapse
|
25
|
Influence of BAKs on Tear Film Lipid Layer: in vitro and in silico models. Eur J Pharm Biopharm 2023; 186:65-73. [PMID: 36933811 DOI: 10.1016/j.ejpb.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Benzalkonium chloride (BAK) compounds are commonly used in topical ophthalmic products as preservatives and stabilizers. BAK mixtures containing several compounds with different alkyl chain lengths are typically used. However, in chronic eye conditions, such as dry eye disease and glaucoma, the accumulation of adverse effects of BAKs was observed. Hence, preservative-free eye drops formulations are preferred. On the other hand, selected long-chain BAKs, particularly cetalkonium chloride, exhibit therapeutic functions, promoting epithelium wound healing and tear film stability. Nevertheless, the mechanism of BAKs influence on the tear film is not fully understood. By employing in vitro experimental and in silico simulation techniques, we elucidate the action of BAKs and demonstrate that long-chain BAKs accumulate in the lipid layer of the tear film model, stabilizing it in a concentration-dependent fashion. In contrast, short-chain BAKs interacting with the lipid layer compromise the tear film model stability. These findings are relevant for topical ophthalmic drug formulation and delivery in the context of selecting proper BAK species and understanding the dose dependency for tear film stability.
Collapse
|
26
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
27
|
Liu R, Li J, Guo Z, Chu D, Li C, Shi L, Zhang J, Zhu L, Li Z. Celastrol Alleviates Corneal Stromal Fibrosis by Inhibiting TGF-β1/Smad2/3-YAP/TAZ Signaling After Descemet Stripping Endothelial Keratoplasty. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 36867128 PMCID: PMC9988716 DOI: 10.1167/iovs.64.3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effect of celastrol (CEL) on corneal stromal fibrosis after Descemet stripping endothelial keratoplasty (DSEK) and its associated mechanism. Methods Rabbit corneal fibroblasts (RCFs) were isolated, cultured, and identified. A CEL-loaded positive nanomedicine (CPNM) was developed to enhance corneal penetration. CCK-8 and scratch assays were performed to evaluate cytotoxicity and the effects of CEL on the migration of RCFs. The RCFs were activated by TGF-β1 with or without CEL treatment, and then the protein expression levels of TGFβRII, Smad2/3, YAP, TAZ, TEAD1, α-SMA, TGF-β1, FN, and COLI were assessed by immunofluorescence or Western blotting (WB). An in vivo DSEK model was established in New Zealand White rabbits. The corneas were stained using H&E, YAP, TAZ, TGF-β1, Smad2/3, TGFβRII, Masson, and COLI. H&E staining of the eyeball was performed to assess the tissue toxicity of CEL at 8 weeks after DSEK. Results In vitro CEL treatment inhibited the proliferation and migration of RCFs induced by TGF-β1. Immunofluorescence and WB showed that CEL significantly inhibited the protein expression of TGF-β1, Smad2/3, YAP, TAZ, TEAD1, α-SMA, TGF-βRII, FN, and COL1 induced by TGF-β1 in RCFs. In the rabbit DSEK model, CEL significantly reduced the levels of YAP, TAZ, TGF-β1, Smad2/3, TGFβRII, and collagen. No obvious tissue toxicity was observed in the CPNM group. Conclusions CEL effectively inhibited corneal stromal fibrosis after DSEK. The TGF-β1/Smad2/3-YAP/TAZ pathway may be involved in the mechanism by which CEL alleviates corneal fibrosis. The CPNM is a safe and effective treatment strategy for corneal stromal fibrosis after DSEK.
Collapse
Affiliation(s)
- Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Ethosomal Gel for Topical Administration of Dimethyl Fumarate in the Treatment of HSV-1 Infections. Int J Mol Sci 2023; 24:ijms24044133. [PMID: 36835541 PMCID: PMC9967198 DOI: 10.3390/ijms24044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The infections caused by the HSV-1 virus induce lesions on the lips, mouth, face, and eye. In this study, an ethosome gel loaded with dimethyl fumarate was investigated as a possible approach to treat HSV-1 infections. A formulative study was conducted, evaluating the effect of drug concentration on size distribution and dimensional stability of ethosomes by photon correlation spectroscopy. Ethosome morphology was investigated by cryogenic transmission electron microscopy, while the interaction between dimethyl fumarate and vesicles, and the drug entrapment capacity were respectively evaluated by FTIR and HPLC. To favor the topical application of ethosomes on mucosa and skin, different semisolid forms, based on xanthan gum or poloxamer 407, were designed and compared for spreadability and leakage. Dimethyl fumarate release and diffusion kinetics were evaluated in vitro by Franz cells. The antiviral activity against HSV-1 was tested by plaque reduction assay in Vero and HRPE monolayer cells, while skin irritation effect was evaluated by patch test on 20 healthy volunteers. The lower drug concentration was selected, resulting in smaller and longer stable vesicles, mainly characterized by a multilamellar organization. Dimethyl fumarate entrapment in ethosome was 91% w/w, suggesting an almost total recovery of the drug in the lipid phase. Xanthan gum 0.5%, selected to thicken the ethosome dispersion, allowed to control drug release and diffusion. The antiviral effect of dimethyl fumarate loaded in ethosome gel was demonstrated by a reduction in viral growth both 1 h and 4 h post-infection. Moreover, the patch test demonstrated the safety of the ethosomal gel applied on the skin.
Collapse
|
29
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
30
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
31
|
De Hoon I, Barras A, Swebocki T, Vanmeerhaeghe B, Bogaert B, Muntean C, Abderrahmani A, Boukherroub R, De Smedt S, Sauvage F, Szunerits S. Influence of the Size and Charge of Carbon Quantum Dots on Their Corneal Penetration and Permeation Enhancing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3760-3771. [PMID: 36645837 DOI: 10.1021/acsami.2c18598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reaching the corneal endothelium through the topical administration of therapeutic drugs remains a challenge in ophthalmology. Besides, endothelial cells are not able to regenerate, and diseases at this site can lead to corneal blindness. Targeting the corneal endothelium implies efficient penetration through the three corneal layers, which still remains difficult for small molecules. Carbon quantum dots (CQDs) have demonstrated great potential for ocular nanomedicine. This study focuses on the corneal penetration abilities of differently charged CQDs and their use as permeation enhancers for drugs. Excised whole bovine eyes were used as an ex vivo model to investigate corneal penetration of CQDs derived from glucosamine using β-alanine, ethylenediamine, or spermidine as a passivation agent. It was found that negatively charged CQDs have limited corneal penetration ability, while positively charged CQDs derived from glucosamine hydrochloride and spermidine (CQD-S) penetrate the entire corneal epithelium all the way down to the endothelium. CQD-S were shown to enhance the penetration of FITC-dextran 150 kDa, suggesting that they could be used as efficient penetration enhancers for therapeutic delivery to the corneal endothelium.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Bernd Vanmeerhaeghe
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Bram Bogaert
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Cristina Muntean
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| |
Collapse
|
32
|
Osouli M, Abdollahizad E, Alavi S, Mahboubi A, Abbasian Z, Haeri A, Dadashzadeh S. Biocompatible phospholipid-based mixed micelles for posaconazole ocular delivery: Development, characterization, and in - vitro antifungal activity. J Biomater Appl 2023; 37:969-978. [PMID: 36424544 DOI: 10.1177/08853282221141962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Current study intended to prepare and evaluate phospholipid-based, mixed micelles (MMs) to improve the ocular delivery of posaconazole (POS), a broad-spectrum antifungal drug. For this, MMs based on egg phosphatidylcholine (EPC), as the main component, in combination with various bile salts (sodium cholate (NaC), sodium deoxycholate (NaDC), sodium taurocholate (NaTC)) or non-ionic surfactants (Pluronic® F-127, Pluronic® F-68, Tween 80, Labrasol® ALF, and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS)) were prepared. Particle size, polydispersity index, zeta potential and entrapment efficiency were evaluated to optimize the composition and preparation method of the MMs. Finally, morphology, stability, in vitro release pattern, and in vitro antifungal activity of the optimized formulation were investigated. Among the prepared MMs, vesicles composed of EPC: TPGS with a molar ratio of 70:30, prepared by the thin-film hydration method, showed more appropriate features. Among the prepared MMs, vesicles composed of EPC: TPGS with a molar ratio of 70:30 showed more appropriate features, including an entrapment efficiency (EE) greater than 80%, spherical shape morphology, an average particle size of about 58 nm, desirable stability over a month, slow-release without a noticeable initial burst, and a significantly higher in vitro antifungal activity in comparison with the drug suspension. Therefore, this formulation was selected as the optimal MMs and could be considered as a promising carrier for topical ocular delivery of POS.
Collapse
Affiliation(s)
- Mahraz Osouli
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Abdollahizad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Xu X, Zuo YY. Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Chakraborty M, Banerjee D, Mukherjee S, Karati D. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Mohan P, Rangari VD, Kesavan K. Cationic Chitosan/Pectin Polyelectrolyte Nanocapsules of Moxifloxacin as Novel Topical Management System for Bacterial Keratitis. Curr Eye Res 2022; 47:1498-1507. [PMID: 36099026 DOI: 10.1080/02713683.2022.2124274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Moxifloxacin (MOX) is a fourth-generation fluoroquinolone and a broad spectrum antibiotic used in the management of bacterial keratitis (BK). This investigation aimed to formulate MOX-loaded chitosan/pectin cationic polyelectrolyte nanocapsules (CPNCs) for the effective topical treatment of BK. METHODS Physicochemical properties like nanocapsule size, charge, drug entrapment efficiency (EE), viscosity, pH, and in-vitro release profile of CPNCs were evaluated. The in-vitro antibacterial activity of CPNCs and marketed formulations (MFs) was studied against Staphylococcus aureus. Ex-vivo corneal permeation studies of CPNCs were evaluated with the help of a modified diffusion apparatus, which was used with goat cornea. The pharmacodynamic study was performed with optimized CPNCs on a BK-induced rabbit eye model and compared with MF. RESULTS The optimized nanocapsules appeared as positive charge (+19.91 ± 0.66) with a nano size (242.0 ± 0.30 nm) as calculated by the dynamic light scattering method. The in-vitro release profile of CPNCs exhibited sustained release properties. The ex-vivo permeation pattern also supported the improved drug permeation through the cornea from CPNCs as compared with MF. Draize irritation studies confirmed that the prepared formulation is compatible with the corneal tissue. The in-vivo study concluded that the antibacterial activity of CPNCs was improved when evaluated with MF. CONCLUSION The obtained results showed that CPNCs were the better choice for the management of BK therapy due to its capability to improve the corneal adhesion of CPNCs through direct interaction with the mucous membrane of the corneal tissue.
Collapse
Affiliation(s)
- Parasuraman Mohan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vinod D Rangari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Karthikeyan Kesavan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
36
|
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics (Basel) 2022; 11:antibiotics11091205. [PMID: 36139984 PMCID: PMC9495113 DOI: 10.3390/antibiotics11091205] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The present review focuses on the potential use of silver nanoparticles in the therapy of diseases caused by antibiotic-resistant bacteria. Such bacteria are known as “superbugs”, and the most concerning species are Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus (methicillin and vancomycin-resistant), and some Enterobacteriaceae. According to the World Health Organization (WHO), there is an urgent need for new treatments against these “superbugs”. One of the possible approaches in the treatment of these species is the use of antibacterial nanoparticles. After a short overview of nanoparticle usage, mechanisms of action, and methods of synthesis of nanoparticles, emphasis has been placed on the use of silver nanoparticles (AgNPs) to combat the most relevant emerging resistant bacteria. The toxicological aspects of the AgNPs, both in vitro using cell cultures and in vivo have been reviewed. It was found that toxic activity of AgNPs is dependent on dose, size, shape, and electrical charge. The mechanism of action of AgNPs involves interactions at various levels such as plasma membrane, DNA replication, inactivation of protein/enzymes necessary, and formation of reactive oxygen species (ROS) leading to cell death. Researchers do not always agree in their conclusions on the topic and more work is needed in this field before AgNPs can be effectively applied in clinical therapy to combat multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Eva M. Mateo
- Department of Microbiology and Ecology, Faculty of Medicine and Odontology, Universitat de Valencia, E-46010 Valencia, Spain
- Correspondence:
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, Faculty of Biological Sciences, Universitat de Valencia, E-46100 Valencia, Spain
| |
Collapse
|
38
|
Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14091852. [PMID: 36145601 PMCID: PMC9501598 DOI: 10.3390/pharmaceutics14091852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are natural lipid-soluble pigments that produce yellow to red colors in plants as well as providing bright coloration in vegetables and fruits. Lutein belongs to the xanthophyll subgroup of the carotenoid family, which plays an essential role in photosynthesis and photoprotection in nature. In the human body, lutein, together with its isomer zeaxanthin and its metabolite meso-zeaxanthin, accumulates in the macula of the eye retina, which is responsible for central, high-resolution, and color vision. As a bioactive phytochemical, lutein has essential physiological functions, providing photoprotection against damaging blue light, along with the neutralization of oxidants and the preservation of the structural and functional integrity of cellular membranes. As a potent antioxidant and anti-inflammatory agent, lutein unfortunately has a low bioavailability because of its lipophilicity and a low stability as a result of its conjugated double bonds. In order to enhance lutein stability and bioavailability and achieve its controlled delivery to a target, nanoscale delivery systems, which have great potential for the delivery of bioactive compounds, are starting to be employed. The current review highlights the advantages and innovations associated with incorporating lutein within promising nanoscale delivery systems, such as liposomes, nanoemulsions, polymer nanoparticles, and polymer–lipid hybrid nanoparticles, as well as their unique physiochemical properties.
Collapse
|
39
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Almond oil O/W nanoemulsions: Potential application for ocular delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
42
|
Zingale E, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications. Pharmaceutics 2022; 14:691. [PMID: 35456525 PMCID: PMC9024479 DOI: 10.3390/pharmaceutics14040691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new drugs is often hindered by low solubility in water, a problem common to nearly 90% of natural and/or synthetic molecules in the discovery pipeline. Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. Due to high drug loading, NCs maintain a potent therapeutic concentration to produce desirable pharmacological action, particularly useful in the treatment of central nervous system (CNS) diseases. In addition to the therapeutic purpose, NC technology can be applied for diagnostic scope. This review aims to provide an overview of NC application by different administration routes, especially focusing on brain targeting, and with a particular attention to therapeutic and diagnostic fields. NC therapeutic applications are analyzed for the most common CNS pathologies (i.e., Parkinson's disease, psychosis, Alzheimer's disease, etc.). Recently, a growing interest has emerged from the use of colloidal fluorescent NCs for brain diagnostics. Therefore, the use of NCs in the imaging of brain vessels and tumor cells is also discussed. Finally, the clinical effectiveness of NCs is leading to an increasing number of FDA-approved products, among which the NCs approved for neurological disorders have increased.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
43
|
Lin PH, Jian HJ, Li YJ, Huang YF, Anand A, Huang CC, Lin HJ, Lai JY. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomater 2022; 141:140-150. [PMID: 35081433 DOI: 10.1016/j.actbio.2022.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
Most dry eye syndromes (DES) are caused by oxidative stress and an overactive inflammatory response, leading to tear deficiency and excessive tear evaporation. Conventional eye drops for DES treatment require high doses and frequent administration due to their insufficient precorneal residence time. To overcome these problems, in this study, we have developed carbonized nanogels (CNGs) via the straightforward pyrolysis of lysine hydrochloride (Lys) to provide a long-lasting eye drop formulation for topical DES therapy. This methodology thermally converts Lys-into nitrogen-doped crosslinked polymers with embedded nanographitic structures, which enable efficient free radical scavenging. The cationic and crosslinked polymeric features of the Lys-CNGs also prolong the precorneal retention time and improve ocular bioavailability. These Lys-CNGs exhibit high biocompatibility with corneal epithelial cells both in vitro and in vivo, indicating their safety as eye drops. In a DES rabbit model, a single dose of Lys-CNGs (50 µg mL-1) can effectively alleviate the signs of DES within 4 days, whereas multiple treatments of 10-fold higher concentration of cyclosporine A are needed to achieve similar therapeutic effects (one dose every 12 h; 500 µg mL-1). The topical administration of Lys-CNGs enable a reduced therapeutic dose and extended dosing interval, thereby demonstrating a superior therapeutic efficacy compared to the commercial cyclosporine A eye drops. These Lys-CNGs, which exhibit significant free radical scavenging, anti-inflammatory activity, high biocompatibility, and a remarkable ocular bioadhesive property, hold great potential as a long-lasting eye drop formulation for the treatment of dry eye disease. STATEMENT OF SIGNIFICANCE: Multifunctional nanobiomaterial-based eye drops can render an ideal pharmaceutical formulation for the treatment of a variety of ocular surface diseases. To our knowledge, this is the first report describing the development of carbonized nanogels as topically administered therapeutics for alleviating dry eye syndrome (DES). We present evidence that the thermal transformation of lysine hydrochloride into carbonized nanogels (Lys-CNGs) endows superior antioxidant, anti-inflammatory, and bioadhesive properties. While a single dose of Lys-CNGs (50 µg mL-1) is sufficient to relieve the symptoms of DES for 4 days, multiple treatments of 10-fold higher concentration of commercially available cyclosporine eye drops are needed to achieve similar therapeutic outcomes (one dose every 12 h; 500 µg mL-1), suggesting an effective and long-lasting ocular carbonized nanomedicine.
Collapse
|
44
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
45
|
Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_32-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
46
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
47
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
48
|
Ammassam Veettil R, Marcano DC, Yuan X, Zaheer M, Adumbumkulath A, Lee R, Isenhart LC, Soriano N, Mhatre K, Joseph R, Mani SA, Shin CS, Acharya G. Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics 2021; 13:pharmaceutics13101628. [PMID: 34683921 PMCID: PMC8539456 DOI: 10.3390/pharmaceutics13101628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.
Collapse
Affiliation(s)
- Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Daniela C. Marcano
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Xiaoyong Yuan
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Lucas C. Isenhart
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Nicole Soriano
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Kirti Mhatre
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Crystal S. Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Correspondence: (C.S.S.); (G.A.)
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
- Correspondence: (C.S.S.); (G.A.)
| |
Collapse
|
49
|
Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz B. Ophthalmic Nanoemulsions: From Composition to Technological Processes and Quality Control. Mol Pharm 2021; 18:3719-3740. [PMID: 34533317 PMCID: PMC8493553 DOI: 10.1021/acs.molpharmaceut.1c00650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Nanoemulsions are considered as the most promising solution to improve the delivery of ophthalmic drugs. The design of ophthalmic nanoemulsions requires an extensive understanding of pharmaceutical as well as technological aspects related to the selection of excipients and formulation processes. This Review aims at providing the readers with a comprehensive summary of possible compositions of nanoemulsions, methods for their formulation (both laboratory and industrial), and differences between technological approaches, along with an extensive outline of the research methods enabling the confirmation of in vitro properties, pharmaceutical performance, and biological activity of the obtained product. The composition of the formulation has a major influence on the properties of the final product obtained with low-energy emulsification methods. Increasing interest in high-energy emulsification methods is a consequence of their scalability important from the industrial perspective. Considering the high-energy emulsification methods, both the composition and conditions of the process (e.g., device power level, pressure, temperature, homogenization time, or number of cycles) are important for the properties and stability of nanoemulsions. It is advisible to determine the effect of each parameter on the quality of the product to establish the optimal process parameters' range which, in turn, results in a more reproducible and efficient production.
Collapse
Affiliation(s)
| | - Karol P. Nartowski
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Aleksandra J. Dyba
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Anna M. Gołkowska
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Katarzyna Malec
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
50
|
Ch S, Mishra P, Bhatt H, Ghosh B, Roy S, Biswas S. Hydroxypropyl methacrylamide-based copolymeric nanoparticles loaded with moxifloxacin as a mucoadhesive, cornea-penetrating nanomedicine eye drop with enhanced therapeutic benefits in bacterial keratitis. Colloids Surf B Biointerfaces 2021; 208:112113. [PMID: 34562784 DOI: 10.1016/j.colsurfb.2021.112113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Bacterial keratitis (BK) is a leading cause of visual impairment. The fluoroquinolone antibiotic moxifloxacin (Mox), being highly water-soluble, suffers from poor corneal penetration leading to unsatisfactory therapeutic outcomes in BK. Here, we prepared Mox-loaded co-polymeric nanoparticles (NPs) by entrapping the drug in co-polymeric NPs constituted by the self-assembly of a water-soluble copolymer, poly(ethylene glycol)-b-p(hydroxypropyl) methacrylamide (mPH). The polymer (mPH) was prepared using a radical polymerization technique at different mPEG: HPMA ratios of 1:70/100/150. The polymer/nanoparticles were characterized by GPC, CAC, DLS, SEM, XRD, DSC, FTIR, % DL, % EE, and release studies. The ex vivo muco-adhesiveness and corneal permeation ability were judged using a texture analyzer and Franz Diffusion Cells. In vitro cellular uptake, cytotoxicity, and safety assessment were performed using HCE cells in monolayers, spheroids, and multilayers in transwells. The DOE-optimized colloidal solution of Mox-mPH NPs (1:150) displayed a particle size of ~116 nm, superior drug loading (8.3%), entrapment (83.2%), robust mucoadhesion ex vivo, and ocular retention in vivo (~6 h) (judged by in vivo image analysis). The non-irritant formulation, Mox-mPH NPs (1:150) (proven by HET-CAM test) exhibited intense antimicrobial activity against P. aeruginosa, S. pneumoniae, and S. aureus in vitro analyzed by live-dead cells assay, zone of inhibition studies, and by determining the minimum inhibitory and bactericidal concentrations. The polymeric nanoparticles, mPH (1:150), decreased the opacity and the bacterial load compared to the other treatment groups. The studies warrant the safe and effective topical application of the Mox-mPH NPs solution in bacterial keratitis.
Collapse
Affiliation(s)
- Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|